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Abstract

In this paper we provide examples and counterexamples of symmetric ideals of multilinear mappings
between Banach spaces and prove that ifI1; : : : ;In are operator ideals, then the ideals of multilinear
mappingsL.I1; : : : ;In/ and[I1; : : : ;In] are symmetric if and only ifI1 = · · · = In.
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1. Introduction

The notion of ideal of multilinear mappings between Banach spaces goes back to
Pietsch [8]. In [4], Floret-Garc´ıa introduced the notion of symmetric ideals of mul-
tilinear mappings, which plays an important role in the interplay between ideals of
multilinear mappings and ideals of homogeneous polynomials. The aim of this paper
is to provide a number of examples and counterexamples of symmetric ideals and to
investigate the symmetry of the idealsL.I1; : : : ; In/ and[I1; : : : ; In], where eachI j

is an operator ideal, which are generated by the factorization and the linearization
methods.

Throughout this papern is a positive integer,E, E1; : : : ; En, F , G, G1; : : : ;Gn

andH will stand for (real or complex) Banach spaces. The Banach space of all contin-
uousn-linear mappingsA : E1 ×· · ·× En → F will be denoted byL.E1; : : : ; En; F/
(andL.nE; F/ if E1 = · · · = En = E). For the general theory of multilinear mappings
we refer to Dineen [3].
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2. Symmetric ideals of multilinear mappings

Given n ∈ N, an ideal of n-linear mappingsM is a subclass of the class of all
continuousn-linear mappings between Banach spaces such that for Banach spaces
E1; : : : ; En and F , the componentsM.E1; : : : ; En; F/ := L.E1; : : : ; En; F/ ∩ M
satisfy:

(i) M.E1; : : : ; En; F/ is a linear subspace ofL.E1; : : : ; En; F/ that contains the
n-linear mappings of finite type.

(ii) The ideal property; if A ∈ M.E1; : : : ; En; F/, t ∈ L.F; H/ and u j ∈
L.G j ; Ej / for j = 1; 2; : : : ; n, then the compositiont A.u1; : : : ; un/ is in
M.G1; : : : ;Gn; H/.

By AS we denote the symmetrization of then-linear mappingA ∈ L.nE; F/
(see, for example, [3, page 6]). According to Floret-García [4], an ideal ofn-linear
mappingsM is said to besymmetricif AS ∈ M.nE; F/ wheneverA ∈ M.nE; F/.

Let us fix some terminology in order to make the interplay with the theory of ideals
of polynomials clear. ForA ∈ L.nE; F/, we defineÂ.x/ := A.x; : : : ; x/; and given a
continuousn-homogeneous polynomialP : E → F , P̌ denotes the unique symmetric
n-linear mapping associated toP. Given an ideal ofn-linear mappingsM, it is easy
to see that the classesM∨ := {P : P̌ ∈ M} andM∧ := { Â : A ∈ M} are ideals of
n-homogeneous polynomials (compare with [4, Section 1.8]). It is also easy to check
thatM∨ ⊆ M∧ for everyM and thatM is symmetric if and only ifM∨ = M∧.

3. Examples

3.1. Routine computations show that the following standard ideals are symmetric:
n-linear mappings of finite type, approximable, nuclear, compact, and weakly compact
n-linear mappings. Alencar [1, Corollary 3] proved that the ideal of Pietsch integral
n-linear mappings is symmetric.

3.2. A non-symmetric ideal. A bilinear mappingA ∈ L.2E; F/ is said to beab-
solutely.1; 1;∞/-summingif .A.xj ; yj //

∞
j =1 is absolutely summable inF whenever

.xj /
∞
j =1 is weakly absolutely summable and.yj /

∞
j =1 is bounded inE. For the theory

of absolutely summing multilinear mappings the reader is referred to Matos [7]. It
is straightforward to check that the class of all absolutely.1; 1;∞/-summing bilin-
ear mappings between Banach spaces is an ideal of bilinear mappings, denoted by
Las.1;1;∞/. We see that it is not symmetric. Define

A : `∞ × `∞ −→ `∞ : A.x; y/ := x1u.y/;
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wherex = .xj /
∞
j =1 andu : `∞ → `∞ is a chosen bounded linear operator which fails

to be absolutely 1-summing. In order to see thatA is absolutely.1; 1;∞/-summing,
observe that, ifxj = .xi

j /
∞
i =1 ∈ `∞, then

∞∑
j =1

‖A.xj ; yj /‖ =
∞∑
j =1

|x1
j |‖u.yj /‖ ≤ ‖u‖

(
sup

j
‖yj ‖

) ∞∑
j =1

|x1
j | < +∞;

whenever.xj /
∞
j =1 is absolutely weakly summable and.yj /

∞
j =1 is bounded iǹ ∞. Let

At ∈ L.2`∞; `∞/ be defined byAt.x; y/ := A.y; x/. Sinceu is not absolutely 1-sum-
ming, choosingyj = .1; 1; : : : / for every j , we have that

∑∞
j =1 ‖At.xj ; yj /‖ = ∞ for

some weakly summable sequence.xj /
∞
j =1 in `∞, which shows thatAt is not absolutely

.1; 1;∞/-summing. Therefore,A ∈ Las.1;1;∞/.
2`∞; `∞/ and, sinceAS = .A + At/=2,

AS =∈ Las.1;1;∞/.
2`∞; `∞/, proving thatLas.1;1;∞/ is not symmetric.

Sections4–5 will provide many examples of symmetric and non-symmetric ideals.

4. The factorization method

This factorization method, along with the linearization method (see Section5), was
introduced by Pietsch [8] and has been developed by several authors since then. Given
n ∈ N and operator idealsI1; : : : ; In, ann-linear mappingA ∈ L.E1; : : : ; En; F/
is said to be oftypeL.I1; : : : ; In/, in symbolsA ∈ L.I1; : : : ; In/.E1; : : : ; En; F/,
if there are Banach spacesG1; : : : ;Gn, linear operatorsu j ∈ I j .Ej ; G j /; j =
1; : : : ; n, and a continuousn-linear mappingB ∈ L.G1; : : : ;Gn; F/ such thatA =
B ◦ .u1; : : : ; un/: The proof thatL.I1; : : : ; In/ is an ideal ofn-linear mappings can
be found in [2, 5].

THEOREM 4.1. Let I1; : : : ; In be operator ideals. The following statements are
equivalent:

(a) L.I1; : : : ; In/ is a symmetric ideal ofn-linear mappings.
(b) L.I1; : : : ; In/=L.I¦.1/; : : : ; I¦.n// for every permutation¦ of the set{1; : : : ; n}.
(c) I1 = I2 = · · · = In.

PROOF. (c) implies (b). This is obvious.
(b) implies (a). LetSn denote the group of permutations of{1; 2; : : : ; n}. Let

A ∈ L.I1; : : : ; In/.
nE; F/, A = B ◦ .u1; : : : ; un/with u j ∈ I j .E; G j /, j = 1; : : : ; n,

and B ∈ L.G1; : : : ;Gn; F/. Given¦ ∈ Sn, define A¦ : E × · · · × E → F and
B¦ : G¦−1.1/ × · · · × G¦−1.n/ → F by

A¦ .x1; : : : ; xn/ := A.x¦.1/; : : : ; x¦.n//;

B¦ .y1; : : : ; yn/ := B.y¦.1/; : : : ; y¦.n//;
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to get A¦ = B¦ ◦ .u¦−1.1/; : : : ; u¦−1.n//. This proves that, for every¦ ∈ Sn,

A¦ ∈ L.I¦−1.1/; : : : ; I¦−1.n//.
nE; F/ = L.I1; : : : ; In/.

nE; F/:

Sincen!AS = ∑
¦∈Sn

A¦ it follows that AS ∈ L.I1; : : : ; In/.
nE; F/.

(a) imples (c). Selecti; j ∈ {1; 2; : : : ; n} and letu ∈ Ii .E; F/. Fix ' ∈ E′, a ∈ E
such that'.a/ = 1 and defineA ∈ L.nE; F/, B ∈ L.K; : : : ; F; : : : ;K; F/ by

A.x1; : : : ; xn/ := '.x1/ · · ·['.xi / · · · '.xn/u.xi /;

B.½1; : : : ; ½i −1; z; ½i +1; : : : ; ½n/ := ½1 · · · ½̂i · · · ½nz;

whereÞ̂i means thatÞi is omitted. ThusA = B ◦ .'; : : : ; u; : : : ; '/, proving that
A ∈ L.I1; : : : ; In/.

nE; F/. By assumption it follows thatAS ∈ L.I1; : : : ; In/.
nE; F/,

say AS = C ◦ .v1; : : : ; vn/ with v j ∈ I j .E; G j /, j = 1; : : : ; n, andC ∈ L.G1; : : : ;

Gn; F/. If CL : G1⊗̂³ · · · ⊗̂³Gn → F is the linearization ofC and i j : G j →
G1⊗̂³ · · · ⊗̂³Gn is the operator defined by

i j .z/ := v1.a/⊗ · · · ⊗ v j −1.a/⊗ z ⊗ v j +1.a/⊗ · · · ⊗ vn.a/;

there are nonzero constantsK1 andK2 such thatCL ◦i j ◦v j = K1u+K2'.·/u.a/. Since
v j ∈ I j .E; G j / andK2'.·/u.a/ is a finite rank operator, it follows thatu ∈ I j .E; F/,
proving thatIi ⊆ I j . The proof is complete becausei and j are arbitrary.

REMARK 4.2. It is interesting that even in a symmetric idealMof n-linear mappings
it is not always true thatA ∈ M wheneverAS ∈ M. Leung [6] can be used to
accomplish this task, but we describe a (simpler) counterexample: a bilinear mapping
A ∈ L.2E; F/ is said to beabsolutely.1; 2; 2/-summing(or 2-dominated), in symbols
A ∈ Las.1;2;2/.

2E; F/, if .A.xj ; yj //
∞
j =1 is absolutely summable inF whenever.xj /

∞
j =1

and.yj /
∞
j =1 are weakly 2-summable inE. It is well known thatLas.1;2;2/ = L.52;52/

(see, for example, [9, Proposition 3.6]), where52 is the ideal of all absolutely 2-
summing operators. So, from Theorem4.1, it follows thatLas.1;2;2/ is a symmetric
ideal of bilinear mappings. Consider the bilinear mappingA ∈ L.2`2; `1/ given by

A..Þi /
∞
i =1; .þi /

∞
i =1/ := .Þ1þ2 − Þ2þ1; Þ3þ4 − Þ4þ3; Þ5þ6 − Þ6þ5; : : : /:

If .ej /
∞
j =1 are the canonical unit vectors of`2, we have thatA.e2 j +1; e2 j +2/ = ej +1 for

every j ∈ N. Then A =∈ Las.1;2;2/.
2`2; `1/ (because.ej /

∞
j =1 is weakly 2-summable in

`2), but AS ∈ Las.1;2;2/.
2`2; `1/ (becauseAS ≡ 0).

5. The linearization method

Let the notation[i ]: : :mean that thei -th coordinate is not involved. Fori = 1; : : : ; n,
let I i : L.E1; : : : ; En; F/ → L.Ei ;L.E1;

[i ]: : :; En; F// be the isometric isomorphism
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defined byI i .A/.xi /.x1;
[i ]: : :; xn/ := A.x1; : : : ; xn/: Of course, ifE1 = · · · = En and

A is symmetric, thenI1.A/ = I2.A/ = · · · = In.A/. In this case we writeI .A/
instead ofI i .A/. An n-linear mappingA ∈ L.E1; : : : ; En; F/ is said to beof type
[I1; : : : ; In], in symbolsA ∈ [I1; : : : ; In].E1; : : : ; En; F/, if, for everyi = 1; : : : ; n,
the operatorI i .A/ ∈ Ii .Ei ;L.E1;

[i ]: : :; En; F//. Again, the proof that[I1; : : : ; In] is
an ideal ofn-linear mappings can be found in [2] and [5].

LEMMA 5.1. If I1 andI2 are operator ideals such that[I1; I2] is a symmetric ideal
of bilinear mappings, thenI1 = I2.

PROOF. Let u ∈ I1.E; F/. Fix ' ∈ E′, a ∈ E such that'.a/ = 1 and define
A ∈ L.2E; F/, T ∈ L.F ;L.E; F// by A.x; y/ := '.y/u.x/ andT.z/.y/ := '.y/z.
It follows that T ◦ u = I1.A/, henceI1.A/ ∈ I1.E;L.E; F//. On the other hand,
I2.A/ = '.·/u, which is a finite rank operator, thereforeA ∈ [I1; I2].2E; F/. By
assumption we haveAS ∈ [I1; I2].2E; F/. Since 2I .AS/ = I1.A/+ I2.A/, it follows
that I1.A/ ∈ I2.E;L.E; F//. DefiningU : L.E; F/ → F by U .v/ := v.a/, we get
U ◦ I1.A/ = u, which proves thatu ∈ I2.E; F/. We proved thatI1 ⊆ I2 and the
other inclusion is analogous.

THEOREM 5.2. Let I1; : : : ; In be operator ideals. The following statements are
equivalent:

(a) [I1; : : : ; In] is a symmetric ideal ofn-linear mappings.
(b) [I1; : : : ; In] = [I¦.1/; : : : ; I¦.n/] for every permutation¦ of the set{1; 2; : : : ; n}.
(c) I1 = I2 = · · · = In.

PROOF. (c) implies (b). This is obvious.
(b) implies (a). LetA ∈ [I1; : : : ; In].nE; F/. Then A ∈ [I¦.1/; : : : ; I¦.n/].nE; F/

for every ¦ by assumption; henceI j .A/ ∈ Ik.E;L.n−1E; F// for every j ; k =
1; : : : ; n. Fix a permutation¦ and consider the operatorR¦ : L.n−1E; F/ →
L.n−1E; F/ defined byR¦ .B/.x2; : : : ; xn/ := B.x¦.1/; [¦−1.1/]: : : ; x¦.n//. where [¦−1.1/]: : :

means that the¦−1.1/-th coordinate is omitted. For everyx1; : : : ; xn ∈ E,

n!I .AS/.x1/.x2; : : : ; xn/ =
∑
¦∈Sn

A.x¦.1/; : : : ; x¦.n//

=
∑
¦∈Sn

I¦−1.1/.A/.x1/.x¦.1/; [¦−1.1/]: : : ; x¦.n//

=
∑
¦∈Sn

R¦ ◦ I¦−1.1/.A/.x1/.x2; : : : ; xn/;

proving thatn!I .AS/ = ∑
¦∈Sn

R¦ ◦ I¦−1.1/.A/. However, I¦−1.1/.A/ belongs toIk

for every¦ and everyk, so I .AS/ ∈ Ik.E;L.n−1E; F// for everyk. It follows that
AS ∈ [I1; : : : ; In].nE; F/.
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(a) implies (c). By Lemma5.1, we may assumen ≥ 3. Fix j ∈ {2; 3; : : : ; n} and
let T ∈ [I1; I j ].2E; F/. As before, fix' ∈ E′, a ∈ E such that'.a/ = 1 and define
A ∈ L.nE; F/,  1 : L.E; F/ → L.n−1E; F/ by

A.x1; : : : ; xn/ := '.x2/ · · ·['.xj / · · ·'.xn/T.x1; xj /;

 1.S/.x2; : : : ; xn/ = '.x2/ · · ·['.xj / · · ·'.xn/S.xj /;

where['.xj / means that'.xj / is omitted. FromI1.A/ =  1 ◦ I1.T/ we getI1.A/ ∈
I1.E;L.n−1E; F//. DefiningU : L.n−1E; F/ → L.n−1E; F/ by

U .B/.x2; : : : ; xn/ := B.x3; : : : ; xj −1; x2; xj ; xj +1; : : : ; xn/;

it follows that I j .A/ = U ◦  1 ◦ I2.T/, henceI j .A/ ∈ I j .E;L.n−1E; F//. It is not
difficult to see that fork = 2; 3; : : : ; n, k 6= j , Ik.A/ is a finite rank operator and so
A ∈ [I1; : : : ; In].nE; F/. By assumption we have thatAS ∈ [I1; : : : ; In].nE; F/ also.
Using that

AS.x1; : : : ; xn/ = 1

n!
∑
¦∈Sn

A.x¦.1/; : : : ; x¦.n//

= 1

2n!
∑
¦∈Sn

(
A.x¦.1/; x¦.2/; : : : ; x¦.n//

+ A.x¦. j /; x¦.2/; : : : ; x¦.1/; : : : ; x¦.n//
)

= 1

2n!
∑
¦∈Sn

'.x¦.2// · · ·\'.x¦. j // · · ·'.x¦.n//

× (
T.x¦.1/; x¦. j //+ T.x¦. j /; x¦.1//

)
= 1

n!
∑
¦∈Sn

'.x¦.2// · · ·\'.x¦. j // · · ·'.x¦.n//TS.x¦.1/; x¦. j //;

and defining1n := {¦ ∈ Sn : ¦.1/ = 1 or¦. j / = 1}, it follows that

n!I .AS/.x1/.x2; : : : ; xn/

=
∑
¦∈1n

'.x¦.2// · · ·\'.x¦. j // · · ·'.x¦.n//I .TS/.x¦.1//.x¦. j //

+
∑
¦ =∈1n

'.x¦.2// · · ·\'.x¦. j // · · ·'.x¦.n//TS.x¦.1/; x¦. j //:

Therefore for each¦ =∈ 1n, ¦.1/ 6= 1, and¦. j / 6= 1,

V.x1/.x2; : : : ; xn/ :=
∑
¦ =∈1n

'.x¦.2// · · ·\'.x¦. j // · · ·'.x¦.n//TS.x¦.1/; x¦. j //



[7] On symmetric ideals of multilinear mappings between Banach spaces 147

is a finite rank operator inL.E;L.n−1E; F//. For everyk = 1; : : : ; n, n!I .AS/ ∈
Ik.E;L.n−1E; F//, then the operatorR : E → L.n−1E; F// defined by

R.x1/.x2; : : : ; xn/ :=
∑
¦∈1n

'.x¦.2// · · ·\'.x¦. j // · · · '.x¦.n//I .TS/.x¦.1//.x¦. j //

belongs toIk.E;L.n−1E; F// for every k as well. Defining f : L.n−1E; F/ →
L.E; F/ by f .B/.y/ := B.y; a; : : : ; a/, there are nonzero constantsK1 andK2 such
that for everyx; y ∈ E,

. f ◦ R/.x/.y/ = K1I .TS/.x/.y/+ K2'.y/I .TS/.x/.a/:

If g : L.n−1E; F/ → F is defined byg.B/ := B.a; : : : ; a/, then

.g ◦ I .AS//.x/ = 1

n
T.x; a/+ 1

n
T.a; x/+ n − 2

n
'.x/T.a; a/;

for everyx ∈ E. Sinceg ◦ I .AS/ ∈ Ik.E; F/ for everyk, and'.·/T.a; a/ is a finite
rank operator, it follows that.T.·; a/ + T.a; ·// ∈ Ik.E; F/ for everyk. Finally, let
 2 : F → L.E; F/ be given by 2.z/.x/ := '.x/z. Then

. f ◦ R/.x/.y/ = K1I .TS/.x/.y/+ K2

2
 2.T.x; a/+ T.a; x//.y/;

for everyx; y ∈ E, which proves that

f ◦ R = K1I .TS/+ K2

2

(
 2 ◦ .T.·; a/+ T.a; ·//):

Therefore,I .TS/ ∈ Ik.E;L.E; F// for everyk, and this implies that

TS ∈ [I1; I j ].2E; F/:

Thus far we have proved that[I1; I j ] is symmetric. Now we call on Lemma5.1 to
conclude thatI1 = I j for j = 2; 3; : : : ; n.

Final remark The notion of strongly symmetric quasi-normed ideals of multilinear
mappings was introduced by Floret-Garcia [4]. It is easy to see that, given a normed
operator idealI , the symmetric idealsL.I; : : : ; I/ and[I; : : : ; I] are strongly sym-
metric (see [2] for the quasi-norm onL.I; : : : ; I/ and the norm on[I; : : : ; I]).
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