GROWTH PROPERTIES AND SEQUENCES OF ZEROS OF ANALYTIC FUNCTIONS IN SPACES OF DIRICHLET TYPE

DANIEL GIRELA[™] and JOSÉ ÁNGEL PELÁEZ

(Received 1 June 2004; revised 3 April 2005)

Communicated by P. C. Fenton

Abstract

For $0 , we let <math>\mathscr{D}_{p-1}^p$ denote the space of those functions f that are analytic in the unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and satisfy $\int_{\Delta} (1 - |z|)^{p-1} |f'(z)|^p dx dy < \infty$. The spaces \mathscr{D}_{p-1}^p are closely related to Hardy spaces. We have, $\mathscr{D}_{p-1}^p \subset H^p$, if $0 , and <math>H^p \subset \mathscr{D}_{p-1}^p$, if $2 \le p < \infty$. In this paper we obtain a number of results about the Taylor coefficients of \mathscr{D}_{p-1}^p -functions and sharp estimates on the growth of the integral means and the radial growth of these functions as well as information on their zero sets.

2000 Mathematics subject classification: primary 30D35, 30D55, 46E15.

Keywords and phrases: Spaces of Dirichlet type, Hardy spaces, Bergman spaces, integral means, radial growth, sequences of zeros.

1. Introduction and main results

We denote by Δ the unit disc { $z \in \mathbb{C} : |z| < 1$ }. If f is a function which is analytic in Δ and 0 < r < 1, we set

$$\begin{split} M_{p}(r, f) &= \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{it})|^{p} dt\right)^{1/p}, \quad 0$$

For 0 , the*Hardy space* $<math>H^p$ consists of all analytic functions f in the disc for which $||f||_{H^p} \stackrel{\text{def}}{=} \sup_{0 < r < 1} M_p(r, f) < \infty$. We refer the reader to [10] and [13] for the theory of Hardy spaces.

^{© 2006} Australian Mathematical Society 1446-8107/06 \$A2.00 + 0.00

If $0 and <math>\alpha > -1$, we let A^p_{α} denote the (standard) weighted Bergman space, that is, the set of analytic functions f in Δ such that

$$\int_{\Delta} (1-|z|)^{\alpha} |f(z)|^p \, dA(z) < \infty.$$

Here, $dA(z) = (1/\pi) dx dy$ denotes the normalized Lebesgue area measure in Δ . The standard unweighted Bergman space A_0^p is simply denoted by A^p . We mention [11] and [17] as general references for the theory of Bergman spaces.

The space \mathscr{D}^p_{α} (p > 0, $\alpha > -1$) consists of all functions f which are analytic in Δ such that $f' \in A^p_{\alpha}$. The space \mathscr{D}^2_0 is the classical Dirichlet space \mathscr{D} . For other values of p and α the spaces \mathscr{D}^p_{α} have been extensively studied in a number papers such as [27, 28, 30, 33] for p = 2 and [4, 8, 34, 36] for other values of p. If $p < \alpha + 1$, it is well known that $\mathscr{D}^p_{\alpha} = A^p_{\alpha-p}$ with equivalence of norms (see [12, Theorem 6]). For $\alpha = p - 2$, the space \mathscr{D}^p_{α} is the Besov space B^p (compare to [3]).

The space \mathscr{D}^p_{α} is said to be a Dirichlet space if $p \ge \alpha + 1$. In this paper we shall be primarily interested in the 'limit case' $p = \alpha + 1$, that is, in the spaces \mathscr{D}^p_{p-1} , 0 , which are closely related to Hardy spaces. Indeed, a classical result of Littlewood and Paley [19] (see also [20]) asserts that

(1)
$$H^p \subset \mathscr{D}_{p-1}^p, \quad 2 \le p < \infty.$$

On the other hand, we have

(2)
$$\mathscr{D}_{p-1}^p \subset H^p, \quad 0$$

(see [34, Lemma 1.4]). Notice that, in particular, we have $\mathscr{D}_1^2 = H^2$. However, we remark that if $p \neq 2$ then

(3)
$$H^p \neq \mathscr{D}_{p-1}^p.$$

This can be seen using the characterization of power series with Hadamard gaps which belong to the spaces \mathscr{D}_{p-1}^{p} .

PROPOSITION A. If f is an analytic function in Δ which is given by a power series with Hadamard gaps, $f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$ $(z \in \Delta)$ with $n_{k+1} \ge \lambda n_k$ for all k $(\lambda > 1)$, then, for every $p \in (0, \infty)$, $f \in \mathscr{D}_{p-1}^p$ if and only if $\sum_{k=1}^{\infty} |a_k|^p < \infty$.

Since for Hadamard gap series as above we have, for $0 , <math>f \in H^p$ if and only of $\sum_{k=1}^{\infty} |a_k|^2 < \infty$, we immediately deduce that $\mathscr{D}_{p-1}^p \neq H^p$ if $p \neq 2$. We remark that Proposition A follows from [7, Proposition 2.1]. In Section 2 we shall see that Proposition A can also be deduced from the following theorem which gives a condition on the Taylor coefficients of a function f, analytic in Δ , which implies that $f \in \mathscr{D}_{p-1}^p$. THEOREM 1.1. Let f be an analytic function in Δ , $f(z) = \sum_{n=0}^{\infty} a_n z^n$ ($z \in \Delta$). (i) If 0 and

(4)
$$\sum_{n=0}^{\infty} \left(\sum_{k \in I(n)} |a_k| \right)^p < \infty$$

then $f \in \mathscr{D}_{p-1}^{p}$. (ii) If 0 and

(5)
$$\sum_{n=1}^{\infty} \left(\sum_{k \in I(n)} |a_k|^2 \right)^{p/2} < \infty,$$

then $f \in \mathscr{D}_{p-1}^p$.

Here and throughout the paper, for n = 0, 1, ..., I(n) is the set of the integers k such that $2^n \le k < 2^{n+1}$.

If $0 , then (4) implies (5). Hence, for <math>p \in (0, 2]$, (ii) is stronger than (i). We remark also that if $0 , then the condition <math>\sum_{n=0}^{\infty} |a_n|^p < \infty$ implies (5). Consequently, (ii) improves [34, Lemma 1.5].

In Theorem 1.2 we give a condition on the Taylor coefficients of an analytic function f which is necessary for its membership in \mathscr{D}_{p-1}^{p} if $2 \le p < \infty$.

THEOREM 1.2. Let f be an analytic function in Δ , $f(z) = \sum_{n=0}^{\infty} a_n z^n$ ($z \in \Delta$). If $2 \le p < \infty$ and $f \in \mathscr{D}_{p-1}^p$, then

(6)
$$\sum_{n=1}^{\infty} \left(\sum_{k \in I(n)} |a_k|^2 \right)^{p/2} < \infty.$$

If 0 then (3) can be seen in some other ways. Rudin proved in [29] that there exists a Blaschke product*B* $which does not belong to <math>\mathscr{D}_0^1$ (see also [24]). Vinogradov [34] extended this result showing that for every $p \in (0, 2)$ there exist Blaschke products *B* which do not belong to \mathscr{D}_{p-1}^p . This clearly gives that $\mathscr{D}_{p-1}^p \neq H^p$ if $0 , a fact which can be also deduced from the results of [9] and [14]. In contrast with what happens for <math>0 , it is not easy to give examples of functions <math>f \in \mathscr{D}_{p-1}^p \setminus H^p$ for a certain $p \in (2, \infty)$ that are not given by power series by Hadamard gaps. Since $H^p \subset \mathscr{D}_{p-1}^p$ if $p \ge 2$, any Blaschke product belongs to $\bigcap_{2 \le p < \infty} \mathscr{D}_{p-1}^p$. Also, for a number of classes \mathscr{F} of analytic functions in Δ we have $\mathscr{F} \cap \mathscr{D}_{p-1}^p = \mathscr{F} \cap H^p$ (0). For example, it is very easy to prove the following lemma.

LEMMA 1.3. (i) If $\alpha > 0$, $0 , and <math>f(z) = 1/(1-z)^{\alpha}$, $(z \in \Delta)$, then $f \in H^p$ if and only if $f \in \mathcal{D}_{p-1}^p$ if and only if $\alpha p < 1$.

(ii) If $\alpha, \beta > 0, p \in (0, \infty)$, and

$$f(z) = \frac{1}{(1-z)^{\alpha} (\log(2/(1-z))^{\beta})}, \quad (z \in \Delta),$$

then $f \in H^p$ if and only if $f \in \mathscr{D}_{p-1}^p$ if and only if $\alpha p < 1$ and $\beta > 0$ or $\alpha p = 1$ and $\beta p > 1$.

A much deeper result is stated in [6, Theorem 1] which asserts that, if \mathscr{U} denotes the class of all univalent (holomorphic and one-to-one) functions in Δ , then $\mathscr{U} \cap H^p = \mathscr{U} \cap \mathscr{D}_{p-1}^p$ for all p > 0 (see also [25] for the case p = 1).

In spite of these facts we shall prove that, for every $p \in (2, \infty)$, there are a lot of differences between the space H^p and the space \mathscr{D}_{p-1}^p . In Section 3, we shall be mainly concerned in obtaining sharp estimates on the growth of the integral means of \mathscr{D}_{p-1}^p -functions. If $0 and <math>f \in \mathscr{D}_{p-1}^p$, then $f \in H^p$ and hence, the integral means $M_p(r, f)$ are bounded. This is no longer true for p > 2. Our main results in Section 3 are stated in the following two theorems.

THEOREM 1.4. If $2 and <math>f \in \mathscr{D}_{p-1}^{p}$, then (i)

(7)
$$M_p(r, f) = O\left(\left(\log \frac{1}{1-r}\right)\right), \quad as \ r \to 1.$$

(ii)

(8)
$$M_2(r, f) = O\left(\left(\log \frac{1}{1-r}\right)^{1/2-1/p}\right), \quad as \ r \to 1.$$

THEOREM 1.5. If $2 and <math>0 < \beta < 1/2 - 1/p$, then there exists a function $f \in \mathcal{D}_{p-1}^p$ such that

(9)
$$\exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\log|f(re^{it})|\,dt\right)\neq o\left(\left(\log\frac{1}{1-r}\right)^{\beta}\right),\quad as\,r\to 1^{-}.$$

Since

$$\exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\log|f(re^{it})|\,dt\right) \le M_2(r,\,f),$$

Theorem 1.5 shows that part (ii) of Theorem 1.4 is sharp in a very strong sense.

Spaces of Dirichlet type

REMARK. Using Theorem 1.4 we can obtain an upper bound on the integral means $M_q(r, f)$, 2 < q < p, of a function $f \in \mathscr{D}_{p-1}^p$. Indeed, if $q \in (2, p)$, then $q = p\lambda + 2(1 - \lambda)$, where $\lambda = (q - 2)/(p - 2) \in (0, 1)$. Consequently, using Theorem 1.4 and Hölder's inequality with exponents $1/\lambda$ and $1/(1 - \lambda)$ we see that, if $f \in \mathscr{D}_{p-1}^p$ and 2 < q < p, then

$$M_q(r, f) = \left(\left(\log \frac{1}{1-r} \right)^\eta \right), \quad \text{as } r \to 1,$$

where $\eta = \eta(p,q) = p\lambda/q + (p-2)(1-\lambda)/pq$ and $\lambda = (q-2)/(p-2)$.

In Section 4 we study properties of the sequences of zeros of non trivial \mathscr{D}_{p-1}^p -functions. If $0 then <math>\mathscr{D}_{p-1}^p \subset H^p$ and hence, the sequence of zeros of a non-identically zero \mathscr{D}_{p-1}^p -function satisfies the Blaschke condition. This does not remain true for p > 2. Our main results about the sequences of zeros of functions f in the space \mathscr{D}_{p-1}^p , 2 , are stated in Theorem 1.6 and Theorem 1.7

THEOREM 1.6. Suppose that 2 and let <math>f be a function which belongs to the space \mathscr{D}_{p-1}^p with $f(0) \neq 0$. Let $\{z_k\}_{k=1}^\infty$ be the sequence zeros of f ordered so that $|z_k| \leq |z_{k+1}|$ for all k. Then

(10)
$$\prod_{k=1}^{N} \frac{1}{|z_k|} = o\left((\log N)^{1/2 - 1/p}\right), \quad as \ N \to \infty.$$

From now on, if f is a non-identically zero analytic function of zeros and $\{z_k\}_{k=1}^{\infty}$ is the sequence zeros of f ordered so that $|z_k| \le |z_{k+1}|$ for all k, we shall say that $\{z_k\}_{k=1}^{\infty}$ is the sequence of ordered zeros of f. Theorem 1.7 asserts that Theorem 1.6 is best possible.

THEOREM 1.7. If $2 and <math>0 < \beta < 1/2 - 1/p$, then there exists a function $f \in \mathscr{D}_{p-1}^p$ with $f(0) \neq 0$ such that if $\{z_k\}_{k=1}^\infty$ is the sequence of ordered zeros of f, then

(11)
$$\prod_{k=1}^{N} \frac{1}{|z_k|} \neq o\left((\log N)^{\beta}\right), \quad as \ N \to \infty.$$

As a consequence of Theorem 1.6 and Theorem 1.7, we obtain the following result.

COROLLARY 1.8. If $2 \le p < q < \infty$ then there exists a sequence $\{z_k\} \subset \Delta$ that is the sequence of zeros of a \mathcal{D}_{q-1}^q -function but is not the sequence of zeros of any \mathcal{D}_{p-1}^p -function.

Hence the situation in this setting is similar to that in the setting of Bergman spaces (see [18, Theorem 1]).

Next we shall get into the proofs of these and some other results. We shall be using the convention that $C_{p,\alpha,...}$ denotes a positive constant which depends only upon the displayed parameters $p, \alpha, ...$ but is not necessarily the same at different occurrences.

2. Taylor coefficients of \mathscr{D}_{p-1}^p functions.

We start by recalling the following useful result due to Mateljevic and Pavlovic [21] (see also [5, Lemma 3] and [22]) which will be basic in the proofs of Theorem 1.1 and Theorem 1.2.

LEMMA B. Let $\alpha > 0$ and p > 0. There exists a constant K that depends only on p and α such that, if $\{a_n\}_{n=1}^{\infty}$ is a sequence of non-negative numbers, $t_n = \sum_{k \in I(n)} a_n$ $(n \ge 0)$, and $f(x) = \sum_{n=1}^{\infty} a_n x^{n-1}$ $(x \in (0, 1))$, then

$$K^{-1}\sum_{n=0}^{\infty} 2^{-n\alpha} t_n^p \le \int_0^1 (1-x)^{\alpha-1} f(x)^p \, dx \le K \sum_{n=0}^{\infty} 2^{-n\alpha} t_n^p.$$

PROOF OF THEOREM 1.1. Take $p \in (0, \infty)$ and let f be analytic in Δ ,

(12)
$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad z \in \Delta.$$

Suppose that (4) holds. Using Lemma B and (4) we see that

$$\begin{split} \int_{\Delta} |f'(z)|^p (1-|z|^2)^{p-1} dA(z) &\leq C_p \int_0^1 (1-r)^{p-1} \left(\sum_{n=1}^{\infty} n |a_n| r^{n-1} \right)^p \, dr \\ &\leq C_p \sum_{n=0}^{\infty} 2^{-np} \left(\sum_{k \in I(n)} k |a_k| \right)^p \\ &\leq C_p \sum_{n=0}^{\infty} 2^{-np} 2^{(n+1)p} \left(\sum_{k \in I(n)} |a_k| \right)^p \\ &\leq C_p \sum_{n=0}^{\infty} \left(\sum_{k \in I(n)} |a_k| \right)^p < \infty. \end{split}$$

Hence, $f \in \mathscr{D}_{p-1}^{p}$ and the proof of (i) is finished.

Suppose now that 0 , <math>f is as in (12) and satisfies (5). Using the fact that $M_p(r, f') \le M_2(r, f')$ for all $r \in (0, 1)$, making the change of variable $r^2 = s$ and using Lemma B, we obtain

$$\begin{split} \int_{\Delta} |f'(z)|^{p} (1-|z|^{2})^{p-1} dA(z) &= 2 \int_{0}^{1} r(1-r^{2})^{p-1} M_{p}(r, f')^{p} dr \\ &\leq 2 \int_{0}^{1} r(1-r^{2})^{p-1} M_{2}(r, f')^{p} dr \\ &= 2 \int_{0}^{1} r(1-r^{2})^{p-1} \left(\sum_{n=1}^{\infty} n^{2} |a_{n}|^{2} r^{2n-2} \right)^{p/2} dr \\ &\leq C \int_{0}^{1} (1-s)^{p-1} \left(\sum_{n=1}^{\infty} n^{2} |a_{n}|^{2} s^{n-1} \right)^{p/2} ds \\ &\leq C_{p} \sum_{n=0}^{\infty} 2^{-np} \left(\sum_{k \in I(n)} k^{2} |a_{k}|^{2} \right)^{p/2} \\ &\leq C_{p} \sum_{n=0}^{\infty} \left(\sum_{k \in I(n)} |a_{k}|^{2} \right)^{p/2} < \infty. \end{split}$$

Hence, $f \in \mathscr{D}_{p-1}^{p}$. This finishes the proof of (ii).

Next we see that Proposition A can be deduced from Theorem 1.1 as announced.

PROOF OF PROPOSITION A. Let f be an analytic function in Δ given by a power series with Hadamard gaps

(13)
$$f(z) = \sum_{j=1}^{\infty} a_j z^{n_j} \quad \text{with} \quad \frac{n_{j+1}}{n_j} \ge \lambda > 1 \quad \text{for all } j,$$

and suppose that $\sum_{j=1}^{\infty} |a_j|^p < \infty$. Using the gap condition, we see that there are at most $C_{\lambda} = \log_{\lambda} 2 + 1$ of the $n'_j s$ in the set I(n). Then there exists a constant $C_{\lambda,p} > 0$ such that

$$\sum_{n=0}^{\infty} \left(\sum_{j \in I(n)} |a_j| \right)^p \le C_{\lambda,p} \sum_{j=1}^{\infty} |a_j|^p < \infty,$$

and consequently, using Theorem 1.1, we deduce that $f \in \mathscr{D}_{p-1}^{p}$.

To prove the other implication suppose that f is as in (13) and $f \in \mathscr{D}_{p-1}^{p}$ for a certain p > 0. It is well known (see [38, Chapter V, Vol. I]) that there exist constants $A(\lambda, p)$ and $B(\lambda, p)$ such that

$$A(\lambda, p)M_2^p(r, f') \le M_p^p(r, f') \le B(\lambda, p)M_2^p(r, f'), \quad 0 < r < 1.$$

This and Lemma B give

$$\begin{split} & \infty > \int_{\Delta} |f'(z)|^{p} (1-|z|^{2})^{p-1} dA(z) = \int_{0}^{1} r(1-r^{2})^{p-1} M_{p}^{p}(r,f') dr \\ & \ge A(\lambda,p) \int_{0}^{1} r(1-r^{2})^{p-1} M_{2}^{p}(r,f') dr \\ & \ge A(\lambda,p) \int_{0}^{1} r(1-r^{2})^{p-1} \left(\sum_{j=1}^{\infty} n_{j}^{2} |a_{j}|^{2} r^{2n_{j}-2} \right)^{p/2} dr \\ & \ge A(\lambda,p) \int_{0}^{1} t(1-t)^{p-1} \left(\sum_{j=1}^{\infty} n_{j}^{2} |a_{j}|^{2} t^{j-1} \right)^{p/2} dt \\ & \ge C_{p} A(\lambda,p) \sum_{n=0}^{\infty} 2^{-np} \left(\sum_{n_{j} \in I(n)} n_{j}^{2} |a_{j}|^{2} \right)^{p/2} \\ & \ge C_{p} A(\lambda,p) \sum_{n=0}^{\infty} 2^{-np} 2^{np} \left(\sum_{n_{j} \in I(n)} |a_{j}| \right)^{p} \ge C_{\lambda,p} A(\lambda,p) \sum_{j=0}^{\infty} |a_{j}|^{p}. \end{split}$$

The last inequality is obvious if $p \ge 1$ and, in the case $0 , follows again using the fact that there are at most <math>C_{\lambda} = \log_{\lambda} 2 + 1$ of the $n'_{j}s$ in the set I(n). Thus, we have $\sum_{j=0}^{\infty} |a_{j}|^{p} < \infty$. This finishes the proof.

PROOF OF THEOREM 1.2. Suppose that $2 \le p < \infty$ and $f \in \mathscr{D}_{p-1}^p$,

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad z \in \Delta.$$

Using Lemma B, bearing in mind that $k \simeq 2^n$ if $k \in I(n)$, making a change of variable, and using that since $p \ge 2$, $M_2(r, f') \le M_p(r, f')$, we obtain

$$\begin{split} \sum_{n=1}^{\infty} \left(\sum_{k \in I(n)} |a_k|^2 \right)^{p/2} &\leq \sum_{n=1}^{\infty} 2^{-np} \left(\sum_{k \in I(n)} k^2 |a_k|^2 \right)^{p/2} \\ &\leq C_p \int_0^1 (1-t)^{p-1} \left(\sum_{n=1}^{\infty} n^2 |a_n|^2 t^{n-1} \right)^{p/2} dt \\ &\leq C_p \int_0^1 (1-r^2)^{p-1} \left(\sum_{n=1}^{\infty} n^2 |a_n|^2 r^{2n-2} \right)^{p/2} dt \\ &\leq C_p \int_0^1 (1-r)^{p-1} M_p(r,f')^p < \infty. \end{split}$$

[8]

3. Growth properties of \mathscr{D}_{p-1}^{p} -functions

In this section we are mainly interested in obtaining sharp estimates on the growth of functions f in the spaces \mathscr{D}_{p-1}^{p} (2 .

3.1. Integral means estimates Let us start with estimates on the growth of the maximum modulus $M_{\infty}(r, f)$. We can prove the following result.

THEOREM 3.1. Let f be an analytic function in Δ . If $f \in \mathscr{D}_{p-1}^p$, 0 , then

(14)
$$M_{\infty}(r, f) = o\left(\frac{1}{(1-r)^{1/p}}\right), \quad as \ r \to 1^{-}.$$

PROOF. Let $f \in \mathscr{D}_{p-1}^p$ and $z \in \Delta$. Let D(z) denote the open disc

$$\left\{w\in\mathbb{C}:|z-w|<\frac{1-|z|}{2}\right\}.$$

Clearly, $D(z) \subset \Delta$. Since the function $z \to |f'(z)|^p$ is subharmonic in Δ , we have

(15)
$$|f'(z)|^p \le \frac{C}{|D(z)|} \int_{D(z)} |f'(\omega)|^p dA(\omega) \le \frac{C}{(1-|z|^2)^2} \int_{D(z)} |f'(\omega)|^p dA(\omega).$$

It is clear that $(1 - |z|^2) \approx (1 - |\omega|^2), \omega \in D(z), z \in \Delta$. Using this and (15) we obtain

(16)
$$|f'(z)|^{p} \leq \frac{C_{p}}{(1-|z|^{2})^{2}} \int_{D(z)} \left[\frac{1-|\omega|}{1-|z|}\right]^{p-1} |f'(\omega)|^{p} dA(\omega)$$
$$= \frac{C_{p}}{(1-|z|^{2})^{p+1}} \int_{D(z)} (1-|\omega|)^{p-1} |f'(\omega)|^{p} dA(\omega).$$

On the other hand, since $f \in \mathscr{D}_{p-1}^{p}$, it follows that

$$\int_{D(z)} (1 - |\omega|)^{p-1} |f'(\omega)|^p \, dA(\omega) = o(1), \quad \text{as } |z| \to 1^-,$$

which, with (16), implies

(17)
$$M_{\infty}(r, f') = o\left(\frac{1}{(1-r)^{1+1/p}}\right), \quad \text{as } r \to 1^-,$$

and (14) follows by integration.

REMARK. We observe that for any $p \in (0, \infty)$, the exponent 1/p in (14) is the best possible. Moreover, if we take

$$f_{p,\beta}(z) = (1-z)^{-1/p} \left(\log \frac{2}{1-z} \right)^{-\beta}, \quad z \in \Delta,$$

with $\beta > \frac{1}{p}$ then, as we noticed in Lemma 1.3, $f_{p,\beta} \in \mathscr{D}_{p-1}^p$ and it is easy to see that

$$M_{\infty}(r, f) \approx (1 - r)^{-1/p} \left(\log \frac{1}{1 - r} \right)^{-\beta}, \quad 0 < r < 1.$$

So condition (14) in Theorem 3.1 cannot be substituted by the condition

$$M_{\infty}(r, f) = o\left(\frac{1}{(1-r)^{1/p}(\log(1/(1-r))^{1/p+\varepsilon}}\right), \quad \text{as } r \to 1^{-},$$

for any $\varepsilon > 0$.

Now we turn to the proofs of Theorem 1.4 and Theorem 1.5.

PROOF OF THEOREM 1.4. Suppose that $2 and <math>f \in \mathscr{D}_{p-1}^p$. Then

(18)
$$\lim_{r \to 1^{-}} \int_{r}^{1} (1-s)^{p-1} M_{p}^{p}(s, f') \, ds = 0.$$

Since $M_p(s, f')$ is an increasing function of s

$$\int_{r}^{1} (1-s)^{p-1} M_{p}^{p}(s, f') \, ds \ge M_{p}^{p}(r, f') \int_{r}^{1} (1-s)^{p-1} \, ds \ge C_{p} M_{p}^{p}(r, f') (1-r)^{p},$$

which, together with (18), yields

(19)
$$M_p(r, f') = o((1-r)^{-1}), \text{ as } r \to 1^-,$$

which, using Minkowski's integral inequality, implies (7).

Using (19) and the fact that for any fixed r with 0 < r < 1 the integral means $M_p(r, f')$ increase with p, we deduce that

$$I_2(r, f') = o((1-r)^{-2}), \text{ as } r \to 1^-.$$

and then using the well-known inequality (see [26, pages 125–126])

$$\frac{d^2}{dr^2} (I_2(r, f)) \le 4I_2(r, f'), \quad 0 < r < 1,$$

we obtain

$$\frac{d^2}{dr^2} (I_2(r, f)) = o((1-r)^{-2}) \text{ as } r \to 1^-,$$

which, integrating twice, gives

$$M_2(r, f) = o\left(\left(\log(1/(1-r))^{1/2}\right), \text{ as } r \to 1.$$

This is worse than (8). To obtain this we use Theorem 1.2.

Say that $f(z) = \sum_{n=1}^{\infty} a_n z^n$, $(z \in \Delta)$. Suppose, without loss of generality that $a_0 = 0$. Using Hölder's inequality with the exponents p/2 and p/(p-2) and Theorem 1.2, we obtain

$$\begin{split} M_2(r, f)^2 &= \sum_{n=1}^{\infty} |a_n|^2 r^{2n} = \sum_{n=0}^{\infty} \sum_{k \in I(n)} |a_k|^2 r^{2k} \le \sum_{n=0}^{\infty} r^{2^{n+1}} \left(\sum_{k \in I(n)} |a_k|^2 \right) \\ &\le \left[\sum_{n=0}^{\infty} \left(\sum_{k \in I(n)} |a_k|^2 \right)^{p/2} \right]^{2/p} \left[\sum_{n=0}^{\infty} r^{2^{n+1}p/(p-2)} \right]^{1-2/p} \\ &\le C_{f,p} \left(\log \frac{1}{1-r} \right)^{1-2/p}. \end{split}$$

Since

$$\exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\log|f(re^{i\theta})|\,d\theta\right) \le M_2(r,\,f), \quad 0 < r < 1,$$

we trivially have the following result.

COROLLARY 3.2. If $2 and <math>f \in \mathcal{D}_{p-1}^p$, then

$$\exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\log|f(re^{i\theta})|\,d\theta\right) = O\left(\left(\log\frac{1}{1-r}\right)^{1/2-1/p}\right), \quad as \ r \to 1$$

Theorem 1.5 shows that Corollary 3.2 and the estimate (8) are sharp in a very strong sense. The following lemma, whose proof is simple and is omitted, will be used in the proof of Theorem 1.5.

LEMMA 3.3. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an analytic function in Δ . If $0 < \beta \leq 1$ and $\sum_{k=0}^{N} |a_k|^2 \approx (\log N)^{\beta}$, as $N \to \infty$, then $I_2(r, f) \approx (\log(1-r)^{-1})^{\beta}$ as $r \to 1^-$.

We make use of the technique introduced by Ullrich in [32]. Let us start introducing some notation.

Let $\omega = [0, 1]^{\mathbb{N}}$ and $\omega_1, \omega_2, \ldots$ be 'the coordinate functions' $\omega_j : \Omega \to [0, 1]$. Let $d\omega$ denote the product measure Ω derived from the Lebesgue measure on [0, 1]. Now

[11]

 $\omega_1, \omega_2, \ldots$ are the Steinhaus variables (independent, identically distributed random variables uniformly distributed on [0, 1]). Note that $\{e^{2\pi i\omega_j}\}_{j=1}^{\infty}$ is an orthonormal set in $L^2(\Omega)$, hence, if $\sum_{j=1}^{\infty} |a_j|^2 < \infty$, then $\sum_{j=1}^{\infty} a_j e^{2\pi i\omega_j}$ is a well defined element of $L^2(\Omega)$ with L^2 -norm $(\sum_{j=1}^{\infty} |a_j|^2)^{1/2}$. The following theorem is [32, Theorem 1].

THEOREM C. There exists C > 0 such that for any sequence of complex numbers $\{a_j\}_{j=1}^{\infty}$ with $\sum_{j=1}^{\infty} |a_j|^2 < \infty$, we have

$$\exp\left[\int_{\Omega} \log\left|\sum_{j=1}^{\infty} a_j e^{2\pi i\omega_j}\right| d\omega\right] \ge C\left(\sum_{j=1}^{\infty} |a_j|^2\right)^{1/2}.$$

PROOF OF THEOREM 1.5. Suppose that $2 and <math>0 < \beta < 1/2 - 1/p$. Set $\varepsilon = 1/2 - 1/p - \beta$, hence, $\varepsilon > 0$. We define the sequence $\{b_j\}_{j=1}^{\infty}$ as $b_j = j^{-1/p-\varepsilon}$, $j = 1, 2, \ldots$ Now, for every $\omega \in \Omega$ we define

(20)
$$f_{\omega}(z) = \sum_{j=1}^{\infty} b_j e^{2\pi i \omega_j} z^{2^j} = \sum_{k=1}^{\infty} a_{k,\omega} z^k, \quad z \in \Delta.$$

Since $\sum_{j=1}^{\infty} |b_j|^p < \infty$, using Proposition A we deduce that $f_{\omega} \in \mathscr{D}_{p-1}^p$ for every $\omega \in \Omega$.

We will see that for a.e. $\omega \in \Omega$

(21)
$$\exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\log|f_{\omega}(re^{it})|\,dt\right)\neq o\left(\left(\log(1/(1-r))\right)^{\beta}\right), \quad \text{as } r \to 1^{-}.$$

This will finish the proof.

Suppose that (21) is false. Then there exists a measurable set $E \subset \Omega$ with positive measure and such that for all $\omega \in E$

(22)
$$\exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\log|f_{\omega}(re^{it})|\,dt\right) = o\left(\left(\log(1/(1-r))\right)^{\beta}\right), \quad \text{as } r \to 1^{-}.$$

This is equivalent to saying that

(23)
$$\lim_{r \to 1^{-}} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left[\frac{|f_{\omega}(re^{it})|}{\left(\log(1/(1-r)) \right)^{\beta}} \right] dt = -\infty, \quad \omega \in E.$$

On the other hand,

$$\left(\sum_{j=1}^{N} |b_j|^2\right)^{1/2} = \left(\sum_{j=1}^{N} \frac{1}{j^{2/p+2\varepsilon}}\right)^{1/2}$$
$$\sim \left(\int_1^N \frac{1}{x^{2/p+2\varepsilon}} dx\right)^{1/2} \sim N^{1/2-1/p-\varepsilon}, \quad \text{as } N \to \infty.$$

Thus, there exist C > 0 and $N_0 > 0$ such that

(24)
$$\left(\sum_{k=1}^{N} |a_{k,\omega}|^2\right)^{1/2} \le C \left(\log N\right)^{1/2 - 1/p - \varepsilon}, \quad N \ge N_0.$$

Using (24) and Lemma 3.3, we deduce that

$$M_2(r, f_{\omega}) = I_2(r, f_{\omega})^{1/2} \le C \left[\log \frac{1}{1-r} \right]^{1/2 - 1/p - \varepsilon}, \quad 0 < r < 1, \quad \omega \in \Omega,$$

which implies that for 0 < r < 1 and $\omega \in \Omega$,

(25)
$$\exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\log|f_{\omega}(re^{it})|\,dt\right) \le C\left[\log\frac{1}{1-r}\right]^{1/2-1/p-\varepsilon}$$

From this we deduce as in (23), that there exists C > 0 such that

(26)
$$\int_{-\pi}^{\pi} \log \left[\frac{|f_{\omega}(re^{it})|}{\left(\log(1/(1-r))\right)^{\beta}} \right] dt \le C, \quad 0 < r < 1, \quad \omega \in \Omega.$$

Bearing in mind that E has positive measure, (26) and (23) imply

(27)
$$\lim_{r \to 1^{-}} \int_{\Omega} \left[\int_{-\pi}^{\pi} \log \frac{|f_{\omega}(re^{it})|}{\left(\log(1/(1-r))\right)^{\beta}} dt \right] d\omega = -\infty.$$

For $N = 1, 2, ..., \text{let } \Omega_N = [0, 1]^N$ and m_N be the Lebesgue measure on Ω_N . Observe now that, for any N, we have

$$\int_{\Omega_{N}} \log |f_{\omega}(re^{it})| dm_{N}(\omega)$$

$$= \int_{0}^{1} \cdots \int_{0}^{1} \log \left| \sum_{j=1}^{N} b_{j} r^{2^{j}} e^{i[2\pi\omega_{j}+2^{j}t]} + \sum_{j=N+1}^{\infty} b_{j} r^{2^{j}} e^{i[2\pi\omega_{j}+2^{j}t]} \right| d\omega_{1} d\omega_{2} \cdots d\omega_{N}$$

$$= \int_{0}^{1} \cdots \int_{0}^{1} \log \left| \sum_{j=1}^{N} b_{j} r^{2^{j}} e^{2\pi i\omega_{j}} + \sum_{j=N+1}^{\infty} b_{j} r^{2^{j}} e^{i[2\pi\omega_{j}+2^{j}t]} \right| d\omega_{1} d\omega_{2} \cdots d\omega_{N}, \text{ a.s.}$$

Letting N tend to ∞ , we deduce that $\int_{\Omega} \log |f_{\omega}(re^{it})| d\omega$ is independent of t. Then using (27) and Fubini's Theorem we obtain

(28)
$$\lim_{r \to 1^{-}} \int_{\Omega} \log \frac{|f_{\omega}(r)|}{\left(\log(1/(1-r))\right)^{\beta}} d\omega = -\infty.$$

[13]

However, if we set $r_N = 1 - 1/2^N$, N = 1, 2, ..., by Theorem C and the inequality

$$e^{-1} \le r_N^{2^N} \le r_N^{2^j}, \quad 1 \le j \le N,$$

we deduce that

$$\begin{split} \exp\left[\int_{\Omega} \log|f_{\omega}(r_N)| \, d\omega\right] \\ &= \exp\left[\int_{\Omega} \log\left|\sum_{j=1}^{\infty} b_j e^{2\pi i \omega_j} r_N^{2j}\right|\right] \\ &\geq C\left(\sum_{j=1}^{\infty} |b_j|^2 \left(r_N^{2j}\right)^2\right)^{1/2} \geq C\left(\sum_{j=1}^{N} |b_j|^2\right)^{1/2} = C\left(\sum_{j=1}^{N} \frac{1}{j^{2/p+2\varepsilon}}\right)^{1/2} \\ &\geq C\frac{1}{N^{1/p+\varepsilon-1/2}} \geq C\left(\log\frac{1}{1-r_N}\right)^{1/2-1/p-\varepsilon} = C\left(\log\frac{1}{1-r_N}\right)^{\beta}, \end{split}$$

which implies

$$\int_{\Omega} \log \frac{|f_{\omega}(r_N)|}{\left(\log(1-r_N)^{-1}\right)^{\beta}} \, d\omega \ge \log C, \quad \text{for all } N,$$

which contradicts (28). Consequently, (21) is true and the proof is finished.

3.2. Radial growth of \mathscr{D}_{p-1}^{p} -functions In this section we obtain some estimates on the radial growth of \mathscr{D}_{p-1}^{p} -functions. If $0 and <math>f \in \mathscr{D}_{p-1}^{p}$, then $f \in H^{p}$ and so f has nontangential limit a.e. \mathbb{T} . Therefore, we have: If $0 and <math>f \in \mathscr{D}_{p-1}^{p}$, then $|f(re^{i\theta})| = O(1)$, as $r \to 1^{-}$ for a.e. $e^{it} \in \partial \Delta$.

Zygmund proved in [37] that if f is an analytic function in Δ , then

(29)
$$\int_0^r |f'(\rho e^{it})| \, d\rho = o\left[\left(\log \frac{1}{1-r}\right)^{1/2}\right], \quad \text{as } r \to 1^-.$$

for almost every point e^{it} in the Fatou set of f, F_f , which consists of those $e^{it} \in \mathbb{T}$ such that f has finite nontangential limit at e^{it} . Obviously, (29) implies

(30)
$$|f(re^{it})| = o\left[\left(\log\frac{1}{1-r}\right)^{1/2}\right], \quad \text{as } r \to 1^-,$$

If $2 , there are functions <math>f \in \mathscr{D}_{p-1}^p$ such that F_f has Lebesgue measure equal to zero. Indeed, an analytic function f given by a power series with Hadamard gaps whose sequence of Taylor coefficients $\{a_k\}$ belongs to $l^p \setminus l^2$, is a \mathscr{D}_{p-1}^p -function by Proposition A and F_f has null Lebesgue measure (see [38, Chapter V]). In spite of this, we can prove the following result for \mathscr{D}_{p-1}^p -functions.

THEOREM 3.4. If $2 and <math>f \in \mathcal{D}_{p-1}^p$, then

(31)
$$|f(re^{it})| = o\left[\left(\log\frac{1}{1-r}\right)^{1-1/p}\right], \quad as \ r \to 1^- \ for \ a. \ e. \ e^{it} \in \partial \Delta.$$

This is better that the a.e. estimate which can be deduced from (17).

PROOF OF THEOREM 3.4. Let p and f be as in the statement of the theorem. Then

$$\int_{-\pi}^{\pi} \left(\int_{0}^{1} (1-r)^{p-1} |f'(re^{it})|^{p} dt \right) dr < \infty,$$

and it follows that the set A of points $e^{it} \in \partial \Delta$ for which

$$\int_0^1 (1-r)^{p-1} |f'(re^{it})|^p \, dt < \infty,$$

has Lebesgue measure equal to 2π .

Take and fix $e^{it} \in A$. Take also $\varepsilon > 0$. Then there exists $r_{\varepsilon} \in (0, 1)$ such that

(32)
$$\int_{r_{\varepsilon}}^{1} (1-s)^{p-1} |f'(se^{it})|^p \, ds < \varepsilon.$$

Using (32) and Hölder's inequality with exponents p and p/(p-1), we obtain for $r_{\varepsilon} < r < 1$,

$$(33) \int_{0}^{r} |f'(se^{it})| \, ds = \int_{0}^{r_{\varepsilon}} |f'(se^{it})| \, ds + \int_{r_{\varepsilon}}^{r} |f'(se^{it})| \, ds$$

$$\leq C_{f,\varepsilon} + \int_{r_{\varepsilon}}^{r} \frac{(1-s)^{1-1/p}}{(1-s)^{1-1/p}} |f'(se^{it})| \, ds$$

$$\leq C_{f,\varepsilon} + \left[\int_{r_{\varepsilon}}^{r} (1-s)^{p-1} |f'(se^{it})|^{p} \, ds\right]^{1/p} \left[\int_{r_{\varepsilon}}^{r} \frac{ds}{(1-s)}\right]^{1-1/p}$$

$$\leq C_{f,\varepsilon} + \varepsilon \left(\log \frac{1}{1-r}\right)^{1-1/p}.$$

Consequently, we have proved that

$$\limsup_{r \to 1} \left(\log \frac{1}{1-r} \right)^{1/p-1} \int_0^r |f'(se^{it})| \, ds \le \varepsilon.$$

Since $\varepsilon > 0$ and $e^{it} \in A$ are arbitrary, we have

$$\int_0^r |f'(se^{it})| \, ds = o\left[\left(\log\frac{1}{1-r}\right)^{1-1/p}\right], \quad \text{as } r \to 1^-,$$

for all $e^{it} \in A$. This implies that (31) holds for all $e^{it} \in A$, which has Lebesgue measure equal to 2π . This finishes the proof.

We do not know whether or not the exponent 1 - 1/p in Theorem 3.4 is sharp but we know that it cannot be substitutes by any exponent smaller than 1/2 - 1/p. Indeed, we can prove the following result.

THEOREM 3.5. If $2 , then there exists a function <math>f \in \mathscr{D}_{p-1}^p$ such that

(34)
$$\lim_{r \to 1^{-}} \frac{|f(re^{it})|}{\left(\log \frac{1}{1-r}\right)^{1/2-1/p} \left(\log \log \frac{1}{1-r}\right)^{-1}} = \infty, \quad for \ a.e. \ e^{it} \in \partial \Delta.$$

PROOF. Take p > 2. Define

$$a_k = \frac{1}{k^{1/p} \log 2k}, \quad k = 1, 2, \dots, \text{ and } f(z) = \sum_{k=1}^{\infty} a_k z^{2^k}, \quad z \in \Delta.$$

Since $\sum_{k=1}^{\infty} |a_k|^p < \infty$, by Proposition A, we have that $f \in \mathscr{D}_{p-1}^p$. On the other hand,

$$\left(\sum_{k=1}^{N} |a_k|^2\right)^{1/2} = \left(\sum_{k=1}^{N} \frac{1}{k^{2/p} \log^2 2k}\right)^{1/2}$$
$$\sim \left(\int_1^N \frac{1}{x^{2/p} \log^2 2x} \, dx\right)^{1/2} \sim \frac{N^{1/2 - 1/p}}{\log N}, \quad \text{as } N \to \infty,$$

and then it is easy to see that

(35)
$$M_2(r, f) = I_2(r, f)^{1/2} \sim \frac{\left(\log \frac{1}{1-r}\right)^{1/2-1/p}}{\log \log \frac{1}{1-r}}, \text{ as } r \to 1^-.$$

Now, by the law of the iterated logarithm for lacunary series (see [35]) we have that

(36)
$$\lim_{r \to 1^{-}} \frac{|f(re^{it})|}{\left[I_2(r, f) \log \log \log I_2(r, f)\right]^{1/2}} = 1, \text{ for a.e. } e^{it} \in \partial \Delta.$$

Now we observe that (36) and (35) imply (34). This finishes the proof.

4. Zeros of \mathscr{D}_{p-1}^{p} functions

4.1. Products of the zeros of \mathscr{D}_{p-1}^{p} **functions** We start by recalling the the following result due to Horowitz, (see [18, page 65]).

LEMMA D. Let f be an analytic function in Δ with $f(0) \neq 0$ and let $\{z_k\}$ be the sequence of ordered zeros of f. If $0 , <math>0 \leq r < 1$, and N is a positive integer, then

(37)
$$|f(0)|^{p} \prod_{k=1}^{N} \frac{r^{p}}{|z_{k}|^{p}} \leq M_{p}(r, f)^{p}.$$

This lemma and the estimates for the integral means of \mathscr{D}_{p-1}^{p} -functions obtained in Section 3.1 are the basic ingredients in the proofs of Theorem 1.6 and Theorem 1.7. This method was used by Horowitz in [18] for the Bergman spaces and later by the first author of this paper, Nowak, and Waniurski in [15] for the Bloch space \mathscr{B} and some other related spaces.

PROOF OF THEOREM 1.6. Let p, f, and $\{z_k\}_{k=1}^{\infty}$ be as in the statement of Theorem 1.6. Using Theorem 1.4, we see that f satisfies (8) and using Lemma D with p = 2, we deduce that

(38)
$$\prod_{k=1}^{N} \frac{r}{|z_k|} \le CM_2(r, f) \le C\left(\log\frac{1}{1-r}\right)^{1/2-1/p}, \text{ if } r \text{ is close enough to } 1.$$

Now, taking r = 1 - 1/N with N big enough in (38) and bearing in mind that $(1 - 1/N)^N > 1/2e$, we deduce that

(39)
$$\prod_{k=1}^{N} \frac{1}{|z_k|} \le C (\log N)^{1/2 - 1/p}.$$

This finishes the proof.

Our next objective is to prove Theorem 1.7 which asserts that Theorem 1.6 is sharp. We start recalling some notation and facts from Nevanlinna theory (see [16, 23] or [31]) which will be needed in our proof.

Let *f* be a non-constant analytic function in Δ . For any $a \in \mathbb{C}$ and 0 < r < 1, we denote by n(r, a, f) the number of zeros f - a in the disc $\{|z| \le r\}$, where each zero is counted according to its multiplicity. We define also

(40)
$$N(r, a, f) \stackrel{\text{def}}{=} \int_0^r \frac{n(t, a, f) - n(0, a, f)}{t} dt + n(0, a, f) \log r, \quad 0 < r < 1.$$

For simplicity, we shall write n(r, f) = n(r, 0, f), N(r, f) = N(r, 0, f). The *Nevanlinna characteristic function* T(r, f) is defined by

$$T(r, f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log^{+} |f(re^{i\theta})| \, d\theta, \quad 0 < r < 1.$$

The proximity function m(r, a, f) is given by

$$m(r, a, f) \stackrel{\text{def}}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log^{+} \frac{1}{|f(re^{it}) - a|} dt, \quad 0 < r < 1.$$

Now we can state the First Fundamental Theorem of Nevanlinna.

THEOREM E. Let f be a non-constant analytic function in Δ . Then

$$m(r, a, f) + N(r, a, f) = T(r, f) + O(1), \quad as r \to 1^{-}.$$

for every $a \in \mathbb{C}$.

Now we can prove the following result.

PROPOSITION 4.1. If $2 and f is a non-constant <math>\mathcal{D}_{p-1}^{p}$ -function, then

(41)
$$n(r, a, f) = O\left(\frac{1}{1-r}\log\log\frac{1}{1-r}\right), \quad as \ r \to 1^-, \ for \ all \ a \in \mathbb{C}.$$

PROOF. Using the arithmetic-geometric mean inequality we obtain

$$T(r, f) \leq \frac{1}{4\pi} \int_{-\pi}^{\pi} \log\left(|f(re^{it})|^2 + 1\right) dt$$

$$\leq \frac{1}{2} \log\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left(|f(re^{it})|^2 + 1\right) dt\right) \leq \frac{1}{2} \log\left(I_2(r, f) + 1\right),$$

which, with part (ii) of Theorem 1.4, gives

(42)
$$T(r, f) = O\left(\log\log\frac{1}{1-r}\right), \quad \text{as } r \to 1^-.$$

Using Theorem E, we deduce that

(43)
$$N(r, a, f) = O\left(\log \log \frac{1}{1-r}\right), \text{ as } r \to 1^-, \text{ for all } a \in \mathbb{C}.$$

Now, it is well known (see [2, page 22]) that this implies (41).

Now, we can proceed with the proof of Theorem 1.7.

PROOF OF THEOREM 1.7. Take *p* and β with $2 and <math>0 < \beta < 1/2 - 1/p$. Take $f \in \mathcal{D}_{p-1}^p$ with $f(0) \neq 0$ and

(44)
$$\exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\log|f(re^{it})|\,dt\right)\neq o\left(\left(\log\frac{1}{1-r}\right)^{\beta}\right), \quad \text{as } r \to 1^{-},$$

414

such a function exists by Theorem 1.5. Using (44) we see that there exist a sequence $\{r_j\}_{j=1}^{\infty} \subset (0, 1)$ with $r_j \uparrow 1$ and a positive constant *C* (independent of *j*), such that

(45)
$$\exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\log|f(r_je^{it})|\,dt\right) \ge C\left(\log\frac{1}{1-r_j}\right)^{\beta}, \quad j=1,2....$$

We shall write n(r) instead of n(r, f) for simplicity. Using Jensen's formula (see [1, page 206]) and (45) we deduce that

(46)
$$|f(0)| \prod_{k=1}^{n(r_j)} \frac{r_j}{|z_k|} \ge C \left(\log \frac{1}{1-r_j} \right)^{\beta}, \quad j = 1, 2...,$$

which implies that

(47)
$$n(r_j) \to \infty$$
, as $j \to \infty$

On the other hand, Proposition 4.1 implies that there exists C > 0 such that

$$n(r) \le C \frac{1}{1-r} \log \log \frac{1}{1-r}$$
, if r is sufficiently close to 1.

This implies that

$$\log n(r) \le C \log \frac{1}{1-r}$$
, if *r* is sufficiently close to 1,

which, together with (46), shows that there exists $j_0 \in \mathbb{N}$ such that for every $j \ge j_0$

$$|f(0)| \prod_{k=1}^{n(r_j)} \frac{r_j}{|z_k|} \ge C [\log n(r_j)]^{\beta}.$$

This finishes the proof.

4.2. A substitute of Blaschke condition If $2 the sequence <math>\{z_k\}$ of ordered zeros of a non trivial \mathscr{D}_{p-1}^p function need not satisfy the Blaschke condition. Indeed, the Blaschke condition is equivalent to saying that $\prod_{n=1}^{N} (1/|z_n|) = O(1)$ and we have seen that this is not always true. Using Theorem 1.6 and arguing exactly as in the proof of [15, Theorem 5] we can prove the following result.

THEOREM 4.2. Let $2 and <math>f \in \mathscr{D}_{p-1}^p$ with $f \neq 0$. Let $\{z_k\}_{k=1}^\infty$ be the sequence of zeros of f. Then

(48)
$$\sum_{|z_k|>1-1/e} (1-|z_k|) \left(\log\log\frac{1}{1-|z_k|}\right)^{-\alpha} < \infty$$

for all $\alpha > 1$.

Next, we shall prove that the condition $\alpha > 1$ is needed in Theorem 4.2.

THEOREM 4.3. Let $2 . Then there exists a function <math>f \in \mathscr{D}_{p-1}^{p}$ with $f \neq 0$, whose sequence of zeros $\{z_k\}_{k=1}^{\infty}$ satisfies

(49)
$$\sum_{|z_k|>1-1/e} (1-|z_k|) \left(\log\log\frac{1}{1-|z_k|}\right)^{-1} = \infty.$$

PROOF. Set $g(z) = \sum_{k=1}^{\infty} k^{-(p+2)/4p} z^{2^k}$, $z \in \Delta$. Since g is given by a power series with Hadamard gaps and $\sum_{k=1}^{\infty} k^{-(p+2)/4} < \infty$, it follows that $g \in \mathscr{D}_{p-1}^p$.

We shall follow the argument of the proof of [15, Theorem 6]. Set

(50)
$$r_n = 1 - 2^{-n}, \quad n = 1, 2, 3, \dots$$

It is easy to see that, for all sufficiently large n, $I_2(r_n, g) \ge Cn^{1/2-1/p}$, which, since $\log(1/(1 - r_n)) = n \log 2$, implies that

(51)
$$I_2(r_n, g) \ge C \left(\log \frac{1}{1 - r_n} \right)^{1/2 - 1/p} \quad \text{if } n \text{ is sufficiently large.}$$

Now, since $\log(1/(1-r_n)) \sim \log(1/(1-r_{n+1}))$, as $n \to \infty$, and since $I_2(r, g)$ and $(\log(1/(1-r)))^{1/2-1/p}$ are increasing functions of r, we deduce

(52)
$$I_2(r,g) \ge C \left(\log \frac{1}{1-r}\right)^{1/2-1/p}$$

if r is sufficiently close to 1.

Using this and arguing as in [15, page 126] we deduce that there exist a complex number *a* with $g(0) \neq a$, a positive constant β , and a number $r_0 \in (0, 1)$ such that

(53)
$$N(r, a, g) \ge \beta \log \log \frac{1}{1 - r} \quad r \in (r_0, 1).$$

Take such an $a \in \mathbb{C}$ and set f(z) = g(z) - a, $z \in \Delta$. Then $f \in \mathscr{D}_{p-1}^p$ and $f(0) \neq 0$. Also (53) can be written as

(54)
$$N(r, f) \ge \beta \log \log \frac{1}{1-r}, \quad r \in (r_0, 1).$$

Let $\{z_n\}$ be the sequence of zeros of f. Using Proposition 4.1 and arguing as in [15, page 127], we obtain (49).

Acknowledgements

We wish to thank the referee for his/her helpful remarks.

The authors have been supported in part by grants from 'El Ministerio de Educación y Ciencia', Spain (BFM2001–1736, MTM2004-00078 and MTM2004–21420–E) and by a grant from 'La Junta de Andalucía' (FQM–210).

References

- [1] L. V. Ahlfors, Complex analysis, 2nd edition (Dover, McGraw-Hill, New York, 1966).
- [2] J. M. Anderson, J. Clunie and Ch. Pommerenke, 'On Bloch functions and normal functions', J. Reine Angew. Math. 270 (1974), 12–37.
- [3] J. Arazy, S. D. Fisher and J. Peetre, 'Möbius invariant function spaces', J. Reine Angew. Math. 363 (1985), 110–145.
- [4] N. Arcozzi, R. Rochberg and E. Sawyer, 'Carleson measures for analytic Besov spaces', *Rev. Mat. Iberoamericana* 18 (2002), 443–510.
- [5] R. Aulaskari, J. Xiao and R. Zhao, 'On subspaces and subsets of BMOA and UBC', Analysis 15 (1995), 101–121.
- [6] A. Baernstein II, D. Girela and J. A. Peláez, 'Univalent functions, hardy spaces and spaces of Dirichlet type', *Illinois J. Math.* 48 (2004), 837–859.
- [7] S. M. Buckley, P. Koskela and D. Vukotić, 'Fractional integration, differentiation, and weighted Bergman spaces', *Math. Proc. Cambridge Philos. Soc.* **126** (1999), 369–385.
- [8] B. R. Choe, H. Koo and W. Smith, 'Composition operators acting on holomorphic Sobolev spaces', *Trans. Amer. Math. Soc.* 355 (2003), 2829–2855.
- [9] E. S. Doubtsov, 'Corrected outer functions', Proc. Amer. Math. Soc. 126 (1998), 515–522.
- [10] P. L. Duren, *Theory of H^p spaces*, 2nd edition (Dover, Mineola, New York, 2000).
- [11] P. L. Duren and A. P. Schuster, *Bergman spaces*, Math. Surveys and Monographs 100 (American Mathematical Society, Providence, RI, 2004).
- [12] T. M. Flett, 'The dual of an inequality of Hardy and Littlewood and some related inequalities', J. Math. Anal. Appl. 38 (1972), 746–765.
- [13] J. B. Garnett, Bounded analytic functions (Academic Press, New York, 1981).
- [14] D. Girela, 'Growth of the derivative of bounded analytic functions', *Complex Var. Theory Appl.* 20 (1992), 221–227.
- [15] D. Girela, M. Nowak and P. Waniurski, 'On the zeros of Bloch functions', *Math. Proc. Camb. Philos. Soc.* **129** (2001), 117–128.
- [16] W. K. Hayman, *Meromorphic functions*, Oxford Mathematical Monographs (Clarendon Press, Oxford, 1964).
- [17] H. Hedenmalm, B. Korenblum and K. Zhu, *Theory of Bergman Spaces*, Graduate Texts in Mathematics 199 (Springer, New York, 2000).
- [18] C. Horowitz, 'Zeros of functions in Bergman spaces', Duke Math. J. 41 (1974), 693-710.
- [19] J. E. Littlewood and R. E. A. C. Paley, 'Theorems on Fourier series and power series. II', Proc. London Math. Soc. 42 (1936), 52–89.
- [20] D. H. Luecking, 'A new proof of an inequality of Littlewood and Paley', Proc. Amer. Math. Soc. 103 (1988), 887–893.
- [21] M. Mateljevic and M. Pavlovic, 'L^p-behaviour of power series with positive coefficients and Hardy spaces', Proc. Amer. Math. Soc. 87 (1983), 309–316.

Daniel Girela and José Ángel Peláez

- [22] J. Miao, 'A property of analytic functions with Hadamard gaps', Bull. Austral. Math. Soc. 45 (1992), 105–112.
- [23] R. Nevanlinna, Analytic functions (Springer, New York, 1970).
- [24] G. Piranian, 'Bounded functions with large circular variation', Proc. Amer. Math. Soc. 19 (1968), 1255–1257.
- [25] Ch. Pommerenke, 'Über die Mittelwerte und Koeffizienten multivalenter Funktionen', *Math. Ann.* 145 (1962), 285–296.
- [26] _____, Univalent functions (Vandenhoeck und Ruprecht, Göttingen, 1975).
- [27] R. Rochberg and Z. J. Wu, 'Toeplitz operators on Dirichlet spaces', *Integral Equations Operator Theory* 15 (1992), 57–75.
- [28] _____, 'A new characterization of Dirichlet type spaces and applications', *Illinois J. Math.* 37 (1993), 101–122.
- [29] W. Rudin, 'The radial variation of analytic functions', Duke Math. J. 22 (1955), 235-242.
- [30] D. A. Stegenga, 'Multipliers of the Dirichlet spaces', Illinois J. Math. 24 (1980), 113–139.
- [31] M. Tsuji, Potential theory in modern function theory (Chelsea Publ. Co., New York, 1975).
- [32] D. C. Ullrich, 'Khinchin's inequality and the zeroes of Bloch functions', *Duke Math. J.* 57 (1988), 519–535.
- [33] I. E. Verbitskii, 'Inner function as multipliers of the space \mathscr{D}_{α} ', *Funktsional. Anal. i Prilozhen.* **16** (1982), 47–48 (in Russian).
- [34] S. A. Vinogradov, 'Multiplication and division in the space of analytic functions with areaintegrable derivative, and in some related spaces', *Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)* (Issled. po Linein. Oper. i Teor. Funktsii 23) 222 (1995), 45–77, 308 (in Russian); translation in *J. Math. Sci. (New York)* 87 (1997), 3806–3827.
- [35] M. Weiss, 'The law of the iterated logarithm for lacunary trigonometric series', *Trans. Amer. Math. Soc.* 91 (1959), 444–469.
- [36] Z. Wu, 'Carleson measures and multipliers for Dirichlet spaces', J. Funct. Anal. 169 (1999), 148–163.
- [37] A. Zygmund, 'On certain integrals', Trans. Amer. Math. Soc. 55 (1944), 170–204.
- [38] _____, Trigonometric series, Vol. I and Vol. II, 2nd edition (Cambridge Univ. Press, Cambridge, 1959).

Depto. de Análisis Matemático Facultad de Ciencias Universidad de Málaga Campus de Teatinos 29071 Málaga Spain e-mail: girela@uma.es, pelaez@anamat.cie.uma.es