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Abstract

Let R be aring. A rightR-moduleC is called a cotorsion module if ExtF, C) = 0 for any flat right
R-moduleF. In this paper, we first characterize those rings satisfying the condition that every cotorsion
right (left) module is injective with respect to a certain class of right (left) ideals. Then we study relative
pure-injective modules and their relations with cotorsion modules.
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1. Introduction

Throughout this paper, all rings are associative with identity and all modules are
unitary.

Let R be a ring. A right R-module C is called acotorsion module P] if
Exts(F, C) = 0 for any flat rightR-module F. The ring R is called rightcotor-
sionif Ry is cotorsion P]. The class of cotorsion modules contains all pure-injective
(and hence all injective) modules, and is closed under finite direct sums and direct
summands.

Let % be a class of righR-modules andV a right R-module. Following L0], a%’-
precoverof M is a homomorphism : F — M with F € ¥ such that HoroF’, F) —
Hom(F’, M) is surjective for allF’ € ¥’. The@-precovery is said to be & -cover
if any endomorphismh : F — F, such thatph = ¢, is an isomorphism. Fo¥’
some familiar class of modules, say the class of flat mod@fespvers will simply
be called flat covers.%’-envelopes ofM can be defined dually. The existence of
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a flat cover and a cotorsion envelope for any module over any associative ring has
been recently provert]. An important feature of flat covers (respectively cotorsion
envelopes) is that their kernels (respectively cokernels) are cotorsion (respectively flat)
by Wakamatsu’s Lemmag}, Section 2.1].

In what follows, we writeMg to indicate a rightR-module. M denotes the
direct sum of copies of a moduM indexed by a set. As usual,J(M), Z(M) and
SoqM) stand for the Jacobson radical, the singular submodule and the sdde of
respectively. For a subsét of R, the left (right) annihilator ofX in R is denoted
by I (X) (respectivelyr (X)). If X = {a}, we usually abbreviate it th(a) (or r (a)).

We useK <. N andK <® N to mean thatk is an essential submodule and a
direct summand oN respectively. For a righR-moduleM, ¢y : F(M) — M and
om : M — C(M) denote a flat cover and a cotorsion envelopévofespectively.
We frequently identifyM with its image inC(M) and think ofM as a submodule of
C(M). For other definitions and notations, we refer the readef td(, 21, 25 as
background references.

In Section2, we study rings such that every cotorsion right (left) module is injective
with respect to a certain class of right (left) ideals. For example, we shoviRtlsad
von Neumann regular ring if and only if every cotorsion rigtitnodule isP-injective
if and only if every non-zero righR-module contains a non-zero flat submodurRas
aleft P Sring if and only if every cotorsion righiR-module is So¢: R)-injective if and
only if every leftR-moduleM has a monic# .7 -cover, where# .# denotes the class
of all mininjective leftR-modules;R is a left universally mininjective ring if and only
if every cotorsion leftR-module is Sot R)-injective if and only if every cotorsion
left R-module is mininjective if and only if every quotient of any flat cotorsion left
R-module is Sot R)-injective.

In Section3, we study relative pure-injective modules and their relations with
cotorsion modules. Le and N be right R-modules. Recall thal is called M-
pure-injectiveif every homomorphism from a pure submodule Mfto N can be
extended to a homomorphism frolh to N. M is said to bequasi-pure-injectivef
M is M-pure-injective. Some useful properties are presented. For instaniv; e
a right R-module with endomorphism rin§. It is shown that, ifMy is quasi-pure-
injective, therSsis a quasi-pure-injective riglg-module; ifMg is M -pure-injective
for any index set, thenSis a right cotorsion ring. We also prove that for a right
cotorsion ringR, the class oR-pure-injective rightR-modules is closed under direct
sums if and only ifR is a semiperfect ring; a rin® is right perfect if and only if
every rightR-module has a cotorsion (pre)cover. As a byproduct, we find that every
quotient module of any cotorsion (or injective) rigRtmodule is cotorsion if and only
if every pure submodule of any projective rigRtmodule is projective if and only
if all flat right R-modules are of projective dimension at most 1. This removes the
unnecessary hypothesis tHais a commutative domain fronip, Theorem 3.2].
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Section4 is devoted to a new generalization @frings. A ring R is called a
right pure V-ring if every simple rightR-module isR-pure-injective. This new class
of rings contains righV-rings, right perfect rings, commutative rings and semilocal
rings. Letl be aright ideal of arindR. Following [17], | * stands for the intersection
of all maximal right ideals oR containingl . It is shown thatR is a right pure-V-ring
if and only if K* £ P* for any maximal submodul& of a pure right ideaP of R.

2. Some properties of cotorsion modules

Let o be a nonempty collection of right ideals of a rify Following [23], a
right R-module X is said to be« -injective provided that eacliR-homomorphism
f : A— Xwith A € & extends toR, or equivalently, Ext(R/A, X) = 0 for any
A € /. In particular, X is called P-injective (respectivelymininjectivg [19] if X is
o/ -injective with &7 = {all principal right ideals oR} (respectively{all simple right
ideals ofR}), and X is said to be Sadg)-injective(respectively, Sog R)-injective
if o = {SodRR)} (respectively,s = {SodgR)}).

LEMMA 2.1 ([16, Proposition 2.10])Let R be a ring and«” a nonempty collection
of right ideals ofR. Then the following are equivalent

(1) Every cotorsion rightR-module ise-injective.
(2) Every pure-injective righR-module is«7-injective.
(3) R/Ais aflat right R-module for anyA € «7.

PROPOSITION2.2. Let.«” be a nonempty collection of right ideals of a rilysuch
that A is projective for anyA € <. If Ry is <7-injective, then every cotorsion right
R-module is¢7-injective. The converse holdsKfis right cotorsion.

PrROOF Itis enough to show that every right ideflin . is a pure submodule d®
by Lemma2.1 Consider the equations

a; = Zb|SJ

witha; € A/b € Rs; € Rforalll < j <n,1<i <m. SinceA is projective,
by the Dual Basis Lemma (se®&4, 2B2.9, page 23]), there exist a family of elements
{ce : k € I} € A and linear functional$ f, : k € 1} € Homg(A, R) such that for
anyc € A, fy(c) = 0 for almost allk, andc = ), ¢ fx(C). SinceRg is «7-injective,
there aregy, € Homg(R, R) such that

f(@) = (@) = o (Z biSj) = ng(bi)Sj-
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Therefore

a; = chfk(aj) = chzgk(bi)Sj = Z (Z Ckgk(bi)> Sj.
k k i i k
It follows that A is a pure submodule d® by [14, Theorem 4.89].
The last statement is clear. O

A ring R is calledright P P if every principal right ideal is projectiveR is said
to be aright SF ring (respectivelyyight V-ring) if every simple rightR-module is
flat (respectively, injective).R is calledright semi-artinianif every nonzero right
R-module contains a nonzero simple submodule.

In [8], it was proved that a rindr is a right semi-artinian right -ring if and only
if every nonzero righR-module contains a nonzero injective submodule. Motivated
by this, we have the following result.

THEOREM2.3. Let R be a ring. Then the following are equivalent

(1) Risavon Neumann regular ring.
(2) Every cotorsion rightR-module is flat.
(3) Every cotorsion rightR-module is injective.
(4) Every cotorsion rightR-module isP-injective.
(5) Risaright PP right P-injective ring.
(6) Every non-zero righR-module contains a non-zero flat submodule.
In particular, if Ris a right semi-artinian rightS F ring, then the above conditions
hold.

ProOF (1) if and only if (3) holds by Lemm&.1 (1) imples (2), (1) imples (5)
and (1) imples (6) are clear.

(5) imples (4) follows from Propositio.2

(2) imples (1). LetM be any rightR-module. Then there is an exact sequence

0 M — C(M) L 0,

wherel is flat. ThusM is flat by (2), and (1) follows.

(4) imples (1). Note thaR/A is flat for any principal right idea/A by (4) and
Lemma2.1 ThusR/As projective sincdr/Ais finitely presented. It follows thah
is a direct summand dR, which implies thatR is von Neumann regular.

(6) imples (3). Assume that® A — B — C — 0 is any exact sequence. To
simplify the notation, we think oA as a submodule d. Let M be a cotorsion right
R-module andf : A — M be any homomorphism. By a simple application of Zorn’s
Lemma, we can find somg: D — M whereA C D C B, andg|, = f, such that
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g cannot be extended to any submoduleBoproperly containingd. We claim that

D = B. Indeed, ifD # B, thenB/D # 0. By (6), there exists a non-zero submodule
N/D of B/D such thatN/D is flat. SinceM is cotorsion, there exists: N — M
such thah|p = g. Itis obvious thah extendgy; this yields the desired contradiction,
and soM is injective.

Finally, suppose thaR is a right semi-artinian righ® F ring. Then every cotorsion
right R-module is</-injective by Lemma2.1, where.# = {all maximal right ideals
of R}. On the other hand, every -injective right R-module is injective by 3,
Lemma 4]. It follows that every cotorsion rigitmodule is injective, as desired ]

The equivalences of (1) through (3) in Theor@r have been shown by Xu (see
[25, Theorem 3.3.2]) in a different way.
The following easy observation is given for completeness.

PROPOSITION2.4. Let R be a ring. Then the following are equivalent
(1) Ris asemisimple Artinian ring.
(2) Every cotorsion rightR-module is projective.
(3) Every non-zero righR-module contains a non-zero projective submodule.

PrOOF (1) implies (2) and (1) implies (3) are clear.

(2) implies (1). R is quasi-Frobenius, since every injective rigRtmodule is
projective, andR is von Neumann regular by Theoreh8, since every cotorsion right
R-module is flat. So (1) follows.

(3)implies (1). By the proof of (6) implies (3) in Theorehr8, every rightR-module
is injective. ThusR is semisimple Artinian. O

Aring Ris calledleft P S[18] if every simple left ideal is projective. It is obvious
thatRis a left P Sring if and only if So€grR) is projective.

THEOREM2.5. Let R be a ring. Then the following are equivalent:

(1) RisaleftP Sring.

(2) Every cotorsion rightR-module isSod g R)-injective.

(3) Every quotient of any (min)injective leR-module is mininjective.

(4) Every quotient of anySodrR)-)injective leftR-module isSod g R)-injective.

(5) Every leftR-moduleM has a monic# .# -cover, where# .# denotes the class
of all mininjective leftR-modules.

(6) R/SodgR) is aflat right R-module.

(7) (SodrR))? = SoarR).

PrOOF. (2) if and only if (6) if and only if (7) follow from Lemma2.1 and b,
Proposition 1.4].
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(3) implies (1). LetN be a submodule of an injective leR-module E and
7 : E — E/N the canonical map. Suppose thétis a simple left ideal oR, and
f : K - E/N is any homomorphism. SincE/N is mininjective by (3), there
existsg : R — E/N such thatf = g« where: : K — R is the inclusion. It
follows that there existh : R — E such thaty = xh, sinceR is projective. Hence
f = (wh)t = = (hy) andK is projective by P1, Lemma 4.22].

(1) implies (3). LetX be any mininjective lefR-module andN any submodule
of X. We show thatX/N is mininjective. To this end, leK be a simple left ideal
of R,i : K — R the inclusion andr : X — X/N the canonical map. For any
f : K = X/N, there existg : K — X such thatrg = f, sinceK is projective
by (1). Hence there exists: R — X such thathi = g, sinceX is mininjective. It
follows that(h)i = f, and (3) holds.

The proof of (1) if and only if (4) is similar to that of (1) if and only if (3).

(1) implies (7). Itis clear thatSoq g R))>C SoqrR). We claim that SoGR)! #0
for any simple left ideal . If not, then there exists a simple left idelak such that
SodrR)Ra= 0. SinceRis aleft P Sring, we haveRr = |z (a) ® K with K a leftideal
of R, and soRa= Ka. On the other hand{ = R/Ir(a) is simple. ThuKa = 0,
and henceRa = 0, a contradiction. Thereforé, = SodgrR)| for any simple left
ideal | . It follows that So¢gR) € (SodgR))?, and hencgSoagR))? = SodgR).

(7) implies (1) follows from 5, Proposition 1.10 (b)].

(3) implies (5). LetM be any leftR-module. WriteF =Y {N <M : N € .Z .7}
andG = @{N < M : N € .#Z.#}. Then there exists an exact sequence-(K —
G — F — 0. Note thatG € .#.#, soF € .#.# by (3). Nextwe prove that the
inclusioni : F — M is an.#.#-cover ofM. Lety : F' — M, with F' € .Z .7, be
an arbitrary leftR-homomorphism. Note that(F") < F by (3). Definez : F' — F
viaz(x) = v (x) forx € F’. Theni¢ = ,andsd : F — M is an.Z .7 -precover
of M. In addition, it is clear that the identity mdp of F is the only homomorphism
g: F — F suchthaig =i, and hence (5) follows.

(5) implies (3). LetM be any mininjective lefR-module andN any submodule
of M. We show thatM /N is mininjective. Indeed, there exists an exact sequence
00—~ N —- E — L — 0 with E injective. SinceL has a monic# .#-cover
¢ : F — L by (5), there existe : E — F such that the following exact diagram is
commutative:
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Thusg is epic, and hence it is an isomorphism. Therefolis mininjective. For any
K = R/Awith A a simple left ideal, we have

0 = Exti(K, L) — Ext3(K, N) — Ext(K, E) = 0.

Therefore, E)@’;(K, N) = 0. On the other hand, the short exact sequenee 8l —
M — M/N — 0 induces the exactness of the sequence

0 = Ext,(K, M) — ExtL(K, M/N) — Ext(K, N) = 0.

Therefore, Ex{(K, M/N) = 0, as desired. O

Following [19], a ring R is calledleft universally mininjectivef every left R-
module is mininjective. Recall that @-envelopex : M — L has theunique
mapping property 7] if for any homomorphismf : M — N with N € ¢, there
exists a uniqug : L — N such thaga = f.

THEOREM2.6. Let R be a ring. Then the following are equivalent

(1) Ris aleft universally mininjective ring.

(2) Every simple left ideal is generated by an idempotent.

(3) Every cotorsion lefR-module isSoq g R)-injective.

(4) Every cotorsion lefR-module is mininjective.

(5) Every quotient of any cotorsion leéR-module isSoq g R)-injective.

(6) Every quotient of any flat cotorsion IeR-module isSoq rR)-injective.

(7) Every cotorsion lefR-module has an/# .7 -envelope with the unique mapping
property.

(8) R/SodgR) is a flat leftR-module.

(9) Ris aleft P Sleft mininjective ring.

Moreover, ifR is a left cotorsion ring witl5oagrR) <¢rR, then the above conditions
are also equivalent to

(10) Ris aleft P Sleft Sod g R)-injective ring.

(11) Ris a left mininjective left nonsingular ring.

(12) Ris a left mininjective ring with](R) = 0.

(13) Ris avon Neumann regular ring.

PrROOF (1) implies (7), (2) implies (9) and (5) implies (6) are trivial.

(2) if and only if (8) if and only if (3) hold by $, Proposition 2.1] and Lemm&a L

(9) implies (4) follows from Propositio.2.

(1) implies (2). LetSbe a simple left ideal. The8is mininjective, and s&is a
direct summand oR. Thus (2) holds.
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(7) implies (4). LetM be any cotorsion lefR-module. There is the following
exact commutative diagram

wherex and ¢ are.# .7-envelopes with the unique mapping property. Note that
¢ya = 0= 0«, sopy = 0 by (7). Thereford. =im(y) C ker(¢) = 0, and saM is
mininjective. Hence (4) follows.

(4) implies (1). Note thatR/A is flat for any simple left idealA by (4) and
Lemma2.1 ThusR/A s projective sincdR/Ais finitely presented. It follows thah
is a direct summand dR, which implies thatR is left universally mininjective.

(3) implies (5). Note that (3) if and only if (9) holds by the preceding proof. Let
M be any cotorsion lefR-module andN any submodule oM. We show thaM /N
is SodrR)-injective. To this end, lekr : M — M/N be the canonical map and
i : SodgR) — rRthe inclusion. For anyf € Homgr(SodrR), M/N), there exists
g: SodgrR) — M suchthatrg = f, since SotR) is projective by (9). Hence there
existsh : RR — M such thahi = g, sinceM is SoqrR)-injective by (3). It follows
that(h)i = f, and so (5) holds.

(6) implies (3). LetM be any cotorsion lefR-module. TherM has a flat cover
em : F(M) — M. Since ketey) is cotorsion, by Wakamatsu’s LemmB(M) is
both flat and cotorsion. Sl is SodgR)-injective by (6).

(3) if and only if (10) holds by Propositio.2.

(9) implies (11). Note thaZ, (SodgR)) = Z,(R)NSoqgrR) andZ, (SodgR)) = 0
by [14, Exercise 12A (c), page 269] and (9), 8a(R) N SoadrR) = 0, and hence
Z/(R) = 0 since SotR) <. rR.

(12) implies (9) follows from 18, Example 2.5 (3)].

(12) if and only if (12). For a left cotorsion ring with SGER) <. rR, we can
prove a more general resulZ (R) = J(R) = rg(SodgrR)). In fact, sinceR is
left mininjective ring, SokR) € SodRg) by [19, Theorem 2.21(c)]. It follows
that J(R) < rr(SodRR)) < rgr(SodgrR)). In addition, Z,(R) < J(R) by [19,
Theorem B.58] or the remark just befoz Theorem 6], andr(SodrR)) < Z;(R)
by SodrR) <. rR. Thus (11) if and only if (12) follows.

(13) implies (12) is obvious.

(12) implies (13). Note thaR/J(R) is von Neumann regular by2] Theorem 6].
The proof is complete. O
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REMARK 2.7. It is obvious that a left universally mininjective ring is 1S by
Theorem?2.6. However, the converse is not true as shown by the following example.

Let
_(Z> 0O\ [(a O\
R (2 9)={(2 9):abces)

andx = (‘{ 8) € R. Itis easy to see thaRxis a simple left ideal, anéRx can not
be generated by an idempotent, R& is not mininjective. HoweverR is a left P P,
and hence a lefPSring. In fact, it is easily checked that every elementRofs
either nilpotent or idempotent or invertible. Note that (‘{ 8) is the only non-zero
nilpotent element andx) = R (g 8) is a summand of R, and soR X s projective, as
required.

COROLLARY 2.8. Let R be a commutative ring, then the following are equiva-
lent
(1) RisaPSring.
(2) Ris a universally mininjective ring.
(3) Every cotorsionR-module isSod R)-injective.
(4) Every cotorsionR-module is mininjective.

ProoF. The result follows from Theore®.5and Theoren?.6. O

3. Relative pure-injective modules

In this section, we investigate the pure injectivity relative to a module and discuss
its relationship with cotorsion modules. We first recall the following definition (see,
for example, 24)).

DerINITION 3.1. Let M and N be right R-modules. N is called M -pure-injective
if every homomorphismf : K — N, whereK is a pure submodule d1, can be
extended to a homomorphisg: M — N.

M is calledquasi-pure-injectivéf M is M-pure-injective.

Clearly, if N is M-injective, thenN is M-pure-injective. The next proposition is
easy to verify.

PROPOSITION3.2. Let M and N be right R-modules. Then

(1) Nis pure-injective ifand only iN is M-pure-injective for all rightR-modules\.
(2) N is cotorsion if and only ifN is M-pure-injective for all free(respectively,
projective, flaj right R-modulesM.
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It is obvious that the ring of integers (more generally, any domain) has no non-
trivial pure ideal, so every-module isZ-pure-injective. Howevet is not cotorsion.

PrOPOSITION3.3. For a right R-moduleM, the following are equivalent

(1) Every pure submodule &f is a direct summand d¥l.

(2) Every rightR-module isM-pure-injective.

(3) Every pure submodule &fl is M-pure-injective.

In particular, if M is a finitely generated projective righiR-module, then the above
conditions are equivalent to

(4) Every pure submodule &f is finitely generated.

(5) Every flat quotient module @l is projective.

PROOF. The proof is straightforward and hence omitted. O

Some general properties of this kind of relative pure-injectivity follow below.

PROPOSITIONS.4. LetM andN be right R-modules. IN is M-pure-injective, then
for every pure submodulé of M, N is K-pure-injective andvl /K -pure-injective.

PROOF. Every pure submodule df is also a pure submodule ™ sinceK is a
pure submodule of1. Therefore it is clear tha¥l is K -pure-injective.

Now let us prove thaN is M /K -pure-injective. LelL /K be any pure submodule
of M/K and f : L/K — N any homomorphism. Byl§, Exercise 30, page 162],
L is a pure submodule d¥1. Letw; : M - M/K andx, : L — L/K be the
canonical maps. Sindd is M-pure-injective, there is a homomorphign M — N
that extendsf .. Note thatKk < ker(g), hence there exists: M/K — N such that
hmry = g. Foranyl € L, h(l + K) = hay(1) = g() = fx(l) = f( + K). Thush
extendsf, and soN is M /K -pure-injective. O

The next lemma is easy to verify.

LEMMA 3.5. Let M be a right R-module and{N; : i € |} a family of right R-
modules. Thef];_, N; is M-pure-injective if and only ilN; is M-pure-injective for
everyi € |.

In particular, a direct summand of all -pure-injective rightR-module isM-pure-
injective.

REMARK 3.6. In general, the class &l -pure-injective modules is not closed under
direct sums. For example, |[&® be a von Neumann regular ring, but not right
Noetherian. Then the class &-pure-injective right modules is not closed under
direct sums.
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It is well-known thatM; & M; is quasi-injective if and only ilV; is M;-injective
foralli, j =1, 2.

PrROPOSITION3.7. Let M; and M, be right R-modules. IfM; & M, is quasi-pure-
injective, thenM; is M;-pure-injective for alli, j = 1, 2.

PrROOF. This follows from Propositior8.4 and Lemma3.5. O

PrOPOSITION3.8. Suppose thalN is M-pure-injective. IfK is a pure submodule
of MwithK = L andL <® N, thenK <® M.

PrROOF. Leti : K — M and: : L — N be the inclusionsg : N — L the
canonical projection and : K — L the isomorphism. SincH is M-pure-injective,
there existsy : M — N such thatgi = (f. Leta = f~'rg: M — K. For
anyk € K, ai(k) = fngi(k) = f1f(k) = k. Soai = 1k, which implies that
K <% M. Ol

COROLLARY 3.9. If M is a quasi-pure-injective righiR-module, themM is pure-C2,
that is, assume thaK is a pure submodule df1 with K = L andL <® M, then
K <® M.

PrROPOSITION3.10. Let M be a flat cotorsion righR-module. Then
(1) M is pure-C2.
(2) (pure-C3) If K and L are submodules a1 with K "L =0, K <® M and
L <® M, thenK @ L is a pure submodule d¥l if and only ifK & L <® M.

PrROOF. (1) SinceM is flat and cotorsion, thekl is quasi-pure-injective by Propo-
sition 3.2 So (1) follows from Corollan3.o.

(2) LetK = eM, € = e € EndMg), so thatKk ® L =eM @ (1 —e)L. Thus
(1—-eL =L <® M. If K@ L isapure submodule dfl, then(1—e)L is also a pure
submodule oM. By (1), (1 — e)L <® M, and so there exist6?> = f € EndMg)
suchthaifl—e)L = f M. Thusef = 0, and hencé = e+ f — feis anidempotent
andK @& L = hM <® M. The converse is clear. O

COROLLARY 3.11. If Ris aright cotorsion ring, therRy is pure-C2 and pure-C3.

PROPOSITION3.12. Let M be a flat right R-module andN a right R-module. If
a(M) C N forall @ : C(M) — C(N), thenN is M-pure-injective.

PROOF. Let K be a pure submodule éfl andi : K — M the inclusion. Note
thatM is a pure submodule & (M), soK is also a pure submodule 6f(M). Since
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M is flat, so isC(M). Consequently, for any homomorphisin: K — N, there
existsg : C(M) — C(N) such thatgoyi = oy f. By hypothesisg(M) € N. So
glw : M — N extendsf, as desired. O

COROLLARY 3.13.Let M be a flat right R-module. IfM is a fully invariant
submodule o€ (M), thenM is quasi-pure-injective.

REMARK 3.14. From the proof of Propositiof.12 Corollary3.13can be extended
to a more general result, that is, a fully invariant pure submodule of a quasi-pure-
injective right R-module is quasi-pure-injective. On the other hand, it is well known
that a moduleM is quasi-injective if and only iM is a fully invariant submodule of its
injective envelope. However, we do not know whether the converse of Cor&llasy
is true.

PROPOSITION3.15. Let sFr be a bimodule and/r a right R-module.
(1) If Mg is Fr-pure-injective, therHomg(sFr, MR) is an S-pure-injective right
Smodule.
(2) If Mg is FY -pure-injective for any index set, then Homg(sFgr, Mg) is a
cotorsion rightS-module.

PROOF (1) Let Ks be a pure submodule &&. We can consider the righ®-
moduleK ®s F as a pure submodule in the rigRtmodule S®s F. SinceMp, is
Fr-pure-injective ands ®s F = Fg, we obtain the exact sequence

HOMR(S®s Fr, Mg) — HOMg(K ®s Fr, Mg) — O,
which gives rise to the exactness of the sequence
Homs(Ss, Homg(sFr, Mr)) — Homg(Ks, Homg(sFr, Mgr)) — O.

Thus Honk(sFr, MR) is anS-pure-injective rightS-module.

(2) If Mg is FY’-pure-injective for any index sdt, then, by the proof of (1),
Homg(sFr, MR) is anS""-pure-injective rightS-module for any index set. So (2)
follows from Propositior.2. O

COROLLARY 3.16. Let My be a right R-module with endomorphism rirg
(1) If Mg is quasi-pure-injective, thefs is a quasi-pure-injective righ&module.
(2) If Mgis MY -pure-injective for any index sét thenSis a right cotorsion ring.
In particular, S = End(Mg) is a right cotorsion ring for any flat cotorsion right
R-moduleM.
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Recall that a ringR is said to bel -finite [19] if R has no infinite set of nonzero
orthogonal idempotents.

LEMMA 3.17. Let R be aring. If the class oR-pure-injective rightR-modules is
closed under direct sums, then

(1) for any ascending chaity C I, C I3 C --- of right ideals withuﬁi1 I« purein
R, thereisamwith I, = 1,,i =1,2,...;
(2) Ris I -finite.

PrROOF (1) Letl; € 1, C I3 € --- be an ascending chain of right ideals with
| = e, Ik pure inR. Define a homomorphism

f:l > @HCrR/

k=1

ar— (a+ |k)|ic:1

for a € |. By hypothesis®;2,C(R/Iyx) is R-pure-injective. So there exists €
B2 ,C(R/Iy) such thatf (a) = xa= (a+ ly)p, foranya € |.

LetX = (X3, X2, ..., %, 0,...). Thena+ I, = 0 foranya € | andk > 1. Thus
| = Iy = lpy2 =+, as desired.

(2) By (1) and [L, Exercise 19.11(1)]R satisfies ACC (ascending chain condition)
on pure right ideals. ThuR satisfies ACC on right direct summands, and heRég
| -finite by [14, Proposition 6.59]. O

For any ringR, it is easy to see that every cyclic flat rigRtmodule is projective
if and only if every rightR-module isR-pure-injective (see Propositidh3). So we
have the following result (see, for exampl20] Lemma 4.5]).

COROLLARY 3.18. If every cyclic flat rightR-module is projective, theRis | -finite.
The converse holds whehis a right or left PP ring.

PrROOF. The result follows from Lemm&.17, [14, Proposition 6.59 and Theo-
rem 7.55], and46, Proposition 9]. O

THEOREM 3.19.If R is a right cotorsion ring, then the following are equiva-
lent

(1) The class oR-pure-injective rightR-modules is closed under direct sums.
(2) Every rightR-module isR-pure-injective.

(3) Ris asemiperfect ring.

(4) RisI-finite.
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PrROOF. (2) implies (1) is trivial. (1) implies (4) follows from Lemma17.

(3) implies (2). Sinc&ris semiperfect, every cyclic flat rigiR-module is projective
by [14, Exercise 21, page 161] a2(, Example 3.7]. Hence (2) follows.

(4) implies (3). SinceR is |-finite, R = 11 ® I, & --- & |, such thatl; is

indecomposable and = ¢ R, e|2 =1e¢,i =1,...,n, by [14, Proposition 6.60].
Let S = Endl;). Then§ is a right cotorsion ring by Corollarg.16 since each;
is a flat cotorsion righR-module,i = 1,...,n. In addition, 0 and 1 are the only

idempotents inS since |; is indecomposable. It follows tha® is local by P,
Corollary 7]. Eacle Re = S,i = 1,...,n. ConsequentlyR is a semiperfect ring
by [1, Theorem 27.6]. O

Recall that a ringR is a right perfect ring if and only if every righR-module is
cotorsion, by 25, Proposition 3.3.1]. Thus we have the following result.

THEOREM3.20. Let R be a ring. Then the following are equivalent

(1) Ris aright perfect ring.

(2) Ris aright cotorsion ring with] (R) right T-nilpotent, and the class &-pure-
injective rightR-modules is closed under direct sums.

(3) The class of cotorsion righR-modules is closed under direct sums.

(4) Every rightR-module has a cotorsiofpre)cover.

Moreover, ifR satisfiesSoqrR) <¢Rg, then the above conditions are also equivalent
to:

(5) Ris a right cotorsion ring and satisfies ACC for chains of annihilators of the
formrg(a;) Crr(aa) C re@saa) < ---.

ProOF (1) if and only if (2) follows from Theoren3.19

(1) implies (4) is trivial, (4) implies (3) follows fromZ2, Proposition 1], and (3)
implies (1) holds by 3, Theorem 19].

(1) implies (5) follows from §, Corollary 25].

(5)implies (1). By 6, Proposition 9], every cyclic flat righR-module is projective.
ThereforeR is a semiperfect ring by Corolla;18and Theoren3.19 Soitis enough
to show that] (R) is right T-nilpotent.

Now letay, a,, a3, ... be an infinite sequence i(R). Then we get a chain

rr(@1) Crr(@ay) Crr(agaay) < --- .

Thus there existe € N such thatrgr(a,an_1---a1) = rr(@s.1an---ay) by (4), and
hence(a,a,_1 - - -a;)) RN rgr(an,1) = 0. On the other hand, noting that

J(R) < Ir(S0dgrR) < Z,(R)
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by SodgrR) <. Rgr, we havea,,; € Z (R). Thusrg(am1) <e Rgr, and so
a,---a; = 0, which implies thatJ(R) is right T-nilpotent. This completes the
proof. O

COROLLARY 3.21. Let R be a commutative ring. Then the following are equiva-
lent
(1) Ris a perfect ring.
(2) Ris a cotorsion ring with essential socle and satisfies ACC for chains of anni-
hilators of the formannz(a;) € anrk(a,a;) € annk(azaa;) C - - - .

PrOOF This follows from [L, Theorem 28.4] and Theore&n20 O

LEMMA 3.22.Let M be a projective rightR-module. Then the following are
equivalent

(1) Every quotient module of any injecti®module isM-pure-injective.

(2) Every quotient module of aniyl-pure-injective rightR-module isM-pure-
injective.

(3) Every pure submodule ol is projective.

PROOF. (2) implies (1) is trivial.
The proof of (1) implies (3) implies (2) is similar to that of (1) if and only if (3) in
Theorem2.5. O

THEOREM 3.23. Let R be a ring. Then the following are equivalent

(1) Every quotient module of any injective rigRtmodule is cotorsion.

(2) Every quotient module of any cotorsion rigRtmodule is cotorsion.

(3) Every pure submodule module of any projective riBhainodule is projective.
(4) Allflat right R-modules are of projective dimension at mbst

(5) Ex&(M, N) = 0for all flat right R-modulesM and N.

(6) Ext{;(M, N) = O for all flat right R-modulesM, N and j > 2.

PrOOF (1) if and only if (2) if and only if (3) follow from Lemmes.22

(4) implies (3). LetM be a projective righR-module and\ a pure submodule of
M. Then0O— N - M — M/N — 0is exact. Note thatl/N is flat, and hence the
projective dimension oM /N is less than or equal to 1, by (4). Thisis projective.

(3) implies (4). LetM be any flat rightR-module. There exists an exact sequence
0— N —-> P — M — 0 with P projective. Note thal is a pure submodule d?,
so N is projective. It follows that the projective dimensionifis at most 1.

(4) implies (5) implies (6) are trivial.
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(6) implies (4). LetM be any flat rightR-module andN any rightR-module. Then
there is an exact sequence

0 K F(N) = N 0,

with K cotorsion, which induces the exactness of sequence
Exti(M, F(N)) — Exti(M, N) — Ext(M, K).

Note that Ext(M, F(N)) = 0, by (6), and Ext(M, K) = 0, by the proof of g5,
Proposition 3.1.2]. So EtM, N) = 0 and (4) follows. O

REMARK 3.24. The equivalences of (1) through (4) in the previous theorem have
recently been proven for commutative domairis([Theorem 3.2]).

4. A new generalization ofV -rings

We start with the following definition.

DEFINITION 4.1. A ring R is called aright pure-V-ring if every simple rightR-
module isR-pure-injective.

REMARK 4.2. (1) Itis obvious that the class of right puké+ings contains right
V-rings and right perfect rings. In general, a right piteing need not be a right
V-ring (for exampleZ). If Ris a von Neumann regular ring, thé&is a rightV-ring
if and only if R is a right pureV -ring if and only if every simple righR-module is
cotorsion.

(2) [16, Lemma 2.14] shows that every simgRemodule over a commutative ring
R is cotorsion. So commutative rings are pWerings. However, simplé&k-modules
over a noncommutative ring need not be cotorsion. For example, we can chddse
to be a von Neumann regular ring, which is not a righting (see 11]).

Aring is calledsemilocalif R/J(R) is a semisimple Artinian ring.
ProOPOSITION4.3. Any semilocal ringR is a left and right pureV -ring.

PrOOF. By the Wedderburn-Artin Theorem andZ, Proposition 9.3.4], for any
simple right R-module M with endomorphism ringS, sM is a finite dimensional
vector space. Thudl is X-pure-injective by 13, Lemma 4.3] and therefore cotorsion.
SoRis aright pureV-ring. Similarly, R is a left pureV-ring. O
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Let | be a right ideal ofR. Following [17], |* stands for the intersection of all
maximal right ideals oR containingl . Yue Chi Ming proved thaR is a rightV-ring
if and only if, for any maximal submodul€ of an essential right ided®, K* # P*
(see [L7, Theorem 3]). Next we give a corresponding characterization of a right
pureV-ring.

THEOREM4.4. Let R be a ring. Then the following are equivalent
(1) Risaright pureV-ring.
(2) If K is a maximal submodule of a pure right ideRlof R, thenK* £ P*.

PrOOF (1) implies (2). Suppose that there exist a pure right idReahd a maximal
submoduleK of P such thatk* = P*. ThenP/K is simple. By (1), there exists
f : R— P/K,whichextendsthe canonical projection P — P/K. Letg = f|p-.
ThenK C ker(g) € P* = K*. Therefore(ker(g))* = P* = K* (for K* = K*). On
the other hand, keérf ) is a maximal right ideal oR with ker( f) N P* = ker(g). Thus
(ker(g))* C ker(f), and henceP* = (ker(g))* = ker(g), which implies thag = 0,
and soP/K = 0, a contradiction.

(2) implies (1). Suppose th&tl is any simple rightR-module. Letl be any pure
right ideal, andx : | — M any homomorphism. We show thatcan be extended
to R.

If « = 0, this is trivial.

If o # 0, then kefw) is a maximal submodule df, and so(ker(a))* # 1* by (2).
Thus there exists a maximal right iddélof R such that kew) € K andl g K. So
R= K + 1. Letr € R. Then there exist € K andt € | such that = k +t. Now
we define8 : R — M viar — «a(t). Note thatk N | = ker(x). It is easy to verify
that 8 is well-defined. Clearlys extendsx. O

COROLLARY 4.5. Let R be aright pureV-ring and| * <® Rg. Thenl = | *.

PROOF. Suppose that # 1*. Sincel* is finitely generated] is contained in a
maximal submodulé/ of |*, by [1, Theorem 2.8]. Thudl* #£ |* by Theoren¥.4.
However,| * € M* C |*, a contradiction. O

PROPOSITION4.6. Let R be a rightSFring.

(1) If I(M) = 0 for any flat rightR-moduleM, then every simple righiR-module
is cotorsion.
(2) If 3(M) = Ofor any cyclic flat rightR-moduleM, thenR is a right pureV -ring.

PrROOF. (1). LetK be any pure submodule of any flat rigRtmoduleN, andSany
simple rightR-module. It is enough to show that every homomorphismK — S
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can be extended th. This is trivial if f = 0. So we may assumé # 0. Since
S= K/ker(f) andSis flat, kel ) is a pure submodule df. Thus ke( f) is a pure
submodule ofN sinceK is pure inN. By hypothesis,J(N/ker(f)) = 0, which
implies that ke¢f) is an intersection of maximal submodulesf Letx € K and
X ¢ ker(f). Then there exists a maximal submodtieof N such that keff) € H
andx € H. ThereforeN = H + K. Note thatH N K = ker(f), so we can extend
tog: N — Shy definingg(h + k) = f (k) foranyh € H and anyk € K.

(2) follows from the proof of (1). O
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