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Abstract

In this paper we provide examples and counterexamples of symmetric ideals of multilinear mappings
between Banach spaces and prove thdkif .., Z,, are operator ideals, then the ideals of multilinear
mappingsC(Zy, ..., Z,) and[Zy, ..., Z,] are symmetricifand only if; = --- = Z,,.
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1. Introduction

The notion of ideal of multilinear mappings between Banach spaces goes back to
Pietsch 8]. In [4], Floret-Garea introduced the notion of symmetric ideals of mul-
tilinear mappings, which plays an important role in the interplay between ideals of
multilinear mappings and ideals of homogeneous polynomials. The aim of this paper
is to provide a number of examples and counterexamples of symmetric ideals and tc
investigate the symmetry of the idedl§Z,, ..., Z,) and[Z,, ..., Z,], where eaclt;
is an operator ideal, which are generated by the factorization and the linearization
methods.

Throughout this papenm is a positive integerE, Es, ..., E,, F, G, Gy, ..., G,
andH will stand for (real or complex) Banach spaces. The Banach space of all contin-
uousn-linear mapping®\ : E; x - -- x E, — F will be denoted byC(E;, ..., E,; F)
(andL("E; F)if E; = --- = E, = E). Forthe general theory of multilinear mappings
we refer to Dineend].
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2. Symmetric ideals of multilinear mappings

Givenn € N, anideal of n-linear mappingsM is a subclass of the class of all
continuousn-linear mappings between Banach spaces such that for Banach space:
Ei:,..., E, andF, the components\((Ey, ..., E,, F) := L(Ey, ..., E., F) N M
satisfy:

(i) M(Ey,..., E,, F)isalinear subspace d@f(E,, ..., E,, F) that contains the
n-linear mappings of finite type.

(i) The ideal property; ifA € M(Es,...,E,, F), t € L(F,H) andu; €
L(Gj,E)) for j = 1,2,....n, then the compositiont A(Us,...,U,) IS in
M(Gy, ..., Gy, H).

By As we denote the symmetrization of timelinear mappingA € L('E, F)
(see, for example 3] page 6]). According to Floret-Gdec[4], an ideal ofn-linear
mappingsM is said to besymmetridf As € M("E, F) wheneverA € M("E, F).

Let us fix some terminology in order to make the interplay with the theory of ideals
of polynomials clear. FoA € L("E, F), we defineA(x) = A(X, ..., X);and given a
continuous1-homogeneous polynomi : E — F, P denotes the unique symmetric
n-linear mapping associated Bx Given an ideal oh-linear mappings\, it is easy
to see that the classesl” := {P : P € M} andM" := {A: A € M} are ideals of
n-homogeneous polynomials (compare with$ection 1.8]). It is also easy to check
that MY € M* for every M and thatM is symmetric if and only itM" = M*.

3. Examples

3.1. Routine computations show that the following standard ideals are symmetric:
n-linear mappings of finite type, approximable, nuclear, compact, and weakly compact
n-linear mappings. Alencad[ Corollary 3] proved that the ideal of Pietsch integral
n-linear mappings is symmetric.

3.2. A non-symmetric ideal. A bilinear mapping € L(?E; F) is said to beab-
solutely(1; 1, co)-summingf (A(X;, ViS5 is absolutely summable iR whenever
(X})52; is weakly absolutely summable ang )52, is bounded inE. For the theory

of absolutely summing multilinear mappings the reader is referred to Ma@odt[

is straightforward to check that the class of all absolutélyl, co)-summing bilin-

ear mappings between Banach spaces is an ideal of bilinear mappings, denoted b
Las1:1.00)- We see that it is not symmetric. Define

Al X by —> Lot AKX, Y) := XU(Y),
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wherex = (X1)52y andu : ¢, — £, is a chosen bounded linear operator which fails
to be absolutely 1-summing. In order to see tAas absolutely(1; 1, co)-summing,
observe that, ik; = (X)), € £, then

D IAXG YT = IXluypll < ful (supnyj ||) > X < oo,
]

j=1 j=1 j=1

Whenever(xj)]?":1 is absolutely weakly summable a(];di)fil is bounded irY,,. Let
Al € L(%l; L) be defined byA'(x, y) := A(y, X). Sinceu is not absolutely 1-sum-
ming, choosing/; = (1, 1, ...) for everyj, we have thaE]?O:l | AY(X;, yj) Il = oo for
some weakly summable sequerigg);2, in £, which shows thaf\' is not absolutely
(1; 1, o0)-summing. ThereforeA € Lasi:1.00)(*oo; £oo) and, sinceAs = (A+ A" /2,
As ¢ Lasi1.00(*oo; £oo), Proving thatlag 1.1+ IS NOt Symmetric.

Sectionsd-5 will provide many examples of symmetric and non-symmetric ideals.

4. The factorization method

This factorization method, along with the linearization method (see Segjtioras
introduced by Pietscl8] and has been developed by several authors since then. Given
n € N and operator ideal%,, ..., Z,, ann-linear mappingA € L(E,, ..., Ey; F)
is said to be otype L(Z1, ..., Z,), in symbolsA € L(Zi,...,Z)(E4, ..., En; F),

if there are Banach spacés,, ..., G,, linear operatorsy; € Z;(E;; G)), | =
1,...,n, and a continuous-linear mappingB € L(Gy, ..., G,; F) such thatA =
Bo (U, ..., u,). The proof thatl(Zy, ..., Z,) is an ideal ofn-linear mappings can

be found in B, 5].

THEOREM 4.1. Let 7y, ..., Z, be operator ideals. The following statements are
equivalent
(& L(Z,...,7,) is asymmetric ideal af-linear mappings.

(b) L(Zy,....Z0)=L Ty, - - -, Lym) forevery permutation ofthe sefd, . .., n}.
) Li=L,=---=1,.

PrROOF (c) implies (b). This is obvious.

(b) implies (a). LetS, denote the group of permutations {f, 2, ..., n}. Let
Ae LTy, ....T)("E;F), A=Bo(uy,...,u) withu; e Z;(E; Gj), j = 1,...,n,
andB ¢ L(Gy,...,Gy F). Giveno € S, defineA, : E x---x E — F and
B, : Go1gy X -+ X Gyiny = F by

Ao(le ey Xn) = A(XU(l)s R XG(I‘I))i
By (Y1, - -s Yn) i= BYorys -+ -5 Vo),
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to getA, = B, o (U,-11), - - ., U,-1ny). This proves that, for every € S,,
A, € »C(Izrl(l)a cee ,Irrl(n))(nE; F)=L(T,,...,Z,)("E; F).

Sincen!Ag = Zae& A, itfollows thatAs € L(Z41, ..., Z,)("E; F).
(a) imples (c). Seledt j € {1,2,...,n}andletu € Z;,(E; F). Fixp e E',ae E
such thatp(a) = 1 and defineA € L("E;F), Be L(K, ..., F,...,K;F) by

—

AXg, - Xn) 1= @(Xg) -+ (%) -+ - (Xp)U(X),
B()\.l,...,)\.i_l, Z,)\.i+1,...,)\.n) = A1 Aj e ApZ,

wherea; means thaty; is omitted. ThusA = Bo (¢,...,u,..., @), proving that
Ae L(I4,...,1,)("E; F). Byassumption it follows thas € L(Z, ..., Z,)("E; F),

sayAs = Co (v, ..., vn) Withv; € Z;(E; Gj), j = 1,...,n,andC € L(Gq, ...,

Gn F). If CL : Gi®, ---®,G, — F is the linearization ofC andi; : G; —

G1®, - - - ®,G, is the operator defined by

1 (2):=v1(@)® - Qvj1(8) ®ZR Vj41(a) ® - ® (),

there are nonzero constaitsandK, such thaCy oijov; = Kyu+Ke(-)u(a). Since
v; € Z;(E; Gj) andK,¢(-)u(a) is a finite rank operator, it follows thate Z; (E; F),
proving thatZ; € Z;. The proof is complete becausand j are arbitrary. O

REMARK 4.2. Itis interesting that even in a symmetric idgéal of n-linear mappings
it is not always true thalA € M wheneverAs € M. Leung p] can be used to
accomplish this task, but we describe a (simpler) counterexample: a bilinear mapping
A € L(E; F) is said to beabsolutely(1; 2, 2)-summingor 2-dominatedl, in symbols
A € Lasa22CE; F), if (A(Xj, Yi))jZ, is absolutely summable iR whenever(x;)52;
and(y;);2, are weakly 2-summable iB. Itis well known thatlag1,22 = L(I15, I12)
(see, for example,9 Proposition 3.6]), wherél, is the ideal of all absolutely 2-
summing operators. So, from Theoreht, it follows that £,41.22 iS @ sSymmetric
ideal of bilinear mappings. Consider the bilinear mapping L(2¢,; £1) given by

A((ozi)ioil, (,Bi)ioil) = (182 — a2B1, azfa — aafPs, as5Ps — otePs, . . . ).

If ()52, are the canonical unit vectors &f, we have thatA(e,j 1, &j.2) = €j1 for
everyj € N. ThenA ¢ Las1:22(32; 1) (because(e,-)]?‘;l is weakly 2-summable in
62), but As € ﬁas(l;zyz)(zzz; El) (becaus%s = 0)

5. The linearization method

Let the notation!!l. mean that thé-th coordinate is not involved. For=1, ..., n,
letl; : L(Ey, ..., Ey; F) — L(E;; L(Ey, L, E,; F)) be the isometric isomorphism
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defined byl; (A) (%) (X, L, X,) := A(Xq, ..., X,). Of course, ifE; = --- = E, and
A is symmetric, then (A) = 1,(A) = --- = I,(A). In this case we writd (A)
instead ofl; (A). An n-linear mappingA € L(Eg4, ..., E,; F) is said to beof type
[Z1,...,Z,],insymbolsA € [Zi, ..., Z,)(Ey, ..., Ey; F), if, foreveryi = 1,...,n,
the operatol; (A) € Z; (E;; L(Ey, I, E,; F)). Again, the proof thafZ,, ..., Z,] is
an ideal ofn-linear mappings can be found ig][and [5].

LEMMA 5.1. If Z; andZ, are operator ideals such th@f;, Z,] is a symmetric ideal
of bilinear mappings, thefd; = 7.

PrROOF. Letu € Z,(E; F). Fix¢ € E’, a € E such thatp(a) = 1 and define
Ae LCE;F), T € L(F; L(E; F)) by AX, y) := e(y)u(x) andT (2)(y) := ¢(y)Z
It follows thatT o u = I,(A), hencel,(A) € Z,(E; L(E; F)). On the other hand,
I,(A) = ¢(-)u, which is a finite rank operator, therefore € [Z,, 7,](’E; F). By
assumption we havAs € [Z1, ,](PE; F). Since 2 (Ag) = I1(A) + I,(A), it follows
thatl,(A) € Z,(E; L(E; F)). DefiningU : L(E; F) — F by U (v) := v(a), we get
U o I1(A) = u, which proves thati € Z,(E; F). We proved thaZ; C 7, and the
other inclusion is analogous. O
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THEOREM 5.2. Let 7y, ..., Z, be operator ideals. The following statements are

equivalent

(@) [Zi,...,Z,]is asymmetric ideal afi-linear mappings.
(b) [Z1,.... 20l = Zsw, - - -, Loy ] fOr every permutationr of the se{d, 2, ..., n}.
) Li=L,=---=1,.

PrROOF. (c) implies (b). This is obvious.

(b) implies (a). LetA € [Z,,...,Z,J("E; F). ThenA € [Z,qy, ..., ZomI("E; F)
for every o by assumption; hencg (A) € Z«(E; L E; F)) for every j,k =
1,...,n. Fix a permutation0 and consider the operatd®, : L("'E;F) —
L("E; F) defined byR,(B)(Xa, ..., X)) = BX,@), .- D), X,m). Wherel. "Dl
means that the ~(1)-th coordinate is omitted. For evexy, ..., X, € E,

N (AS) (X) (s -+, %) = D Ay, -+ Xom)

0eS,

=D Lo (A ) Ko 7, X))
0ES,

=Y Roolag (A ..., %),
0eS,

proving thatn!l (As) = Zuesn R, o l,-10(A). However,l,-14,(A) belongs toZy
for everyo and evenk, sol (As) € Z(E; L("1E; F)) for everyk. It follows that
As e [Zy,...,I,)("E; F).
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(a) implies (c). By Lemm&.1, we may assume > 3. Fixj € {2,3,...,n}and
letT € [Il,I,-](ZE; F). As before, fixp € E’, a € E such thatp(a) = 1 and define
Ac LCE;F), ¢ : L(E;F) — L("'E;F) by

AXe, .. %) = @(%) - @(X)) - () T (Xe. X)),

—

V(S (X2, ..o, Xn) = @(X2) - - - (X)) - - - 9(Xn) S(X}),

Where@ means thaip(x;) is omitted. Froml;(A) = v, o 11(T) we getl;(A)
Z,(E; L("E; F)). DefiningU : L("E; F) — L("E;F) by

u (B)(X23 U] Xn) = B(X3a U] Xjfla X2, Xja Xj+17 ] Xn)7

it follows that1;(A) = U o ¥4 o 15(T), hencel;(A) € Z;(E; L("*E; F)). Itis not
difficult to see that fok = 2,3, ...,n, k # j, It(A) is a finite rank operator and so
A€ [Z,,...,Z,]("E; F). By assumption we have thé € [Z4, ..., Z,]("E; F) also.
Using that

1
As(X1, ..., %) = o Z AXe@ys -+ Xom))
0eS,

1
=5 (A(Xa(l)s Xo@)s « -+« s Xom))
2n! =

+ AKX (j)s Xo@s -+ o s Ko@)y -+ Xa(n)))

1 —_—
= onl Z PXe@) - 9 (Xo(j) - P Kom)
T oeS,

X (T XKo@ X)) + T Koy Xa(l)))

1 —
~ Z PXo2) 0 Xo(i)) P Xom) Ts(Ko 15 Xo (1))
" oeS

and definingA, :={oc € §:0(1) =1 oro(j) = 1}, it follows that
N (As) (X)) (Xa, ...y Xn)
=3 0@) o))+ 9 o) | (T8) (X0 )

g€l
+ Z P(Xe2) - @ (Ko(iy) = - @Ko m) Ts(Xo1)5 Xor(j))-
o¢An

Therefore for each ¢ A, 0(1) # 1, ando () # 1,

V(X)) (X2, ...\ Xn) i= Z O(Xo2) Ko (jy) - - @ Komy) Ts(Xo 1) Xo(j))

o¢Ap
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is a finite rank operator it (E; L("1E; F)). Foreveryk = 1,...,n, n!l (Ag) €
I(E; L("1E; F)), then the operatoR : E — L("1E; F)) defined by

R(Xl)(XZv ceey Xr‘l) = Z QD(XG(Z)) e @@) e (P(Xo(n))l (TS)(XU(l))(XU(j))

o€Ay

belongs toZ,(E; L("'E; F)) for everyk as well. Definingf : L("'E;F) —
L(E; F) by f(B)(y) := B(y, a,...,a), there are nonzero constars andK, such
that for everyx, y € E,

(f o RIO)(Y) = Kil (T)(X)(Y) + Kap(W) 1 (T) (X) ().

If g: L("E; F) — F is defined byg(B) := B(a, ..., a), then

1 1 n—2
(9ol (Ag)(X) = - T(x,a) + - T(a, x) + 0 p(X)T(a, a),

for everyx € E. Sincego | (As) € Z(E; F) for everyk, andg(-)T (a, a) is a finite
rank operator, it follows thafT (-, a) + T(a, -)) € Zk(E; F) for everyk. Finally, let
Yo F — L(E; F) be given by»(2)(X) := ¢(X)z. Then

K
(f o RX)(Y) = Kel (Te)(X)(y) + 72 Yo(T(X, @) + T(a, x)(y),

for everyx, y € E, which proves that

K2
foR=Kyl(Ts) + - (V20 (T )+ T(a, ).
Therefore,l (Ts) € Zy(E; L(E; F)) for everyk, and this implies that
Ts € [71, Z;1CE; F).

Thus far we have proved thdf,, Z;] is symmetric. Now we call on Lemmalto
conclude tha; =7 for j =2,3,....,n. O

Finalremark The notion of strongly symmetric quasi-normed ideals of multilinear
mappings was introduced by Floret-Garcid [It is easy to see that, given a normed
operator ideal, the symmetric ideal€(Z, ..., Z) and[Z, ..., Z] are strongly sym-
metric (see?] for the quasi-norm oiL(Z, ..., Z) and the norm offiZ, . . ., Z]).
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