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Abstract

We prove that thep-adic zeta-function constructed by Kubota and Leopoldt has the Dirichlet series
expansion

�p.k; !
1−k/ = 1

.2− 4 · 2−k/

∞∑
n=1

pn∑
m=pn−1

p-m

.−1/m+1

mk
at allk ∈ Z;

where the convergence of the first summation is for thep-adic topology. The proof of this formula
relates the values of�p.−s; !1+þ / for s ∈ Zp, with a branch of the ‘sth-fractional derivative’ of a suitable
generating function.

2000Mathematics subject classification: primary 11R23, 11G55, 11R60.

1. Statement of results

Ever since its discovery over fifty years ago, thep-adic Riemann zeta-function has
long been considered a very different animal to its complex cousin. Despite sharing
their special values at negative integers, the two exhibit vastly different behaviours.
The purpose of this note is to show that as analytic functions, they are not as dissimilar
as they first appear to the naked eye.

Fix an odd rational prime numberp, and let us writeCp = ˆ̄Qp for the Tate field.
For any x ∈ Z×p , there is a natural decompositionx = !.x/〈x〉, where! is the
Teichm̈uller character modulop, and〈x〉 denotes the projection to the principal units
1+ pZp. Kubota and Leopoldt defined ap-adic L-function �p.s;−/ over the space
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s ∈ Cp : |s|p < p.p−2/=.p−1/

}
, satisfying the interpolation rule

�p.1− n; !n/ = .1− pn−1/�∞.1− n/ for every integern ≥ 1.

At negative integers the complex Riemann zeta-function will take rational values
�∞.1− n/ = −Bn=n whereBn is then-th Bernoulli number, so the right-hand side
above is viewed as ap-adic number. For a fixed congruence classþ modulo p− 1,
the branches�p.s; !þ/ are all analytic functions, except for a simple pole ats = 1
whenþ ≡ 0 .mod p− 1/.

There are several different ways to construct these objects. One method is to
take a p-adic Mellin transform of the generalised Bernoulli distribution. Another
approach is the theory of Coleman power series, which converts cyclotomic units
into p-adic L-functions. The following result shows there is yet a third construction,
strongly reminiscent of the Dirichlet series

∑∞
n=1 1=nz, defining the standard Riemann

zeta-function at pointsz ∈ C, Re.z/ > 1.

THEOREM1.1. For all s ∈ Zp and branchesþ modulop− 1,

�p.−s; !1+þ/ = 1

2
(
1− !1+þ.2/〈2〉1+s

) ∞∑
n=1

þ1.n; s/;

where convergence takes place inQp, and theþ1.−;−/’s are defined by

þ1.n; s/ :=
pn∑

m=pn−1

p-m

.−1/m+1!þ.m/〈m〉s:

The p-adic power〈m〉s = exp.s logm/ makes sense only ifp - m, and is properly
defined for|s|p < p.p−2/=.p−1/. In due course we shall prove that thep-adic sequence
{þ1.n; s/}n∈N tends to zero at the rateO.p−n/.

This seems to be the first instance where ap-adic L-function has been expanded
as a Dirichlet series. Unfortunately, it does not seem feasible to go a stage further and
express the summation as an Euler product. The formal identity

∞∑
n=1

n−s = 1

.1− l−s/

∑
n∈N−lN

n−s for a prime numberl 6= p

has no meaningful convergence in the rigid analytic topology. For similar reasons, the
Euler factor

(
1− !1+þ.2/〈2〉1+s

)
cannot be absorbed into

∑∞
n=1 þ1.n; s/.

Let us now check what happens when we assume thats= −k is a rational integer.
Choosing the classþ ≡ −k .mod p − 1/ means that the term!þ.m/〈m〉s = m−k,
from which we deduceþ1.n;−k/ =∑pn

m=pn−1;p-m .−1/m+1m−k.
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COROLLARY 1.2. If k ∈ Z is an integer, then

�p.k; !
1−k/ = 1

2
(
1− 21−k

) ∞∑
n=1




pn∑
m=pn−1

modd;p-m

1

mk
−

pn∑
m=pn−1

meven;p-m

1

mk


 ;

where the first summation converges inside ofQp.

At the exceptional pointk = 1, thep-adic zeta-function has a simple pole. This is
reflected on the right-hand side by a zero in the Euler factor

(
1− 21−k

)
.

If k ≤ 0, the left-hand side equals.1− p−k/�∞.k/ = −.1− p−k/B1−k

/
.1− k/,

which means the Bernoulli numbers can be expressed as ap-adic Dirichlet series. In
fact, our calculations produce the congruence

(
1− 21−k

)
.1− p−k/× B1−k

1− k
≡ −1

2

pn∑
m=1; p-m

.−1/m+1

mk
.mod pn/

at all integersk ≤ 0 andn ≥ 1, which we could not find anywhere in the literature.
On the other hand, ifk ≥ 2, then�p.k; !1−k/ no longer interpolates the classical

Riemann zeta-function. However, Coleman [2] has proven the limit equation(
1− p−k

)
lim
x→1

(
`k.x/− p−k`k.x

p/
)
= �p.k; !

1−k/;

where`k.x/ = ∑∞
m=1 xm=mk is the polylogarithm, andx lies inP1.Cp/− {0; 1;∞}.

In particular, combining his theorem with Corollary1.2yields an explicit expression
for the p-adic polylogarithm. We do not know whether this formula can be obtained
directly using rigid analysis.

REMARK 1.3. A curious phenomenon occurs whenk is an integer greater than one.
Not only do the terms

−k1.n;−k/ =
pn∑

m=pn−1

modd;p-m

1

mk
−

pn∑
m=pn−1

meven;p-m

1

mk

tend to zero in thep-adic topology, but they also do for the archimedean topology.
An elementary computation involving partial sums reveals that

∞∑
n=1

−k1.n;−k/ = .1− 21−k/.1− p−k/× �∞.k/;

this time the convergence being insideR. Thus for any integerN � 1, the rational
number

∑N
n=1 −k1.n;−k/ simultaneously approximates�p.k; !1−k/ p-adically, and

approximates�∞.k/ as a real number!
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2. Fractional logarithmic differentiation

The fractional calculus was first invented by Liouville in the nineteenth century. In
a nutshell, it assigns a meaning to the operatordn=d Xn when the ordern 6∈ Z. It has
since turned into a very valuable tool in the control of dynamical systems. Vladimirov
[3] introduced thep-adic fractional derivative within the context of mathematical
physics, where it has applications to wavelet analysis and symmetry-breaking.

Our expansion for thep-adic zeta-function is based on the observation that Coates-
Wiles homomorphisms are, in some sense, fractional derivations in disguise. LetK
be a finite extension ofQp, with ring of integersO. The topological power series ring
3 = O[[X]] is often referred to as the Iwasawa algebra. For alln ∈ N, we shall write
Pn.X/ for the polynomial.1+ X/pn − 1. There is a well-known isomorphism

3 ∼= lim←−
n

O[X]=PnO[X];

which is described in [4, Section 7.1].
The algebra3 possesses a useful division algorithm. IfF.X/ ∈ 3 andn ≥ 1, then

there exist unique elementsQn.X/ ∈ 3 andRn.X/ ∈ O[X] such that

F.X/ = Pn.X/Qn.X/+ Rn.X/ with deg.Rn/ < pn:

The Rn’s form a Cauchy sequence in the topology of3, tending toF asn→∞.

LEMMA 2.1. If we set

2n.X/ := p−n

(
X pn − 1

X − 1

)
∈ Q[X];

then

Rn.X/ =
∑
Þ∈¼pn

F
(
Þ−1− 1

)
2n

(
Þ.1+ X/

)
;

where¼pn denotes the group ofpn-th roots of unity.

PROOF. As both sides are polynomials of degree< pn, it is enough to show that
they agree atpn distinct points. If¾ is anypn-th root of unity, then the right-hand side
evaluated atX = ¾ − 1 equals∑

Þ∈¼pn

F
(
Þ−1− 1

)
2n

(
Þ¾
) = F.¾ − 1/2n.1/+

∑
Þ 6=¾−1

F
(
Þ−1− 1

)× 0;

since2n vanishes at non-trivialpn-th roots of unity.
In fact2n.1/ = 1 andF.¾ − 1/ = Rn.¾ − 1/, so both polynomials coincide on the

set of values{¾ − 1 : ¾ ∈ ¼pn}. The result follows.
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Consider theO-linear differential operator.1+ X/.d=d X/ : 3 → 3 introduced
in [1]. If we put X = exp.Z/− 1 so thatF.exp.Z/− 1/ ∈ K [[Z]], then

dk

d Zk
F
(

exp.Z/− 1
) = (.1+ X/

d

d X

)k

◦ F.X/;

which justifies the terminologylogarithmic derivative.
Note that.1+ X/.d=d X/ is not invertible on the whole of3. However, defining

the idempotent by

 F.X/ := F.X/− 1

p

∑
¾∈¼p

F
(
¾.1+ X/− 1

)
;

it can be shown that.1+ X/.d=d X/ : 3 =1→ 3 =1 is a bijective derivation.
For example, if we take a polynomialG.X/ =∑deg.G/

m=0 gm.1+ X/m ∈ O[X], then

 G.X/ =
deg.G/∑

m=0; p-m

gm.1+ X/m;

so kills off terms of the form.1+ X/mp.

LEMMA 2.2. If F, Pn, Qn and Rn are as above, then for allk ∈ N(
.1+ X/

d

d X

)k

◦  F.X/ ≡
(
.1+ X/

d

d X

)k

◦  Rn.X/ .mod .p; X/n/:

PROOF. A bare-hands calculation shows that(
.1+ X/

d

d X

)
◦  

(
Pn.X/Qn.X/

)

=
(
.1+ X/

d

d X

)
◦
(

Pn.X/: Qn.X/
)

= Pn.X/.1+ X/
d

d X
 Qn.X/+ pn.1+ X/pn

 Qn.X/;

which lies inPn3+ pn3 ⊂ .p; X/n, sincePn ∈ .p; X/n+1.
By using induction onk, the congruence is easily established.

For a fixed congruence classþ .mod p − 1/, we shall writeSþ for the set of
positive integers congruent toþ modulo p− 1. On our polynomialG.X/ ∈ O[X],

(
.1+ X/

d

d X

)k

◦ G.X/ =
deg.G/∑
m=0

mk × gm.1+ X/m:
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If p does not dividem, thenmk is a continuous function ofk ∈ Sþ , in fact

mk = !k.m/〈m〉k = !þ.m/× exp.k logm/:

However, if p dividesm thenmk tends to zero ask→ ∞, which indicates we must
first cut out by to obtain continuity.

DEFINITION 2.3. For a classþ .mod p− 1/ and anys ∈ Zp, we define

þ Ds : O[X] =1→ O[X] =1 to be the limit þ Ds = lim
k→s

k∈Sþ

(
.1+ X/

d

d X

)k

:

This is unique and well-defined, since each setSþ is clearly dense inZp. Moreover,
its action on the polynomial G.X/ ∈ O[X] =1 is given by the simple formula

þ Ds ◦  G.X/ =
deg.G/∑

m=0; p-m

!þ.m/〈m〉sgm.1+ X/m for all s ∈ Zp.

Bearing in mind the approximation in Lemma2.2, and upon observing that the ideals
.p; X/n form a decreasing sequence of neighborhoods of zero, we have shown the
following.

PROPOSITION 2.4. For any F.X/ ∈ 3 with convergents{Rn.X/}n∈N, the limit

þ Ds ◦  F.X/ := limn→∞
(
þ Ds ◦  Rn.X/

)
exists and is well defined. For each

congruence classþ modulop− 1, it follows thatþ Ds : 3 =1→ 3 =1 is the unique
extension to the Iwasawa algebra of the operator given in Definition2.3.

The operator.−/Ds has p − 1 branches, just like thep-adic L-function. The
following properties ofþ Ds (in particular property (iv)) illustrate why the terminology
fractional logarithmic derivativeis appropriate.

LEMMA 2.5. (i) For þ1; þ2 ∈ Z=.p − 1/Z and s1; s2 ∈ Zp, we haveþ1 Ds1 ◦
þ2 Ds2 = þ1+þ2 Ds1+s2;

(ii) If k ∈ Sþ , thenþ Dk = (.1+ X/d=d X
)k

;
(iii) For all s ∈ Zp, the p-fold compositionþ Ds ◦ · · · ◦ þ Ds = þ Dps;
(iv) If a; b ∈ N such thatgcd

(
b; p.p − 1/

) = 1, andþ ≡ ab−1 .mod p − 1/,
then theb-fold compositionþ Da=b ◦ · · · ◦ þ Da=b = (.1+ X/d=d X

)a
.

Due to the density of the subring of polynomials inside3, it is enough to check
these statements (i)–(iv) on elements ofO[X] =1. We leave them as an easy exercise
for the reader.
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3. Estimating the zeta-function

Let us return to the task of calculating the Dirichlet series for the Kubota-Leopoldt
zeta-function. We need two things: a formula relating fractional derivatives with
L-functions, and a sequence of good numerical approximations to the fractional
derivative. We start by addressing the latter problem.

Again F.X/ ∈ 3 with convergent polynomials{Rn.X/}n∈N. Recall that if the
positive integern is very large, then the ideal.p; X/n is very small (topologically).

LEMMA 3.1. For all integersn ≥ 1, we have the approximation modulo.p; X/n

þ Ds ◦  F.X/ ≡
pn∑

m=1; p-m

!þ.m/〈m〉s
(∑

Þ∈¼pn
ÞmF.Þ−1− 1/

pn

)
.1+ X/m:

PROOF. From Lemmas2.2and2.5(ii), we know thatþ Ds◦ F.X/ ≡ þ Ds◦ Rn.X/
modulo .p; X/n whenevers ∈ Sþ . Indeed, the continuity built into the fractional
derivative ensures this congruence holds true for alls ∈ Zp.

As a consequence, it is enough to prove thatþ Ds ◦  Rn.X/ equals the right-hand
side of the above equation. By a direct application of Lemma2.1,

Rn.X/ =
∑
Þ∈¼pn

F
(
Þ−1− 1

)
p−n

pn−1∑
m=0

Þm.1+ X/m;

whence

þ Ds ◦  Rn.X/ =
∑
Þ∈¼pn

F
(
Þ−1− 1

)
p−n

pn−1∑
m=0; p-m

!þ.m/〈m〉sÞm.1+ X/m:

This expression is equivalent to the formula in the statement of the lemma.

PROPOSITION3.2. If L2.X/ := .X + 2/−1 then for alls ∈ Zp andþ .mod p− 1/,

þ Ds ◦  L2.0/(
1− !1+þ.2/〈2〉1+s

) = −�p.−s; !1+þ/:

PROOF. We first remark thatL2.X/ is a power series withp-integral coefficients,
convergent everywhere onZp exceptX = −2; in particular, it certainly lies in3.
Furthermore, we can rewrite it in the form

L2.X/ = 1

X
− 2

.1+ X/2− 1
;
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and then changing variable yields the formal identity

L2

(
exp.Z/− 1

) = 1

Z

(
Z

exp.Z/− 1
− 2Z

exp.2Z/− 1

)
:

Recall that the power series expansionZ
/
.exp.Z/− 1/ =∑∞

n=0 Bn Zn=n! gives birth
to the Bernouilli numbersBn.

We make the important observation that for allk ∈ N,(
.1+ X/

d

d X

)k

 L2.X/

∣∣∣∣
X=0

=
(

d

d Z

)k

 L2

(
exp.Z/− 1

)∣∣∣∣
Z=0

= .1− 21+k/.1− pk/
B1+k

1+ k
:

Actually this is a well-known formula found by Coates and Wiles [1], although an
analogous result can be traced back more than 150 years to the work of Kummer.
We do not intend to reproduce the details here, and instead refer the reader to the
description in [4, Section 12.2].

The natural numbersN are the disjoint union of the setsSþ with þ ∈ Z=.p− 1/Z.

For all integersk ∈ Sþ , the values
(
.1+ X/d=d X

)k
 L2.X/

∣∣
X=0

are continuously
interpolated by the functionþ Ds◦ L2.0/ at pointss ∈ Zp. Similarly, the Euler factor
.1−21+k/ is interpolated by

(
1−!1+þ.2/〈2〉1+s

)
in a p-adic sense. Lastly, the critical

values.1− pk/B1+k

/
.1+ k/ are precisely those of minus the Kubota and Leopoldt

p-adic L-function, evaluated at negative integers.

It is time to combine these strands together, and give the proof of Theorem1.1. Let
þ denote a branch modulop− 1, and lets be anyp-adic integer. Then(

1− !1+þ.2/〈2〉1+s
)
�p.−s; !1+þ/

by 3.2= −þ Ds ◦  L2.0/

by 3.1≡ −
pn∑

m=1; p-m

!þ.m/〈m〉s�m.L2/ .mod pn/;

where the symbol�m.L2/ denotes the summationp−n
∑

Þ∈¼pn
ÞmL2.Þ

−1− 1/.

KEY CLAIM . If 0 ≤ m≤ pn − 1, then�m.L2/ = .−1/m=2.

Certainly if this assertion is correct, then Theorem1.1follows immediately from it.
In fact not only do the summandsþ1.n; s/ of the Introduction tend to zero asn→∞,
but they do so at exactly the rateO.p−n/.

PROOF. To establish the truth of our Key Claim, we use simple induction onm.
Since the number�m.L2/ lies inside the fieldQ.¼pn/, we can carry out the calculation
inside the complex numbers.
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If m= 0, then

�0.L2/ = p−n
∑
Þ∈¼pn

1

Þ−1+ 1
= p−n

∑
Þ∈¼pn

1+ Þ
2+ 2 Re.Þ/

= p−n
∑
Þ∈¼pn

(
1+ Re.Þ/

)+ i Im.Þ/

2+ 2 Re.Þ/
= 1

2pn

∑
Þ∈¼pn

1+ i
Im.Þ/

1+ Re.Þ/
:

However, for anyÞ ∈ ¼pn , we know that

Im.Þ−1/

1+ Re.Þ−1/
= − Im.Þ/

1+ Re.Þ/
;

so the right-most part contributes nothing. We are left with the outcome that�0.L2/

equals 1=2.
If 1 ≤ m≤ pn − 1 som 6≡ 0 .mod pn/, then

�m.L2/ = p−n
∑
Þ∈¼pn

Þm

Þ−1+ 1
= p−n

∑
Þ∈¼pn

Þm
(
.Þ−1+ 1/− Þ−1

)
Þ−1+ 1

= p−n
∑
Þ∈¼pn

Þm− Þm−1

Þ−1+ 1
= 0−�m−1.L2/:

By our inductive hypothesis,�m−1.L2/ = .−1/m−1=2, which must then imply that
�m.L2/ = .−1/m=2.

The proof is finished.

REMARKS 3.3. (a) Theorem1.1 is especially easy to implement on a computer.
To approximate the generalised Bernoulli distribution using Riemann sums is of
complexity at leastO.p2n/. Using ourp-adic Dirichlet series instead, we need only
perform pn summations to achieve accuracy modulopnZp.
(b) Proposition3.2 also works for more general power series that are of the form
Lc.X/ = 1=X − c=..1+ X/c − 1/ with gcd.c; p/ = 1. Mysteriously,c = 2 is the
only value where we get a clean Dirichlet expansion for the zeta-function; ifc > 2
then the coefficients are a mess. Thep-adic L-function corresponds to a measure on
the maximal real subfield of thep-cyclotomic extension of the rationals—it is surely
no coincidence that whenc = [Q.¼p∞/ : R∩Q.¼p∞/], the coefficients are so simple.
(c) It is intriguing to ask whetherp-adic Shintani zeta-functions, or the various

p-adic L-functions attached to modular elliptic curves, have similar expansions as
Dirichlet series. If the answer is in the affirmative, then these objects could be studied
using techniques from analytic number theory. In order to answer these questions, we
need to define the fractional derivative in terms of toroidal group schemes, and also
for Lubin-Tate formal groups.
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