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Abstract

For 0< p < ∞, we letD p
p−1 denote the space of those functionsf that are analytic in the unit disc

1 = {z ∈ C : |z| < 1} and satisfy
∫
1
.1 − |z|/p−1| f ′.z/|p dx dy< ∞. The spacesD p

p−1 are closely
related to Hardy spaces. We have,D p

p−1 ⊂ H p, if 0 < p ≤ 2, andH p ⊂ D p
p−1, if 2 ≤ p < ∞. In this

paper we obtain a number of results about the Taylor coefficients ofD
p
p−1-functions and sharp estimates

on the growth of the integral means and the radial growth of these functions as well as information on
their zero sets.

2000Mathematics subject classification: primary 30D35, 30D55, 46E15.
Keywords and phrases: Spaces of Dirichlet type, Hardy spaces, Bergman spaces, integral means, radial

growth, sequences of zeros.

1. Introduction and main results

We denote by1 the unit disc{z ∈ C : |z| < 1}. If f is a function which is analytic in
1 and 0< r < 1, we set

Mp.r; f / =
(

1

2³

∫ ³

−³
| f .reit /|p dt

)1=p

; 0< p < ∞;

I p.r; f / = M p
p.r; f /; 0< p < ∞;

M∞.r; f / = sup
|z|=r

| f .z/|:

For 0< p ≤ ∞, theHardy spaceH p consists of all analytic functionsf in the disc

for which‖ f ‖H p
def= sup0<r<1 Mp.r; f / < ∞. We refer the reader to [10] and [13] for

the theory of Hardy spaces.
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If 0 < p < ∞ andÞ > −1, we let Ap
Þ denote the (standard)weighted Bergman

space, that is, the set of analytic functionsf in 1 such that∫
1

.1 − |z|/Þ| f .z/|p d A.z/ < ∞:

Here,d A.z/ = .1=³/ dx dy denotes the normalized Lebesgue area measure in1.
The standard unweighted Bergman spaceAp

0 is simply denoted byAp. We mention
[11] and [17] as general references for the theory of Bergman spaces.

The spaceD p
Þ (p > 0; Þ > −1) consists of all functionsf which are analytic in1

such thatf ′ ∈ Ap
Þ . The spaceD2

0 is the classical Dirichlet spaceD . For other values
of p andÞ the spacesD p

Þ have been extensively studied in a number papers such as
[27, 28, 30, 33] for p = 2 and [4, 8, 34, 36] for other values ofp. If p < Þ + 1, it is
well known thatD p

Þ = Ap
Þ−p with equivalence of norms (see [12, Theorem 6]). For

Þ = p − 2, the spaceD p
Þ is the Besov spaceBp (compare to [3]).

The spaceD p
Þ is said to be a Dirichlet space ifp ≥ Þ + 1. In this paper we shall

be primarily interested in the ‘limit case’p = Þ + 1, that is, in the spacesD p
p−1,

0 < p < ∞, which are closely related to Hardy spaces. Indeed, a classical result of
Littlewood and Paley [19] (see also [20]) asserts that

H p ⊂ D p
p−1; 2 ≤ p < ∞:(1)

On the other hand, we have

D
p
p−1 ⊂ H p; 0< p ≤ 2;(2)

(see [34, Lemma 1.4]). Notice that, in particular, we haveD2
1 = H2. However, we

remark that ifp 6= 2 then

H p 6= D p
p−1:(3)

This can be seen using the characterization of power series with Hadamard gaps which
belong to the spacesD p

p−1.

PROPOSITIONA. If f is an analytic function in1 which is given by a power series
with Hadamard gaps,f .z/ = ∑∞

k=1 akznk .z ∈ 1/ with nk+1 ≥ ½nk for all k .½ > 1/,
then, for everyp ∈ .0;∞/, f ∈ D p

p−1 if and only if
∑∞

k=1 |ak|p < ∞.

Since for Hadamard gap series as above we have, for 0< p < ∞, f ∈ H p if and
only of

∑∞
k=1 |ak|2 < ∞, we immediately deduce thatD p

p−1 6= H p if p 6= 2. We
remark that PropositionA follows from [7, Proposition 2.1]. In Section2 we shall
see that PropositionA can also be deduced from the following theorem which gives a
condition on the Taylor coefficients of a functionf , analytic in1, which implies that
f ∈ D p

p−1.
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THEOREM1.1. Let f be an analytic function in1, f .z/ = ∑∞
n=0 anzn .z ∈ 1/.

(i) If 0< p < ∞ and

∞∑
n=0

( ∑
k∈I .n/

|ak|
)p

< ∞;(4)

then f ∈ D p
p−1.

(ii) If 0< p ≤ 2 and

∞∑
n=1

( ∑
k∈I .n/

|ak|2
)p=2

< ∞;(5)

then f ∈ D p
p−1.

Here and throughout the paper, forn = 0; 1; : : : , I .n/ is the set of the integersk
such that 2n ≤ k < 2n+1.

If 0 < p ≤ 2, then (4) implies (5). Hence, forp ∈ .0; 2], (ii) is stronger than (i).
We remark also that if 0< p ≤ 2, then the condition

∑∞
n=0 |an|p < ∞ implies (5).

Consequently, (ii) improves [34, Lemma 1.5].
In Theorem1.2we give a condition on the Taylor coefficients of an analytic function

f which is necessary for its membership inD p
p−1 if 2 ≤ p < ∞.

THEOREM 1.2. Let f be an analytic function in1, f .z/ = ∑∞
n=0 anzn .z ∈ 1/. If

2 ≤ p < ∞ and f ∈ D p
p−1, then

∞∑
n=1

(∑
k∈I .n/

|ak|2
)p=2

< ∞:(6)

If 0 < p < 2 then (3) can be seen in some other ways. Rudin proved in [29]
that there exists a Blaschke productB which does not belong toD1

0 (see also [24]).
Vinogradov [34] extended this result showing that for everyp ∈ .0; 2/ there exist
Blaschke productsB which do not belong toD p

p−1. This clearly gives thatD p
p−1 6= H p

if 0 < p < 2, a fact which can be also deduced from the results of [9] and [14].
In contrast with what happens for 0< p < 2, it is not easy to give examples of
functions f ∈ D p

p−1 \ H p for a certainp ∈ .2;∞/ that are not given by power series
by Hadamard gaps. SinceH p ⊂ D

p
p−1 if p ≥ 2, any Blaschke product belongs

to
⋂

2≤p<∞D
p
p−1. Also, for a number of classesF of analytic functions in1 we have

F ∩ D p
p−1 = F ∩ H p (0 < p < ∞). For example, it is very easy to prove the

following lemma.

LEMMA 1.3. (i) If Þ > 0, 0< p < ∞, and f .z/ = 1=.1 − z/Þ, .z ∈ 1/, then
f ∈ H p if and only if f ∈ D p

p−1 if and only ifÞp < 1.
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(ii) If Þ; þ > 0, p ∈ .0;∞/, and

f .z/ = 1

.1 − z/Þ.log.2=.1 − z//þ
; .z ∈ 1/;

then f ∈ H p if and only if f ∈ D p
p−1 if and only ifÞp < 1 andþ > 0 or Þp = 1 and

þp > 1.

A much deeper result is stated in [6, Theorem 1] which asserts that, ifU denotes
the class of all univalent (holomorphic and one-to-one) functions in1, thenU ∩ H p =
U ∩D p

p−1 for all p > 0 (see also [25] for the casep = 1).
In spite of these facts we shall prove that, for everyp ∈ .2;∞/, there are a lot

of differences between the spaceH p and the spaceD p
p−1. In Section3, we shall be

mainly concerned in obtaining sharp estimates on the growth of the integral means of
D

p
p−1-functions. If 0< p ≤ 2 and f ∈ D p

p−1, then f ∈ H p and hence, the integral
meansMp.r; f / are bounded. This is no longer true forp > 2. Our main results in
Section3 are stated in the following two theorems.

THEOREM1.4. If 2< p < ∞ and f ∈ D p
p−1, then

(i)

Mp.r; f / = O

((
log

1

1 − r

))
; asr → 1:(7)

(ii)

M2.r; f / = O

((
log

1

1 − r

)1=2−1=p
)
; asr → 1:(8)

THEOREM1.5. If 2< p < ∞ and0< þ < 1=2−1=p, then there exists a function
f ∈ D p

p−1 such that

exp

(
1

2³

∫ ³

−³
log | f .reit /| dt

)
6= o

((
log

1

1 − r

)þ)
; asr → 1−:(9)

Since

exp

(
1

2³

∫ ³

−³
log | f .reit /| dt

)
≤ M2.r; f /;

Theorem1.5shows that part (ii) of Theorem1.4 is sharp in a very strong sense.
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REMARK. Using Theorem1.4we can obtain an upper bound on the integral means
Mq.r; f /, 2 < q < p, of a function f ∈ D

p
p−1. Indeed, if q ∈ .2; p/, then

q = p½ + 2.1 − ½/, where½ = .q − 2/=.p − 2/ ∈ .0; 1/. Consequently, using
Theorem1.4and Ḧolder’s inequality with exponents 1=½ and 1=.1 − ½/ we see that,
if f ∈ D p

p−1 and 2< q < p, then

Mq.r; f / =
((

log
1

1 − r

)�)
; asr → 1;

where� = �.p;q/ = p½=q + .p − 2/.1 − ½/=pq and½ = .q − 2/=.p − 2/.

In Section4 we study properties of the sequences of zeros of non trivialD
p
p−1-

functions. If 0< p ≤ 2 thenD p
p−1 ⊂ H p and hence, the sequence of zeros of a

non-identically zeroD p
p−1-function satisfies the Blaschke condition. This does not

remain true forp > 2. Our main results about the sequences of zeros of functionsf
in the spaceD p

p−1, 2< p < ∞, are stated in Theorem1.6and Theorem1.7

THEOREM1.6. Suppose that2< p < ∞ and let f be a function which belongs to
the spaceD p

p−1 with f .0/ 6= 0. Let{zk}∞
k=1 be the sequence zeros off ordered so that

|zk| ≤ |zk+1| for all k. Then

N∏
k=1

1

|zk| = o
(
.log N/1=2−1=p

)
; as N → ∞.(10)

From now on, if f is a non-identically zero analytic function of zeros and{zk}∞
k=1 is

the sequence zeros off ordered so that|zk| ≤ |zk+1| for all k, we shall say that{zk}∞
k=1

is the sequence of ordered zeros off . Theorem1.7 asserts that Theorem1.6 is best
possible.

THEOREM1.7. If 2< p < ∞ and0< þ < 1=2−1=p, then there exists a function
f ∈ D p

p−1 with f .0/ 6= 0 such that if{zk}∞
k=1 is the sequence of ordered zeros off ,

then

N∏
k=1

1

|zk| 6= o
(
.log N/þ

)
; as N → ∞.(11)

As a consequence of Theorem1.6and Theorem1.7, we obtain the following result.

COROLLARY 1.8. If 2 ≤ p < q < ∞ then there exists a sequence{zk} ⊂ 1 that
is the sequence of zeros of aDq

q−1-function but is not the sequence of zeros of any
D

p
p−1-function.
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Hence the situation in this setting is similar to that in the setting of Bergman spaces
(see [18, Theorem 1]).

Next we shall get into the proofs of these and some other results. We shall be using
the convention thatCp;Þ;::: denotes a positive constant which depends only upon the
displayed parametersp; Þ; : : : but is not necessarily the same at different occurrences.

2. Taylor coefficients ofD p
p−1 functions.

We start by recalling the following useful result due to Mateljevic and Pavlovic
[21] (see also [5, Lemma 3] and [22]) which will be basic in the proofs of Theorem1.1
and Theorem1.2.

LEMMA B. LetÞ > 0 and p > 0. There exists a constantK that depends only onp
andÞ such that, if{an}∞

n=1 is a sequence of non-negative numbers,tn = ∑
k∈I .n/ an

.n ≥ 0/, and f .x/ = ∑∞
n=1 anxn−1 (x ∈ .0; 1/), then

K −1
∞∑

n=0

2−nÞt p
n ≤

∫ 1

0

.1 − x/Þ−1 f .x/p dx ≤ K
∞∑

n=0

2−nÞt p
n :

PROOF OFTHEOREM1.1. Take p ∈ .0;∞/ and let f be analytic in1,

f .z/ =
∞∑

n=0

anzn; z ∈ 1:(12)

Suppose that (4) holds. Using LemmaB and (4) we see that

∫
1

| f ′.z/|p.1 − |z|2/p−1 d A.z/ ≤ Cp

∫ 1

0

.1 − r /p−1

( ∞∑
n=1

n|an|r n−1

)p

dr

≤ Cp

∞∑
n=0

2−np

(∑
k∈I .n/

k|ak|
)p

≤ Cp

∞∑
n=0

2−np2.n+1/p

(∑
k∈I .n/

|ak|
)p

≤ Cp

∞∑
n=0

(∑
k∈I .n/

|ak|
)p

< ∞:

Hence, f ∈ D p
p−1 and the proof of (i) is finished.
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Suppose now that 0< p ≤ 2, f is as in (12) and satisfies (5). Using the fact that
Mp.r; f ′/ ≤ M2.r; f ′/ for all r ∈ .0; 1/, making the change of variabler 2 = s and
using LemmaB, we obtain∫

1

| f ′.z/|p.1 − |z|2/p−1 d A.z/ = 2
∫ 1

0

r .1 − r 2/p−1Mp.r; f ′/p dr

≤ 2
∫ 1

0

r .1 − r 2/p−1M2.r; f ′/p dr

= 2
∫ 1

0

r .1 − r 2/p−1

( ∞∑
n=1

n2|an|2r 2n−2

)p=2

dr

≤ C
∫ 1

0

.1 − s/p−1

( ∞∑
n=1

n2|an|2sn−1

)p=2

ds

≤ Cp

∞∑
n=0

2−np

(∑
k∈I .n/

k2|ak|2
)p=2

≤ Cp

∞∑
n=0

(∑
k∈I .n/

|ak|2
)p=2

< ∞:

Hence, f ∈ D p
p−1. This finishes the proof of (ii).

Next we see that PropositionA can be deduced from Theorem1.1as announced.

PROOF OFPROPOSITIONA. Let f be an analytic function in1 given by a power
series with Hadamard gaps

f .z/ =
∞∑
j =1

aj z
nj with

nj +1

nj
≥ ½ > 1 for all j ,(13)

and suppose that
∑∞

j =1 |aj |p < ∞. Using the gap condition, we see that there are at
mostC½ = log½ 2+ 1 of then′

j s in the setI .n/. Then there exists a constantC½;p > 0
such that

∞∑
n=0

(∑
j ∈I .n/

|aj |
)p

≤ C½;p

∞∑
j =1

|aj |p < ∞;

and consequently, using Theorem1.1, we deduce thatf ∈ D p
p−1.

To prove the other implication suppose thatf is as in (13) and f ∈ D p
p−1 for a

certainp > 0. It is well known (see [38, Chapter V, Vol. I]) that there exist constants
A.½; p/ andB.½; p/ such that

A.½; p/M p
2 .r; f ′/ ≤ M p

p.r; f ′/ ≤ B.½; p/M p
2 .r; f ′/; 0< r < 1:
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This and LemmaB give

∞ >

∫
1

| f ′.z/|p.1 − |z|2/p−1 d A.z/ =
∫ 1

0

r .1 − r 2/p−1M p
p.r; f ′/ dr

≥ A.½; p/
∫ 1

0

r .1 − r 2/p−1M p
2 .r; f ′/ dr

≥ A.½; p/
∫ 1

0

r .1 − r 2/p−1

( ∞∑
j =1

nj
2|aj |2r 2nj −2

)p=2

dr

≥ A.½; p/
∫ 1

0

t .1 − t/p−1

( ∞∑
j =1

nj
2|aj |2t j −1

)p=2

dt

≥ Cp A.½; p/
∞∑

n=0

2−np


 ∑

nj ∈I .n/

nj
2|aj |2




p=2

≥ Cp A.½; p/
∞∑

n=0

2−np2np


 ∑

nj ∈I .n/

|aj |



p

≥ C½;p A.½; p/
∞∑
j =0

|aj |p:

The last inequality is obvious ifp ≥ 1 and, in the case 0< p < 1, follows again
using the fact that there are at mostC½ = log½ 2 + 1 of then′

j s in the setI .n/. Thus,
we have

∑∞
j =0 |aj |p < ∞. This finishes the proof.

PROOF OFTHEOREM1.2. Suppose that 2≤ p < ∞ and f ∈ D p
p−1,

f .z/ =
∞∑

n=0

anzn; z ∈ 1:

Using LemmaB, bearing in mind thatk � 2n if k ∈ I .n/, making a change of variable,
and using that sincep ≥ 2, M2.r; f ′/ ≤ Mp.r; f ′/, we obtain

∞∑
n=1

(∑
k∈I .n/

|ak|2
)p=2

≤
∞∑

n=1

2−np

(∑
k∈I .n/

k2|ak|2
)p=2

≤ Cp

∫ 1

0

.1 − t/p−1

( ∞∑
n=1

n2|an|2tn−1

)p=2

dt

≤ Cp

∫ 1

0

.1 − r 2/p−1

( ∞∑
n=1

n2|an|2r 2n−2

)p=2

dt

≤ Cp

∫ 1

0

.1 − r /p−1Mp.r; f ′/p < ∞:
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3. Growth properties ofD p
p−1-functions

In this section we are mainly interested in obtaining sharp estimates on the growth
of functions f in the spacesD p

p−1 (2< p < ∞).

3.1. Integral means estimates Let us start with estimates on the growth of the
maximum modulusM∞.r; f /. We can prove the following result.

THEOREM3.1. Let f be an analytic function in1. If f ∈ D p
p−1, 0< p < ∞, then

M∞.r; f / = o

(
1

.1 − r /1=p

)
; asr → 1−:(14)

PROOF. Let f ∈ D p
p−1 andz ∈ 1. Let D.z/ denote the open disc

{
w ∈ C : |z −w| < 1 − |z|

2

}
:

Clearly, D.z/ ⊂ 1. Since the functionz → | f ′.z/|p is subharmonic in1, we have

| f ′.z/|p ≤ C

|D.z/|
∫

D.z/

| f ′.!/|p d A.!/ ≤ C

.1 − |z|2/2
∫

D.z/

| f ′.!/|p d A.!/:(15)

It is clear that.1−|z|2/ � .1−|!|2/,! ∈ D.z/, z ∈ 1. Using this and (15) we obtain

| f ′.z/|p ≤ Cp

.1 − |z|2/2
∫

D.z/

[
1 − |!|
1 − |z|

]p−1

| f ′.!/|p d A.!/(16)

= Cp

.1 − |z|2/p+1

∫
D.z/

.1 − |!|/p−1| f ′.!/|p d A.!/:

On the other hand, sincef ∈ D p
p−1, it follows that

∫
D.z/

.1 − |!|/p−1| f ′.!/|p d A.!/ = o.1/; as|z| → 1−;

which, with (16), implies

M∞.r; f ′/ = o

(
1

.1 − r /1+1=p

)
; asr → 1−;(17)

and (14) follows by integration.
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REMARK. We observe that for anyp ∈ .0;∞/, the exponent 1=p in (14) is the best
possible. Moreover, if we take

f p;þ.z/ = .1 − z/−1=p

(
log

2

1 − z

)−þ
; z ∈ 1;

with þ > 1
p

then, as we noticed in Lemma1.3, f p;þ ∈ D p
p−1 and it is easy to see that

M∞.r; f / ≈ .1 − r /−1=p

(
log

1

1 − r

)−þ
; 0< r < 1:

So condition (14) in Theorem3.1cannot be substituted by the condition

M∞.r; f / = o

(
1

.1 − r /1=p.log.1=.1 − r //1=p+"

)
; asr → 1−;

for any" > 0.

Now we turn to the proofs of Theorem1.4and Theorem1.5.

PROOF OFTHEOREM1.4. Suppose that 2< p < ∞ and f ∈ D p
p−1. Then

lim
r →1−

∫ 1

r

.1 − s/p−1M p
p.s; f ′/ ds = 0:(18)

SinceMp.s; f ′/ is an increasing function ofs

∫ 1

r

.1 − s/p−1M p
p.s; f ′/ ds ≥ M p

p.r; f ′/
∫ 1

r

.1 − s/p−1 ds ≥ CpM p
p.r; f ′/.1 − r /p;

which, together with (18), yields

Mp.r; f ′/ = o
(
.1 − r /−1

)
; asr → 1−;(19)

which, using Minkowski’s integral inequality, implies (7).
Using (19) and the fact that for any fixedr with 0 < r < 1 the integral means

Mp.r; f ′/ increase withp, we deduce that

I2.r; f ′/ = o
(
.1 − r /−2

)
; asr → 1−:

and then using the well-known inequality (see [26, pages 125–126])

d2

dr2

(
I2.r; f /

) ≤ 4I2.r; f ′/; 0< r < 1;
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we obtain
d2

dr2

(
I2.r; f /

) = o
(
.1 − r /−2

)
asr → 1−;

which, integrating twice, gives

M2.r; f / = o
((

log.1=.1 − r /
)1=2

)
; asr → 1:

This is worse than (8). To obtain this we use Theorem1.2.
Say that f .z/ = ∑∞

n=1 anzn, (z ∈ 1). Suppose, without loss of generality that
a0 = 0. Using Ḧolder’s inequality with the exponentsp=2 and p=.p − 2/ and
Theorem1.2, we obtain

M2.r; f /2 =
∞∑

n=1

|an|2r 2n =
∞∑

n=0

∑
k∈I .n/

|ak|2r 2k ≤
∞∑

n=0

r 2n+1

(∑
k∈I .n/

|ak|2
)

≤

 ∞∑

n=0

(∑
k∈I .n/

|ak|2
)p=2




2=p [ ∞∑
n=0

r 2n+1 p=.p−2/

]1−2=p

≤ C f;p

(
log

1

1 − r

)1−2=p

:

Since

exp

(
1

2³

∫ ³

−³
log | f .rei � /| d�

)
≤ M2.r; f /; 0< r < 1;

we trivially have the following result.

COROLLARY 3.2. If 2< p < ∞ and f ∈ D p
p−1, then

exp

(
1

2³

∫ ³

−³
log | f .rei � /| d�

)
= O

((
log

1

1 − r

)1=2−1=p
)
; as r → 1:

Theorem1.5shows that Corollary3.2and the estimate (8) are sharp in a very strong
sense. The following lemma, whose proof is simple and is omitted, will be used in
the proof of Theorem1.5.

LEMMA 3.3. Let f .z/ = ∑∞
n=0 anzn be an analytic function in1. If 0 < þ ≤ 1

and
∑N

k=0 |ak|2 ≈ .log N/þ , asN → ∞, thenI2.r; f / ≈ .log.1 − r /−1/þ asr → 1−.

We make use of the technique introduced by Ullrich in [32]. Let us start introducing
some notation.

Let! = [0; 1]N and!1; !2; : : : be ‘the coordinate functions’! j : � → [0; 1]. Let
d! denote the product measure� derived from the Lebesgue measure on[0; 1]. Now
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!1; !2; : : : are the Steinhaus variables (independent, identically distributed random
variables uniformly distributed on[0; 1]). Note that{e2³ i! j }∞

j =1 is an orthonormal set
in L2.�/, hence, if

∑∞
j =1 |aj |2 < ∞, then

∑∞
j =1 aj e2³ i! j is a well defined element of

L2.�/ with L2-norm
(∑∞

j =1 |aj |2
)

1=2. The following theorem is [32, Theorem 1].

THEOREM C. There existsC > 0 such that for any sequence of complex numbers
{aj }∞

j =1 with
∑∞

j =1 |aj |2 < ∞, we have

exp

[∫
�

log

∣∣∣∣∣
∞∑
j =1

aj e
2³ i! j

∣∣∣∣∣ d!

]
≥ C

( ∞∑
j =1

|aj |2
)1=2

:

PROOF OFTHEOREM1.5. Suppose that 2< p < ∞ and 0< þ < 1=2 − 1=p. Set
" = 1=2 − 1=p − þ, hence," > 0. We define the sequence{bj }∞

j =1 asbj = j −1=p−",
j = 1; 2; : : : . Now, for every! ∈ � we define

f!.z/ =
∞∑
j =1

bj e
2³ i! j z2 j =

∞∑
k=1

ak;!zk; z ∈ 1:(20)

Since
∑∞

j =1 |bj |p < ∞; using PropositionA we deduce thatf! ∈ D p
p−1 for every

! ∈ �.
We will see that for a.e.! ∈ �

exp

(
1

2³

∫ ³

−³
log | f!.reit /| dt

)
6= o

((
log.1=.1 − r //

)þ)
; asr → 1−.(21)

This will finish the proof.
Suppose that (21) is false. Then there exists a measurable setE ⊂ � with positive

measure and such that for all! ∈ E

exp

(
1

2³

∫ ³

−³
log | f!.reit /| dt

)
= o

((
log.1=.1 − r //

)þ)
; asr → 1−.(22)

This is equivalent to saying that

lim
r →1−

1

2³

∫ ³

−³
log

[
| f!.reit /|(

log.1=.1 − r //
)þ
]

dt = −∞; ! ∈ E:(23)

On the other hand,(
N∑

j =1

|bj |2
)1=2

=
(

N∑
j =1

1

j 2=p+2"

)1=2

∼
(∫ N

1

1

x2=p+2"
dx

)1=2

∼ N1=2−1=p−"; asN → ∞.
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Thus, there existC > 0 andN0 > 0 such that

(
N∑

k=1

|ak;!|2
)1=2

≤ C
(

log N
)1=2−1=p−"

; N ≥ N0:(24)

Using (24) and Lemma3.3, we deduce that

M2.r; f!/ = I2.r; f!/
1=2 ≤ C

[
log

1

1 − r

]1=2−1=p−"
; 0< r < 1; ! ∈ �;

which implies that for 0< r < 1 and! ∈ �,

exp

(
1

2³

∫ ³

−³
log | f!.reit /| dt

)
≤ C

[
log

1

1 − r

]1=2−1=p−"
:(25)

From this we deduce as in (23), that there existsC > 0 such that

∫ ³

−³
log

[
| f!.reit /|(

log.1=.1 − r //
)þ
]

dt ≤ C; 0< r < 1; ! ∈ �:(26)

Bearing in mind thatE has positive measure, (26) and (23) imply

lim
r →1−

∫
�

[∫ ³

−³
log

| f!.reit /|(
log.1=.1 − r //

)þ dt

]
d! = −∞:(27)

ForN = 1; 2; : : : , let�N = [0; 1]N andmN be the Lebesgue measure on�N . Observe
now that, for anyN, we have∫

�N

log | f!.reit /| dmN.!/

=
∫ 1

0

· · ·
∫ 1

0

log

∣∣∣∣∣
N∑

j =1

bj r
2 j

ei [2³! j +2 j t] +
∞∑

j =N+1

bj r
2 j

ei [2³! j +2 j t]
∣∣∣∣∣d!1d!2 · · · d!N

=
∫ 1

0

· · ·
∫ 1

0

log

∣∣∣∣∣
N∑

j =1

bj r
2 j

e2³ i! j +
∞∑

j =N+1

bj r
2 j

ei [2³! j +2 j t]
∣∣∣∣∣d!1d!2 · · · d!N; a:s:

Letting N tend to∞, we deduce that
∫
�

log | f!.reit /| d! is independent oft . Then
using (27) and Fubini’s Theorem we obtain

lim
r →1−

∫
�

log
| f!.r /|(

log.1=.1 − r //
)þ d! = −∞:(28)



410 Daniel Girela and José Ángel Peĺaez [14]

However, if we setr N = 1 − 1=2N , N = 1; 2; : : : , by TheoremC and the inequality

e−1 ≤ r 2N

N ≤ r 2 j

N ; 1 ≤ j ≤ N;

we deduce that

exp

[∫
�

log | f!.r N/| d!

]

= exp

[∫
�

log

∣∣∣∣∣
∞∑
j =1

bj e
2³ i! j r 2 j

N

∣∣∣∣∣
]

≥ C

( ∞∑
j =1

|bj |2
(
r 2 j

N

)2

)1=2

≥ C

(
N∑

j =1

|bj |2
)1=2

= C

(
N∑

j =1

1

j 2=p+2"

)1=2

≥ C
1

N1=p+"−1=2
≥ C

(
log

1

1 − r N

)1=2−1=p−"
= C

(
log

1

1 − r N

)þ
;

which implies ∫
�

log
| f!.r N/|(

log.1 − r N/−1
)þ d! ≥ logC; for all N;

which contradicts (28). Consequently, (21) is true and the proof is finished.

3.2. Radial growth ofD p
p−1-functions In this section we obtain some estimates on

the radial growth ofD p
p−1-functions. If 0< p ≤ 2 and f ∈ D p

p−1, then f ∈ H p and
so f has nontangential limit a.e.T. Therefore, we have: If 0< p ≤ 2 and f ∈ D p

p−1,
then| f .rei � /| = O.1/, asr → 1− for a.e.eit ∈ @1.

Zygmund proved in [37] that if f is an analytic function in1, then

∫ r

0

| f ′.²eit /| d² = o

[(
log

1

1 − r

)1=2
]
; asr → 1−.(29)

for almost every pointeit in the Fatou set off , Ff , which consists of thoseeit ∈ T
such thatf has finite nontangential limit ateit . Obviously, (29) implies

| f .reit /| = o

[(
log

1

1 − r

)1=2
]
; asr → 1−,(30)

If 2 < p < ∞, there are functionsf ∈ D p
p−1 such thatFf has Lebesgue measure

equal to zero. Indeed, an analytic functionf given by a power series with Hadamard
gaps whose sequence of Taylor coefficients{ak} belongs tol p \ l 2, is aD p

p−1-function
by PropositionA andFf has null Lebesgue measure (see [38, Chapter V]). In spite of
this, we can prove the following result forD p

p−1-functions.
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THEOREM3.4. If 2< p < ∞ and f ∈ D p
p−1, then

| f .reit /| = o

[(
log

1

1 − r

)1−1=p
]
; asr → 1− for a. e.eit ∈ @1:(31)

This is better that the a.e. estimate which can be deduced from (17).

PROOF OFTHEOREM3.4. Let p and f be as in the statement of the theorem. Then∫ ³

−³

(∫ 1

0

.1 − r /p−1| f ′.reit /|p dt

)
dr < ∞;

and it follows that the setA of pointseit ∈ @1 for which∫ 1

0

.1 − r /p−1| f ′.reit /|p dt < ∞;

has Lebesgue measure equal to 2³ .
Take and fixeit ∈ A. Take also" > 0. Then there existsr" ∈ .0; 1/ such that∫ 1

r"

.1 − s/p−1| f ′.seit /|p ds< ":(32)

Using (32) and Ḧolder’s inequality with exponentsp and p=.p − 1/, we obtain for
r" < r < 1,∫ r

0

| f ′.seit /| ds =
∫ r"

0

| f ′.seit /| ds+
∫ r

r"

| f ′.seit /| ds(33)

≤ C f;" +
∫ r

r"

.1 − s/1−1=p

.1 − s/1−1=p
| f ′.seit /| ds

≤ C f;" +
[∫ r

r"

.1 − s/p−1| f ′.seit /|p ds

]1=p [∫ r

r"

ds

.1 − s/

]1−1=p

≤ C f;" + "

(
log

1

1 − r

)1−1=p

:

Consequently, we have proved that

lim sup
r →1

(
log

1

1 − r

)1=p−1 ∫ r

0

| f ′.seit /| ds ≤ ":

Since" > 0 andeit ∈ A are arbitrary, we have∫ r

0

| f ′.seit /| ds = o

[(
log

1

1 − r

)1−1=p
]
; asr → 1−;

for all eit ∈ A. This implies that (31) holds for all eit ∈ A, which has Lebesgue
measure equal to 2³ . This finishes the proof.
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We do not know whether or not the exponent 1− 1=p in Theorem3.4 is sharp
but we know that it cannot be substitutes by any exponent smaller than 1=2 − 1=p.
Indeed, we can prove the following result.

THEOREM3.5. If 2< p < ∞, then there exists a functionf ∈ D p
p−1 such that

lim
r →1−

| f .reit /|(
log 1

1−r

)1=2−1=p(
log log 1

1−r

)−1 = ∞; for a.e. eit ∈ @1:(34)

PROOF. Take p > 2. Define

ak = 1

k1=p log 2k
; k = 1; 2; : : : ; and f .z/ =

∞∑
k=1

akz2k

; z ∈ 1:

Since
∑∞

k=1 |ak|p < ∞, by PropositionA, we have thatf ∈ D p
p−1.

On the other hand,

(
N∑

k=1

|ak|2
)1=2

=
(

N∑
k=1

1

k2=p log2 2k

)1=2

∼
(∫ N

1

1

x2=p log2 2x
dx

)1=2

∼ N1=2−1=p

log N
; asN → ∞,

and then it is easy to see that

M2.r; f / = I2.r; f /1=2 ∼
(
log 1

1−r

)1=2−1=p

log log 1
1−r

; asr → 1−.(35)

Now, by the law of the iterated logarithm for lacunary series (see [35]) we have that

lim
r →1−

| f .reit /|[
I2.r; f / log log logI2.r; f /

]1=2 = 1; for a.e.eit ∈ @1.(36)

Now we observe that (36) and (35) imply (34). This finishes the proof.

4. Zeros ofD p
p−1 functions

4.1. Products of the zeros ofD p
p−1 functions We start by recalling the the following

result due to Horowitz, (see [18, page 65]).



[17] Spaces of Dirichlet type 413

LEMMA D. Let f be an analytic function in1 with f .0/ 6= 0 and let{zk} be the
sequence of ordered zeros off . If 0 < p < ∞, 0 ≤ r < 1, and N is a positive
integer, then

| f .0/|p
N∏

k=1

r p

|zk|p
≤ Mp.r; f /p:(37)

This lemma and the estimates for the integral means ofD
p
p−1-functions obtained in

Section3.1 are the basic ingredients in the proofs of Theorem1.6 and Theorem1.7.
This method was used by Horowitz in [18] for the Bergman spaces and later by the
first author of this paper, Nowak, and Waniurski in [15] for the Bloch spaceB and
some other related spaces.

PROOF OFTHEOREM1.6. Let p, f , and{zk}∞
k=1 be as in the statement of Theorem1.6.

Using Theorem1.4, we see thatf satisfies (8) and using LemmaD with p = 2, we
deduce that

N∏
k=1

r

|zk| ≤ C M2.r; f / ≤ C

(
log

1

1 − r

)1=2−1=p

; if r is close enough to 1.(38)

Now, taking r = 1 − 1=N with N big enough in (38) and bearing in mind that
.1 − 1=N/N > 1=2e, we deduce that

N∏
k=1

1

|zk| ≤ C.log N
)1=2−1=p

:(39)

This finishes the proof.

Our next objective is to prove Theorem1.7which asserts that Theorem1.6is sharp.
We start recalling some notation and facts from Nevanlinna theory (see [16, 23] or
[31]) which will be needed in our proof.

Let f be a non-constant analytic function in1. For anya ∈ C and 0< r < 1, we
denote byn.r; a; f / the number of zerosf − a in the disc{|z| ≤ r }, where each zero
is counted according to its multiplicity. We define also

N.r; a; f /
def=
∫ r

0

n.t; a; f /− n.0; a; f /

t
dt + n.0; a; f / logr; 0< r < 1:(40)

For simplicity, we shall writen.r; f / = n.r; 0; f /, N.r; f / = N.r; 0; f /. The
Nevanlinna characteristic functionT.r; f / is defined by

T.r; f / = 1

2³

∫ ³

−³
log+ | f .rei � /| d�; 0< r < 1:
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Theproximity functionm.r; a; f / is given by

m.r; a; f /
def= 1

2³

∫ ³

−³
log+ 1

| f .reit /− a| dt; 0< r < 1:

Now we can state theFirst Fundamental Theorem of Nevanlinna.

THEOREME. Let f be a non-constant analytic function in1. Then

m.r; a; f /+ N.r; a; f / = T.r; f /+ O.1/; asr → 1−.

for everya ∈ C.

Now we can prove the following result.

PROPOSITION4.1. If 2< p < ∞ and f is a non-constantD p
p−1-function, then

n.r; a; f / = O

(
1

1 − r
log log

1

1 − r

)
; asr → 1−, for all a ∈ C:(41)

PROOF. Using the arithmetic-geometric mean inequality we obtain

T.r; f / ≤ 1

4³

∫ ³

−³
log

(| f .reit /|2 + 1
)

dt

≤ 1

2
log

(
1

2³

∫ ³

−³

(| f .reit /|2 + 1
)

dt

)
≤ 1

2
log

(
I2.r; f /+ 1

)
;

which, with part (ii) of Theorem1.4, gives

T.r; f / = O

(
log log

1

1 − r

)
; asr → 1−:(42)

Using TheoremE, we deduce that

N.r; a; f / = O

(
log log

1

1 − r

)
; asr → 1−, for all a ∈ C:(43)

Now, it is well known (see [2, page 22]) that this implies (41).

Now, we can proceed with the proof of Theorem1.7.

PROOF OFTHEOREM1.7. Takep andþ with 2< p < ∞ and 0< þ < 1=2− 1=p.
Take f ∈ D p

p−1 with f .0/ 6= 0 and

exp

(
1

2³

∫ ³

−³
log | f .reit /| dt

)
6= o

((
log

1

1 − r

)þ)
; asr → 1−,(44)
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such a function exists by Theorem1.5. Using (44) we see that there exist a sequence
{r j }∞

j =1 ⊂ .0; 1/ with r j ↑ 1 and a positive constantC (independent ofj ), such that

exp

(
1

2³

∫ ³

−³
log | f .r j e

it /| dt

)
≥ C

(
log

1

1 − r j

)þ
; j = 1; 2 : : : :(45)

We shall writen.r / instead ofn.r; f / for simplicity. Using Jensen’s formula (see [1,
page 206]) and (45) we deduce that

| f .0/|
n.r j /∏
k=1

r j

|zk| ≥ C

(
log

1

1 − r j

)þ
; j = 1; 2 : : : ;(46)

which implies that

n.r j / → ∞; as j → ∞.(47)

On the other hand, Proposition4.1 implies that there existsC > 0 such that

n.r / ≤ C
1

1 − r
log log

1

1 − r
; if r is sufficiently close to 1.

This implies that

logn.r / ≤ C log
1

1 − r
; if r is sufficiently close to 1,

which, together with (46), shows that there existsj0 ∈ N such that for everyj ≥ j0

| f .0/|
n.r j /∏
k=1

r j

|zk| ≥ C
[

logn.r j /
]þ
:

This finishes the proof.

4.2. A substitute of Blaschke condition If 2 < p < ∞ the sequence{zk} of
ordered zeros of a non trivialD p

p−1 function need not satisfy the Blaschke condition.

Indeed, the Blaschke condition is equivalent to saying that
∏N

n=1.1=|zn|/ = O.1/ and
we have seen that this is not always true. Using Theorem1.6and arguing exactly as
in the proof of [15, Theorem 5] we can prove the following result.

THEOREM 4.2. Let 2 < p < ∞ and f ∈ D p
p−1 with f 6≡ 0. Let {zk}∞

k=1 be the
sequence of zeros off . Then

∑
|zk|>1−1=e

.1 − |zk|/
(

log log
1

1 − |zk|
)−Þ

< ∞(48)

for all Þ > 1.
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Next, we shall prove that the conditionÞ > 1 is needed in Theorem4.2.

THEOREM4.3. Let2< p < ∞. Then there exists a functionf ∈ D p
p−1 with f 6≡ 0,

whose sequence of zeros{zk}∞
k=1 satisfies

∑
|zk|>1−1=e

.1 − |zk|/
(

log log
1

1 − |zk|
)−1

= ∞:(49)

PROOF. Setg.z/ = ∑∞
k=1 k−.p+2/=4pz2k

, z ∈ 1. Sinceg is given by a power series
with Hadamard gaps and

∑∞
k=1 k−.p+2/=4 < ∞, it follows thatg ∈ D p

p−1.
We shall follow the argument of the proof of [15, Theorem 6]. Set

rn = 1 − 2−n; n = 1; 2; 3; : : : :(50)

It is easy to see that, for all sufficiently largen, I2.rn; g/ ≥ Cn1=2−1=p, which, since
log.1=.1 − rn// = n log 2, implies that

I2.rn; g/ ≥ C

(
log

1

1 − rn

)1=2−1=p

if n is sufficiently large.(51)

Now, since log.1=.1− rn// ∼ log.1=.1− rn+1//, asn → ∞, and sinceI2.r; g/ and
.log.1=.1 − r ///1=2−1=p are increasing functions ofr , we deduce

I2.r; g/ ≥ C

(
log

1

1 − r

)1=2−1=p

;(52)

if r is sufficiently close to 1.
Using this and arguing as in [15, page 126] we deduce that there exist a complex

numbera with g.0/ 6= a, a positive constantþ, and a numberr0 ∈ .0; 1/ such that

N.r; a; g/ ≥ þ log log
1

1 − r
r ∈ .r0; 1/:(53)

Take such ana ∈ C and setf .z/ = g.z/− a, z ∈ 1. Then f ∈ D p
p−1 and f .0/ 6= 0.

Also (53) can be written as

N.r; f / ≥ þ log log
1

1 − r
; r ∈ .r0; 1/:(54)

Let {zn} be the sequence of zeros off . Using Proposition4.1and arguing as in [15,
page 127], we obtain (49).
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