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Abstract

For 0 < p < oo, we let @;’_1 denote the space of those functiohghat are analytic in the unit disc

A ={ze C: |z < 1} and satisfy[, (1 — |z))?| f'(2)|Pdx dy < co. The space@,ﬁi1 are closely
related to Hardy spaces. We haé) ; c HP,if0 < p < 2,andH? c 7, ,,if2 < p < co. In this

paper we obtain a number of results about the Taylor coeﬁicier@ﬁ’g{-functions and sharp estimates

on the growth of the integral means and the radial growth of these functions as well as information on
their zero sets.

2000Mathematics subject classificatioprimary 30D35, 30D55, 46E15.
Keywords and phrasesSpaces of Dirichlet type, Hardy spaces, Bergman spaces, integral means, radial
growth, sequences of zeros.

1. Introduction and main results

We denote byA the unitdisc{z € C : |z| < 1}. If f is afunction which is analytic in
AandO<r < 1, we set

1 T ) 1/p
Mp(r,f):(E/ |f(re")|pdt) , 0<p<oo,

lp(r, f) = Mp(r, ), 0<p<oo,
Mo (r, f) = sup|f (2)].

lz|=r

For 0 < p < oo, theHardy spaceH P consists of all analytic function$ in the disc
for which || f [[» £ sug,_, ., My(r, f) < co. We refer the reader td.f] and [13] for
the theory of Hardy spaces.
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IfO < p < ooanda > —1, we letAP denote the (standardjeighted Bergman
spacethat is, the set of analytic functiorfsin A such that

f(l— 1zD*If ()P dA2) < oo.
A

Here,d A(z) = (1/m)dx dy denotes the normalized Lebesgue area measure in
The standard unweighted Bergman spageis simply denoted byAP. We mention
[11] and [17] as general references for the theory of Bergman spaces.
The spaceZ? (p > 0, « > —1) consists of all function$ which are analytic im
such thatf’ € AP. The space?? is the classical Dirichlet spacg. For other values
of p anda the spaces/P have been extensively studied in a number papers such as
[27, 28, 30, 33] for p = 2 and P, 8, 34, 36] for other values ofp. If p < @ + 1, itis
well known thatZP = A!_, with equivalence of norms (se¢7, Theorem 6]). For
o = p — 2, the space/? is the Besov spacBP (compare toJ]).
The spaceZP is said to be a Dirichlet space ff > « + 1. In this paper we shall
be primarily interested in the ‘limit casgd = « + 1, that is, in the space@,’j_l,
0 < p < oo, which are closely related to Hardy spaces. Indeed, a classical result of
Littlewood and Paley19] (see also20]) asserts that

1) HpC@F'))_l, 2<p<oco.
On the other hand, we have
2 20, CHP, 0<p=<2

(see B4, Lemma 1.4]). Notice that, in particular, we ha¢& = H2. However, we
remark that ifp # 2 then

®) HP £ 9P ..

This can be seen using the characterization of power series with Hadamard gaps whicl
belong to the spaces;_,.

ProPOSITIONA. If f isan analytic function im\ which is given by a power series
with Hadamard gapsf (z2) = > -, &z™ (z € A) withni,1 > Ang forall k (A > 1),
then, for evenyp € (0, 00), f € Z;_; ifand only if Y, |a | < oo.

Since for Hadamard gap series as above we have, for0< oo, f € HP if and
only of >, |a|® < oo, we immediately deduce thaty , # HP if p # 2. We
remark that Propositioi follows from [7, Proposition 2.1]. In Sectio@ we shall
see that PropositioA can also be deduced from the following theorem which gives a
condition on the Taylor coefficients of a functidn analytic inA, which implies that
fey ..
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THEOREML1.1. Let f beananalyticfunctionin\, f(z) = Z;’ioanz” (ze A).
(i) f0O< p<ooand

4) i(z |ak|>p<oo,

thenf € 2} ;.
(i) fO<p<2and

0 p/2
(5) Z( > |ak|2) < o0,

n=1 kel (n)
p
thenf € 7, ;.

Here and throughout the paper, for= 0, 1, ..., | (n) is the set of the integells
such that 2 < k < 2",

If0 < p < 2, then &) implies 6). Hence, forp € (0, 2], (ii) is stronger than (i).
We remark also that if 6< p < 2, then the conditiory - ;|a,|? < oo implies ).
Consequently, (ii) improvessf, Lemma 1.5].

In Theorenil.2we give a condition on the Taylor coefficients of an analytic function
f which is necessary for its membershipﬁﬂj‘fl if2 < p<oo.

THEOREM1.2. Let f be an analytic function im\, f(z) =) 7 a.z" (z€ A). If

2<p<ooandf e ), then

o p/2
(6) > (Z |ak|2) < 0.
n=1 \kel(n)

If0 < p < 2 then B) can be seen in some other ways. Rudin proved2} [
that there exists a Blaschke prod@®&twhich does not belong t&; (see alsoZ4]).
Vinogradov B4] extended this result showing that for evepye (0, 2) there exist
Blaschke product8 which do not belong t@,’)’_l. This clearly gives tha@r‘}_l # HP
if 0 < p < 2, afact which can be also deduced from the result<Spanhd [14].

In contrast with what happens for @ p < 2, it is not easy to give examples of
functionsf 9371\ HP for a certainp € (2, co) that are not given by power series
by Hadamard gaps. SinddP C 95’71 if p > 2, any Blaschke product belongs
10 (Npzp-oo Zp-1- Also, for a number of classe® of analytic functions imA we have
F NP, =FNHP (0 < p < o). Forexample, it is very easy to prove the
following lemma.

LEMMA 1.3. (i) fa>0,0<p<oo,andf(z) =1/(1— 2% (z€ A), then
f e HPifandonly if f € 95’71 if and only ifap < 1.
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(i) fa,B>0pe(0,o0),and

1
(1—2)*(log(2/(1 — 2))F"

f(2) = (ze A),

thenf € HPifand onlyif f € 9;’_1 if and only ifap < 1andpg > Oorap = 1and
Bp > 1L

A much deeper result is stated i, [Theorem 1] which asserts that,4f denotes
the class of all univalent (holomorphic and one-to-one) functioms, ithenZ NHP =
v N 9,';71 for all p > O (see alsoq5] for the casep = 1).

In spite of these facts we shall prove that, for everg (2, c0), there are a lot
of differences between the spakl® and the spac@r‘f_l. In Section3, we shall be
mainly concerned in obtaining sharp estimates on the growth of the integral means of
Qg_l-functions. If0< p <2andf e 95_1, then f € HP and hence, the integral
meansM,(r, f) are bounded. This is no longer true fpr> 2. Our main results in
Section3 are stated in the following two theorems.

THEOREM1.4.1f 2 < p<ocand f € 2P |, then

p-10
0}
1
(7 M (r, f):O((IogE>>, asr — 1.
(i)
1 1/2—-1/p
(8) May(r, f) =0 ((Iog E) ) , asr — 1.

THEOREML1.5.If 2 < p < ocoand0 < B8 < 1/2—1/p, then there exists a function
f € 2)_, such that

% p
9) exp(%/ Iog|f(re“)|dt) £ o((log ﬁ) ) asr —» 1.

Since
1 /" i
exp(—/ IOg| f(l‘e't)|dt> < MZ(ra f)v
2 J_,

Theoreml.5shows that part (i) of Theorem4is sharp in a very strong sense.
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REMARK. Using Theoreni.4we can obtain an upper bound on the integral means
Mq(r, ), 2 < g < p, of a function f € @,’jﬁl. Indeed, ifg € (2, p), then
g = pr+ 21— 1), wherex = (q—2)/(p—2) € (0,1). Consequently, using
Theoreml.4 and Hdlder’s inequality with exponents/1 and /(1 — 1) we see that,
if f e, ,and2<q < p,then

wheren = n(p,q) = pA/q+ (p—2)(1—1)/pgandr = (q — 2)/(p — 2).

In Section4 we study properties of the sequences of zeros of non trﬁ?&h—
functions. If0< p < 2 then@,’,’,l C HP and hence, the sequence of zeros of a
non-identically zero@é’fl-function satisfies the Blaschke condition. This does not
remain true forp > 2. Our main results about the sequences of zeros of funcfions
in the spac@p 1, 2 < p < oo, are stated in Theore6and Theoreni.7

THEOREM1.6. Suppose tha2 < p < oo and let f be a function which belongs to
the spaceZ;_, with f(0) 3 0. Let{z};>, be the sequence zeros bbrdered so that
|z| < |z 1| forall k. Then

N
1
(10) 1_[ @ (Iog N)l/2 1/p) , asN — oo.
k=1

From now on, iff is a non-identically zero analytic function of zeros 4ad;° , is
the sequence zeros dfordered so that| < |z, for all k, we shall say thafz}°
is the sequence of ordered zerosfof Theoreml.7 asserts that Theorem6 is best
possible.

THEOREML1.7.1f 2 < p < ocoand0 < B8 < 1/2—1/p, then there exists a function
fe .@5’71 with f(0) # 0 such that if{z}g°; is the sequence of ordered zerosfof
then

N
(11) ]_[ o((logN)?), asN — oo.
k=

As a consequence of Theorédn®and Theoreni.7, we obtain the following result.

COROLLARY 1.8.1f 2 < p < g < oo then there exists a sequen@®} C A that
is the sequence of zeros ofﬁtl-function but is not the sequence of zeros of any
2,_,-function.
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Hence the situation in this setting is similar to that in the setting of Bergman spaces
(see [L8, Theorem 1]).

Next we shall get into the proofs of these and some other results. We shall be using
the convention tha€, , . denotes a positive constant which depends only upon the
displayed parameters «, . .. butis not necessarily the same at different occurrences.

2. Taylor coefficients ofZ;_, functions.

We start by recalling the following useful result due to Mateljevic and Pavlovic
[2]] (see also%, Lemma 3] and22]) which will be basic in the proofs of Theoreinl
and Theoreni.2

LEMMA B. Lete > Oandp > 0. There exists a constaKt that depends only op
anda such that, if{a,}>°, is a sequence of non-negative numbéyrs= Zkel(n) a,
(n>0),and f(x) =Y 7, ax"*(x € (0, 1)), then

00 1 00
Ky 2P < / A=) 0P < K D 27™tp,
n=0 0 n=0
PROOF OFTHEOREM 1.1 Takep € (0, co) and letf be analytic inA,
12) f(z)=Zanz”, ze A.

Suppose that] holds. Using Lemm& and @) we see that

o0

1 p
[ ir@ra-iztridag <c, [a-ne (Zmanw”l) dr
A

n=1

<C Zz—"r’(z k|ak|)

kel (n)

<C Zz npn P (Z |ak|)

kel (n)

<Cp Z(Zw) < o0.

kel (n)

Hence,f € @,’jﬁl and the proof of (i) is finished.
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Suppose now that & p < 2, f is as in (L2) and satisfiesH). Using the fact that
Mp(r, ') < My(r, ') for all r € (0, 1), making the change of variabié = s and
using LemmaB, we obtain

1
/|f’(z)|p(1— |z|2)pldA(z):2/ r(1—r?P My, f)Pdr
A 0

1
< 2/ r(1—r?P My, f)Pdr
0
L o p/2
- 2[ r(1—r2r? (Z n2|an|2r2“‘2) dr
0 n=1
. . p/2
< C/ (1—s)P! (Z n2|an|zs”‘1) ds
0 n=1
p/2
<C Zz “P(Z K?|ay|? )

kel (n)
p/2
<Cp Z(Z |ak|2> < 0o,
kel (n)
Hence,f € 95—1' This finishes the proof of (ii). O

Next we see that Propositioh can be deduced from Theorélrl as announced.

PROOF OFPROPOSITIONA. Let f be an analytic function i\ given by a power
series with Hadamard gaps

= ) . Ni1 .
13 f@a=) az" with “=>x1>1 foral j,
(13) @=> 3 a2t j
and suppose th@j’ii |aj|? < oco. Using the gap condition, we see that there are at
mostC, = log, 2+ 1 of then’sin the setl (n). Then there exists a constadit, > 0

such that N ; N
Z (Z |ai|> = CA,pZ|aj|p < 00,

n=0 \jel(n) j=1
and consequently, using Theoréni, we deduce thaf € 93_1
To prove the other implication suppose thais as in (3) and f ¢ @,’)’_1 for a
certainp > 0. Itis well known (see38, Chapter V, Vol. I]) that there exist constants
A(A, p) andB(x, p) such that

A, pMI@r, £) < MP(r, £) < B, pMJ(r, £), 0<r <1
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This and Lemma give
1
00 >/|f/(z)|p(1—|z|2)p‘1dA(z):/ r@—r?P*MP(r, f)dr
A 0

1
> A(, p)/ r(L—r3)P Mo, fydr
0

1 00 p/2
> A(A, p)f r(l—r?pPr? (Z n12|aj|2r2nj—2> dr
0

i=1

1 00 p/2
= A, P>f tl—-ur (Znizlailztj‘l> dt
0 -1
00 p/2
S Iy

n=0 njel (n)

p
> CpA(k, p) )y _27"P2 ( > |a;|) > CipAG, P) Y layl”.

n=0 njel(n) j=0

The last inequality is obvious ip > 1 and, in the case & p < 1, follows again
using the fact that there are at m@st= log, 2 + 1 of then/js in the setl (n). Thus,
we havezl?":0 |aj|P < oo. This finishes the proof. O

PROOF OFTHEOREM 1.2 Suppose that Z p < ocoandf e 95_1,

f2=) az. zeA.
n=0

Using LemmaB, bearing in mind that =< 2"if k € I (n), making a change of variable,
and using that sincp > 2, My(r, ') < My(r, '), we obtain

%) p/2 00 p/2
Z(Z w) < zw(z kziaklz)
n=1 \kel(n) n=1 kel (n)

N o p/2
st/ (1-tP (anlanlzt”l) dt
0 n=1
1 oo p/2
scp/ (L—r5Pt (Zn2|an|2r2”2> dt
0 n=1

1
§Cp/ (L—r)P M, (r, f)P < oo. O
0
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3. Growth properties of @,‘j_l-functions

In this section we are mainly interested in obtaining sharp estimates on the growth
of functions f in the space@r‘}_l 2<p< o).

3.1. Integral means estimates Let us start with estimates on the growth of the
maximum modulusM(r, f). We can prove the following result.

THEOREM3.1. Let f be an analytic function im\. If f € 93_1, 0 < p < oo, then

asr — 1.

1
(14) Moo(r, f) = 0(m> s

PROOF. Let f ¢ @,’jﬁl andz € A. Let D(2) denote the open disc
11—z
weC:|lz—w| < > .

Clearly,D(z) c A. Since the functioz — | f'(2)|P is subharmonic im\, we have

C C
15) |f'@)|°P < —— f'(w)|PdA 7/ f'(w)|PdAw).
(15) 1f'@I° = D) D(Z)I ()" dAw) < PRy D(Z)I ()|" d Aw)

Itis clear thatl— |z)?) < (1—|w|?), w € D(2),Z € A. Using this and15) we obtain

C 1— w77t
(16) |1f'(2)|° < (1_—|p2|2)2 /I;(Z) [1_—||cuz||] | /(@) d A(w)
Cp

= A2y Jo, NI A

On the other hand, since € 2}_,, it follows that

(1— )P ' (@)|PdA@) = 0o(1), aslz - 1,
D(2)

which, with (L6), implies

1

(17) Moo(r, f/) = O(W

), asr — 17,

and (14) follows by integration. O
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REMARK. We observe that for ang € (0, co), the exponent Ap in (14) is the best
possible. Moreover, if we take

-8
fop(2 = (1— z)"Yp (log 1 2 z) , ZeA,

with 8 > ’—1) then, as we noticed in Lemnia3, f, 5 € 2}, and it is easy to see that

-p
Mw(r,f)%(l—r)l/p(logl—lr> , O0<r <1

So condition {4) in Theorem3.1cannot be substituted by the condition

1
(1 —r)¥P(log(1/ (L —r))/pte

My (r, f) = o( ) asr — 1°,

foranye > 0.
Now we turn to the proofs of Theorein4 and Theoreni.5.

PROOF OFTHEOREM 1.4. Suppose that 2 p < coandf € 95’71. Then
1
(18) Iin;/ (1—-9P*Mp(s, f)ds=0.
SinceM(s, f’) is an increasing function of
1 1
/ (1—-9P*M)(s, fyds= MP(r, f/)/ (1-9P*ds> C,MP(r, f)(1—r)P,

which, together with18), yields
(19) Mp(r, )y =0(1—-r)""), asr—1,

which, using Minkowski’s integral inequality, implieg)
Using (19) and the fact that for any fixed with 0 < r < 1 the integral means
My(r, f') increase withp, we deduce that

lo(r, ) =0((1—r)"%), asr—1.
and then using the well-known inequality (s€é,[pages 125-126])

2
%(Iz(r, f)) <4lyr, f), 0<r <1,
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we obtain )

d
W(IZU’ f))=o(1-r)?) asr—1,
which, integrating twice, gives

Ma(r, ) =o((log(1/1 ~)"*), asr -1

This is worse thang). To obtain this we use Theorein2.

Say thatf(z) = Y -, a.z", (z € A). Suppose, without loss of generality that
a = 0. Using Hblder’s inequality with the exponents/2 and p/(p — 2) and
Theoreml.2, we obtain

Mo(r, £)2 =) Janlr" =" > falr* <) r*" (Z |ak|2>
n=1 n=0

n=0 kel (n) kel (n)
0 p2 %P - o 1-2/p
2 2n+1 —2
| 2(zmr) | [z
n=0 \kel (n) n=0
1 1-2/p
<Cip (Iog 1—> O

Since
1 " i
exp o log|f(re)|do ) < My(r, f), O<r <1,
T J
we trivially have the following result.

COROLLARY 3.2.1f2< p<ooand f € 2}, then

1 T . 1 1/2-1/p
exp(E/ |Og|f(re'9)|d9) =0 (Iog ﬁ) , asr — 1

Theoreml.5shows that Corollarg.2and the estimates] are sharp in a very strong
sense. The following lemma, whose proof is simple and is omitted, will be used in
the proof of Theoren..5.

LEMMA 3.3. Let f(2) = ) 7 ,a.2" be an analytic function inA. If 0 < g <1
andZ,E‘ZO lag|? ~ (logN)#, asN — oo, thenl,(r, f) ~ (log(1 —r)"Hf asr — 1.

We make use of the technique introduced by Ullrich3g][ Let us start introducing
some notation.

Letw = [0, 1]Y andwy, w,, . .. be ‘the coordinate functions; : @ — [0, 1]. Let
dw denote the product measurederived from the Lebesgue measurg0yil]. Now
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w1, wo, ... are the Steinhaus variables (independent, identically distributed random
variables uniformly distributed of®, 1]). Note that{ez”"”l} °, is an orthonormal set

in L2(2), hence, ify [, |aj|* < oo, then) |2, &l is a well defined element of
L2(£2) with L%norm (372, |a; %)/ The foIIowing theorem is32, Theorem 1].

THEOREM C. There exist€C > 0 such that for any sequence of complex numbers

{ay}52, with 37, |ay]* < oo, we have
~ 12
da):| >C (Z |aj|2) :
j=1

exp|:/ log |> " aje”
Q i—1

PROOF OFTHEOREM 1.5. Suppose thatZ p < ccand 0< 8 < 1/2—1/p. Set
e =1/2—1/p— B, henceg > 0. We define the sequenge, }2, asb; = j /P,

j=12,.... Now, for everyw € Q we define
(20) f,(2) = Z bje"viz? = Zak,wzk, ze A.
j=1 k=1

Sincer’i1 |b;|P < oo, using PropositiolA we deduce thaf, < 9,';1 for every
w € Q.
We will see that for a.ev € Q

(21) exp(i /” log | fw(re")|dt> + o((log(l/(l— r)))ﬁ), asr — 1.
21 J_,
This will finish the proof.

Suppose that(l) is false. Then there exists a measurableEset Q2 with positive
measure and such that for alle E

1 [ i -
(22) exp(Z /_n Iog|fw(ret)|dt> = 0((Iog(1/(1—r)))’3), asr - 1.

This is equivalent to saying that

1 [ |, (re'")|
23 I|m —/ lo dt = —o0, E.
(23) 21 g |:(Iog(1/(l - r)))ﬂ} o we

On the other hand,

N 1/2 N 1/2
(Z |b; |2> (Z i2/ p+28)
=1 -1

N 1 1/2
~ (/ 2—+2dX) ~ Nl/2—1/p—5’ asN — oo.
1 X /P+2¢
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Thus, there exis€ > 0 andN, > 0 such that
N 1/2

(24) (Z |ak,w|2> < C(logN)"* " N > N,.
k=1

Using 24) and LemmaB.3, we deduce that

1/2-1/p—e
My(r, f,) = I, f,)Y?><C [Iog ﬁ] , O0<r<l weqQ,

which implies that for O< r < 1 andw € €,

1 e _ 1 qYEYe-e
(25) exp(—/ log|f,(re")| dt) <C [Iog —] )
27 J_, 1—r

From this we deduce as i23), that there exist€ > 0 such that

I

T it
(26) /Iog|: [f.(reD)] ﬂ}dtsc, O<r<1 weQ.
- (log(2/(1 =r)))

Bearing in mind thak& has positive measureZ®) and @3) imply

x it
27) lim / U jog—1ere) ﬂdt:| dov = —oo.
=1 Jo | (log1/—r)))

409

ForN =1,2,...,letQy = [0, 1]N andmy be the Lebesgue measure@g. Observe

now that, for anyN, we have

/ log | f.(re")| dmy(w)
QN

N 0
ijrZJei[Zna)ﬂrZJl] + Z berJei[Zna)ﬁ»ZJt]
j=1

1 1
=// |og
0 0 — farontt
N o)
ijrZJeZniwj + Z berJei[Zna)ﬂrZJt]
j=1

1 1
:/ / |og
0 0 — ity

dwdw; - - - doy

dwidw; - - -dwy, as.

Letting N tend tooco, we deduce thaf,, log | f,(re')| dw is independent of. Then

using @7) and Fubini’s Theorem we obtain

) [f,(r)]
(28) lim [ log
~1Jo 7 (log(1/(1 —r)))’
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However, if we sety =1—1/2N, N = 1, 2, ..., by TheorenC and the inequality
et<rd<rZ, 1<j<N,

we deduce that

exp[/ Iog|fw<rN>|dw]
Q

oo

iwj 2
ZbJeZ” Ty
=1

e [ o] |

o 1/2 N 12 N 1 Y2
>C (Z |b; IZ(F,E,J)Z) >C (Z |b; |2) =C (Z jZ/p+2£>
j=1 j=1

i=1

1 1 1/2-1/p—e 1 B

which implies

/ log AU 5 do >logC, forall N,
e (log(l—ry)?)

which contradicts48). Consequently, A1) is true and the proof is finished. O

3.2. Radial growth of 7;_,-functions  In this section we obtain some estimates on
the radial growth of2}_,-functions. If 0< p < 2andf € 9} ;, thenf € HP and

so f has nontangential limit a.&. Therefore, we have: If & p < 2 andf € Qp”_l,
then| f (re'?)| = O(1), asr — 1~ for a.e.€' € dA.

Zygmund proved in37] that if f is an analytic function im\, then

; ' 1 \2
(29) / | f'(p€")|dp =0 |:<Iog —) :| . asr — 1.
0 1—r

for almost every poing' in the Fatou set off, F;, which consists of those! € T
such thatf has finite nontangential limit &'. Obviously, @9) implies

12
(30) |f(reil)| :O|:(|Oglir> :|, asr - 17,

If 2 < p < oo, there are functions € 2;_, such that~; has Lebesgue measure
equal to zero. Indeed, an analytic functibrgiven by a power series with Hadamard
gaps whose sequence of Taylor coefficidatg belongs td” \ |2, is a@é’fl-function
by PropositiomA andF; has null Lebesgue measure (s&& [Chapter V]). In spite of
this, we can prove the following result f@,’jﬁl-functions.
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THEOREM3.4.If 2 < p <ocand f € Z;_,, then
. =1/p .
(31) |freY=o [(Iog ﬁ) } , asr — 1 fora.e.€' € dA.

This is better that the a.e. estimate which can be deduced frgm (
PROOF OFTHEOREM 3.4. Let pand f be as in the statement of the theorem. Then

T 1
/ (/ a- r)p‘1|f/(re")|pdt) dr < oo,
-7 0

and it follows that the se of pointse € dA for which

1
/ (1—=r)P Y f'(re"|Pdt < oo,
0

has Lebesgue measure equal #o 2
Take and fixét € A. Take alsa > 0. Then there exists € (0, 1) such that

1
(32) f (1—9)P 1 f'(sé)|Pds < e.

Using (32) and Hblder’s inequality with exponentp and p/(p — 1), we obtain for
r.<r <1,

(33)/ |f’(sé‘)|ds=/s|f’(sé‘)|ds+/ | f'(sé)|ds
0 0 re

"Lt
o I—9tt/p

r . " 1/p r ds 1-1/p
_ p— / p
scf,s+[/“(1 9P| f'(sé)| ds] U (1_3)]
1 1-1/p
< nys + ¢ (Iog E) .

Consequently, we have proved that

<Cr.+ |f'(s€)|ds

1 1/p-1 pr )
Iimsup(log ﬁ) / | f'(sd)|ds<e.
- 0

r—-1

Sinces > 0 ande' e A are arbitrary, we have

r ) 1 1-1/p
/ |f'(se€")|ds=0 (Iog I r) , asr - 1,
o _

for all € € A. This implies that 81) holds for alle' € A, which has Lebesgue
measure equal ta2 This finishes the proof. O




412 Daniel Girela and JésAngel Pehez [16]

We do not know whether or not the exponernt-11/p in Theorem3.4 is sharp
but we know that it cannot be substitutes by any exponent smaller ##an 1/ p.
Indeed, we can prove the following result.

THEOREM3.5. If 2 < p < oo, then there exists a functioh @,’jﬁl such that

. [f(re")|
(34) rILn;, 1 1/2-1/p 1 -1
(Iog E) (Iog IogE)

PrROOF. Takep > 2. Define

=00, forae. €' edA.

1

&= Wrlog

k=12 ..., and f(z):Zakzzk, ZeA.
k=1

Sinced -, |ax|P < oo, by PropositiomA, we have thatf € 9,')’71.
On the other hand,

N 1/2 N . 12
2 _
(; & ) = (Z K2/® log? Zk)

k=1

N 1 V2o Nve-ve
1 X%Plog” 2x log N

and then it is easy to see that
1/2-1/p
(log )

35 Mo(r, f) = Iy, f)¥2~ 21 =12
(35) 2, ) = Iax(r, 1) Ioglogl—fr

, asr — 1.

Now, by the law of the iterated logarithm for lacunary series (8&§ [ve have that

f(ret '
(36) lim [fred)l =1, forae.e' €dA.

=17 [15(r, f)logloglogla(r, f)]l/2

Now we observe thaBBg) and @5) imply (34). This finishes the proof. O

4. Zeros of2}_, functions

4.1. Products of the zeros o@g’_l functions We start by recalling the the following
result due to Horowitz, (seé.§, page 65]).
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LEMMA D. Let f be an analytic function il\ with f(0) £ 0 and let{z} be the
sequence of ordered zeros bf If 0 < p < 00,0 <r < 1, andN is a positive
integer, then

N o rp
(37) |f(0>|pl_[|;ﬁ < My(r, )P,
k=1

This lemma and the estimates for the integral mear@p”gj-functions obtained in
Section3.1 are the basic ingredients in the proofs of Theotefand Theoreni.7.
This method was used by Horowitz itd] for the Bergman spaces and later by the
first author of this paper, Nowak, and Waniurski ir5] for the Bloch space”? and
some other related spaces.

PROOF OFTHEOREM1.6. Letp, f, and{z};°, be asinthe statement of Theorérf.
Using Theorenl.4, we see thatf satisfies §) and using Lemm® with p = 2, we
deduce that

N 1/2-1/p
r L
38) [] 2 <CMy(r, f)y<C (Iog T r) , if r is close enough to 1.
k=1

Now, takingr = 1 — 1/N with N big enough in 88) and bearing in mind that
1-1/N)N > 1/2e, we deduce that

N
1 1/2-1/p
39 — < C(logN)"* ",
(39) !_[ 77 < CllogN)

This finishes the proof. O

Our next objective is to prove Theorel’ which asserts that Theorelh6is sharp.
We start recalling some notation and facts from Nevanlinna theory ($&&3J| or
[31]) which will be needed in our proof.

Let f be a non-constant analytic functionn Foranya € CandO<r < 1, we
denote byn(r, a, f) the number of zero$ — a in the disc{|z| < r}, where each zero
is counted according to its multiplicity. We define also

def ' n(t,a, f) — n(O, a, f)
(40) N(r,a, f)_/0 n

dt+n(0,a, f)logr, O<r <1

For simplicity, we shall writen(r, f) = n(r,0, f), N(r, f) = N(r, 0, f). The
Nevanlinna characteristic functiof(r, f) is defined by

1 [ -
T, f)= Z/ log"|f(re?)|ds, O<r <1
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Theproximity functionm(r, a, f) is given by

1 4 1
logh —————dt, O<r 1.
2:1/_” 9 Fren—a v 5T

Now we can state thEirst Fundamental Theorem of Nevanlinna

m(r, a, f)d_ef

THEOREME. Let f be a non-constant analytic function . Then
m@r,a, f)+N,a, f)=T(, f)+0(1), asr— 1.
for everya € C.

Now we can prove the following result.

PROPOSITION4.1. If 2 < p < oo and f is a non-constantZ;_,-function, then

1
41) n(r,a, f)= O(l— log Iog—) , asr — 1 ,forallaeC.

PrROOF. Using the arithmetic-geometric mean inequality we obtain

1 i ity|2
T, f) < E/_nlog(ﬁ(re )P+ 1) dt

< %Iog( ;/_n (IfreH? +l)dt> % og (Io(r, f)+1),
which, with part (ii) of Theoreni.4, gives
(42) T, f)=0 (Iog log 1—1) , asr —> 1.
Using Theorent, we deduce that
(43) N(,a, f)= O(Iog Iog&) , asr — 17, forallaeC.
Now, it is well known (seed, page 22]) that this impliegi(). O

Now, we can proceed with the proof of Theorémi.

PROOF OFTHEOREM1.7. Takep andB with2 < p <occand0< 8 < 1/2—1/p.
Take f € 2} , with f(0) # 0 and

x p
(44) exp(i/ Iog|f(re“)|dt> £ o((log L) ) asr — 17,
2 J_, 1—r
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such a function exists by Theorelrb. Using @4) we see that there exist a sequence
{ri}s2; € (0, 1) withr; 1 1 and a positive constaf (independent of), such that

x p
(45) exp(i/ Iog|f(rje”)|dt> zC(Iog ! ) , j=12....
21 _x 1—rj

We shall writen(r) instead oin(r, f) for simplicity. Using Jensen’s formula (seg [
page 206]) and45) we deduce that

n(r; 1 g
(46) |f<o>1‘[|—1> (oo ™) i-vz...
k= J

which implies that

47 n(rj) - oo, asj — oo.
On the other hand, Propositi@nlimplies that there exist€ > 0 such that
1 1
ner) < Cﬁ log Iogﬁ, if r is sufficiently close to 1.
This implies that
1 . -
logn(r) < Clog 1 if r is sufficiently close to 1,

which, together with46), shows that there exisfg € N such that for every > jo

n(rj
£ H |—J C[logn(r))]”.
k=

This finishes the proof. O

4.2. A substitute of Blaschke condition If 2 < p < oo the sequencéz} of
ordered zeros of a non trivieﬂi,’)’_1 function need not satisfy the Blaschke condition.
Indeed, the Blaschke condition is equivalent to saying Efp,'él:tl(l/|zn|) = 0(1) and
we have seen that this is not always true. Using Thedréhand arguing exactly as
in the proof of [L5, Theorem 5] we can prove the following result.

THEOREM4.2. Let2 < p < co and f € 2], with f # 0. Let{z}, be the
sequence of zeros d¢f Then

1 —a
(48) > (1—|zk|>(loglogl_|zk|) <00

|z/>1-1/e

forall « > 1.
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Next, we shall prove that the conditien> 1 is needed in Theorerh 2

THEOREMA4.3. Let2 < p < oo. Thenthere exists a functidne 2], with f # 0,
whose sequence of zer@g}y® , satisfies

(49) 2:(1—MDmeg : >_:m>

|z/>1-1/e 1=z

PROOF. Setg(z) = Y o, k-P+2/4Pz2% 7z ¢ A. Sinceg is given by a power series
with Hadamard gaps ang,,”, k™ **2/% < oo, it follows thatg € 2 ;.
We shall follow the argument of the proof dff, Theorem 6]. Set

(50) M=1-2" n=123,....

It is easy to see that, for all sufficiently large I,(r,,, ) > Cn%2=%P which, since
log(1/(1 —r,)) = nlog 2, implies that

1/2-1/p
(51) l2(rh,g) >C (Iog ) if nis sufficiently large.

1-r,

Now, since logl/(1—ry)) ~ log(1/(1—r,;1)), asn — oo, and sincd,(r, g) and
(log(1/(1 —r)))¥2-V/? are increasing functions of we deduce

1/2-1/p
(52) l2(r,g) > C (lOQ E) ,

if r is sufficiently close to 1.
Using this and arguing as il%}, page 126] we deduce that there exist a complex
numbera with g(0) # a, a positive constarg, and a number, € (0, 1) such that

(53) N(r,a, g) > Blog Iog& re(rol.

Take such am € C and setf (z) = g(z) —a,z< A. Thenf ¢ 9;’_1 and f (0) # 0.
Also (53) can be written as

(54) N(r, f) > Blog Iogl—ir, re(rg 1.

Let {z,} be the sequence of zeros bf Using Propositiont.1 and arguing as inlj5,
page 127], we obtairtQ). O
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