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Abstract

We give a complete description of maximal compatible partial orders on the mono-unary algebra.A; f /,
where f : A → A is an arbitrary unary operation.
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1. Introduction

The well-known Szpilrajn theorem ([9]) asserts that any partial order≤r (or r ) on a
set A can be extended to a linear order≤R. Recent work related to this early result
includes ([2, 3, 4, 6, 7]). As a consequence of Szpilrajn’s theorem we obtain that the
maximal partial orders (with respect to the containment relation) onA are exactly the
linear orders ofA. A general scheme for extending Szpilrajn’s theorem consists of
restricting attention to orders with some prescribed property, and requiring that the
linear extension also possess this property (see [1]). In particular, if f : A → A
is a unary operation, then we can restrict our consideration to the so calledcompat-
ible partial orders of.A; f /, that is, to partial orders with the following property:
x ≤r y implies f .x/ ≤r f .y/ for all x; y ∈ A. In the present paper we investigate
the compatible extensions of a givenr in a partially ordered mono-unary algebra
.A; f;≤r /. Using f -prohibited pairs, for compatible partial orders we define the
notion of f -quasilinearity. Our main result states, that a compatible partial orderr
on .A; f / can always be extended to a compatiblef -quasilinear partial orderR. As
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a consequence, we obtain that the maximal compatible partial orders on.A; f / are
exactly the compatiblef -quasilinear partial orders. It turns out, that a compatible
f -quasilinear partial order is linear if and only if the functionf has no proper cycle
(acyclicaccording to the terminology of [8]). Thus the following main theorem of [8]
will appear as a special case of our Theorem4.2.

Let f : A → A be an acyclic function(there is noc ∈ A such that f .c/ 6= c
and f n.c/ = c for some integern ≥ 2) andr ⊆ A × A a compatible partial order
on .A; f /. Then there exists a compatible linear orderR ⊆ A × A on .A; f / with
r ⊆ R.

On the other hand, we shall make extensive use of the above result in proving
Theorem4.2.

2. Components, cycles and distance

Let f : A → A be a function (unary operation on the setA). We define the relation
∼ f as follows: forx; y ∈ A let x ∼ f y if f k.x/ = f l .y/ for some integersk ≥ 0 and
l ≥ 0. It is straightforward to see that∼ f is an equivalence onA. The equivalence
class[x] f of an elementx ∈ A is called thef -componentof x. Clearly,[x] f ⊆ A is a
subalgebra in.A; f /, that is, f .[x] f / ⊆ [x] f . An elementc ∈ A is calledcyclic with
respect tof (or cyclic in .A; f /), if f m.c/ = c for some integerm ≥ 1. For a cyclic
elementc,

n = n.c/ = min{m | m ≥ 1 and f m.c/ = c}

is called theperiod of c or the lengthof the cycleC = {c; f .c/; : : : ; f n−1.c/}; it is
easy to prove thatC has exactlyn elements,f .C/ = C and f k.c/ = f l .c/ holds if
and only if k − l is divisible byn. A pair .x; y/ ∈ A × A is called f -prohibited, if
we can find integersk ≥ 0, l ≥ 0 andm ≥ 2 such thatm is not a divisor ofk − l , the
elementsf k.x/; f k+1.x/; : : : ; f k+m−1.x/ are distinct andf k+m.x/ = f k.x/ = f l .y/.
For an f -prohibited pair.x; y/ and an integerk ≥ 0 as above, we havey ∈ [x] f , and
f k.x/ is a cyclic element in[x] f of periodm. It is easy to verify, that a pair.x; y/ is
f -prohibited, if and only if f k.x/ = f l .y/ is cyclic and f k+l .x/ 6= f k+l .y/ for some
integersk ≥ 0 andl ≥ 0 (the latter condition can be replaced byf t.x/ 6= f t.y/ for
all integerst ≥ 0). Thedistancebetween an elementy ∈ [x] f and a given cyclic
elementc ∈ [x] f is defined in part (1) of the following proposition, the proof of which
is straightforward and hence omitted.

PROPOSITION2.1. Let y ∈ [x] f andc ∈ [x] f be a cyclic element of periodn ≥ 1.
Then we have the following.
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(1) There exists an integert ≥ 0 such thatf t.y/ = c. Let

d.y; c/ = min{t | t ≥ 0 and f t.y/ = c}
denote the distance ofy from c.
(2) d. f .c/; c/ = n − 1 and for y 6= c, we haved. f .y/; c/ = d.y; c/− 1.
(3) All cyclic elements of[x] f are in C = {c; f .c/; : : : ; f n−1.c/} and each element

in C is cyclic of periodn.
(4) If l ≥ 0 is an integer, thenf l .y/ = c holds if and only ifl ≥ d.y; c/ and

l − d.y; c/ is divisible byn.
(5) .x; y/ is f -prohibited if and only ifd.x; c/− d.y; c/ is not divisible byn.

PROPOSITION2.2. If .A; f;≤r / is a partially ordered mono-unary algebra, then we
have the following.

(1) If c ∈ A is a cyclic element of periodn ≥ 1, thenC = {c; f .c/; : : : ; f n−1.c/} is
an antichain with respect to≤r .
(2) If .x; y/ ∈ A × A is an f -prohibited pair, thenx and y are incomparable with

respect to≤r .

PROOF. (1) Take c∗ = f i .c/ and t = j − i . Then f t.c∗/ = f j .c/. Now
c∗ ≤r f t.c∗/ implies c∗ ≤r f t.c∗/ ≤r f 2t.c∗/ ≤r · · · ≤r f nt.c∗/ = c∗; in con-
tradiction with c∗ 6= f t.c∗/. The reverse relationf t.c∗/ ≤r c∗ leads to a similar
contradiction.

(2) Let f k.x/; : : : ; f k+m−1.x/ be distinct elements andf k+m.x/ = f k.x/ = f l .y/
for some integersk ≥ 0, l ≥ 0 andm ≥ 2 with m - k − l . The assumptionx ≤r y
implies

f k+l .x/ ≤r f k+l .y/

for the elementsf k+l .x/and f k+l .y/ = f k. f l .y// = f k. f k.x// = f 2k.x/of the cycle
C = { f k.x/; f k+1.x/; : : : ; f k+m−1.x/}; which contradicts (1), sincem - 2k − .k + l /.
The casey ≤r x can be treated similarly.

3. The order components of(A, f, ≤r )

Let .A; f;≤r / be a partially ordered mono-unary algebra. Consider the factor set

B = A= ∼ f = {[x] f | x ∈ A}:
We define the relationCr on B as follows:[x] f Cr [y] f if x1 ≤r y1 for somex1 ∈ [x] f

andy1 ∈ [y] f .
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PROPOSITION3.1. (1) Cr is a quasiorder (reflexive and transitive) onB.
(2) If [x] f Cr [y] f and[y] f Cr [x] f for the f -components[x] f 6= [y] f , then there

is no cyclic elementc ∈ [x] f ∪ [y] f of periodn ≥ 1.

PROOF. (1) In order to see transitivity, suppose[x] f Cr [y] f Cr [z] f . Then
x1 ≤r y1 and y′

1 ≤r z1 for somex1 ∈ [x] f , y1; y′
1 ∈ [y] f and z1 ∈ [z] f . Since

y1 ∼ f y′
1, we can find integersk ≥ 0 andl ≥ 0 such thatf k.y1/ = f l .y′

1/. However,

f k.x1/ ≤r f k.y1/ = f l .y′
1/ ≤r f l .z1/;

for f k.x1/ ∈ [x] f and f l .z1/ ∈ [z] f , so[x] f Cr [z] f .
(2) Suppose that[x] f Cr [y] f Cr [x] f , [x] f 6= [y] f and, without loss of generality,

c ∈ [x] f is a cyclic element of periodn ≥ 1. There existx1; x2 ∈ [x] f andy1; y2 ∈ [y] f

with the propertiesx1 ≤r y1 andy2 ≤r x2. By part (1) of Proposition2.1,

f t1.x1/ = c = f t2.x2/

for some integerst1 ≥ 0 andt2 ≥ 0. Since f t1.y1/ ∼ f f t2.y2/, we can find integers
k ≥ 0 andl ≥ 0 such that

f k. f t1.y1// = f l . f t2.y2//:

The compatibility of≤r gives

f k.c/ = f k. f t1.x1// ≤r f k. f t1.y1// = f l . f t2.y2// ≤r f l . f t2.x2// = f l .c/;

where f k.c/ and f l .c/ are cyclic elements. Applying part (1) of Proposition2.2, we
obtain that f k.c/ = f k. f t1.y1// = f l .c/ in contradiction with[x] f ∩ [y] f = ?.

The relation≡r is defined onB = A= ∼ f as follows: forx; y ∈ A let [x] f ≡r [y] f

if [x] f Cr [y] f and[y] f Cr [x] f . It is well-known that starting from the quasiorder
Cr , the above definition provides an equivalence onB. We define theorder component
of x in .A; f;≤r / by

〈x〉 =
⋃

y∈A and[y] f ≡r [x] f

[y] f :

Clearly,[x] f ⊆ 〈x〉 ⊆ A and〈x〉 is a subalgebra in.A; f /, which corresponds to the
≡r equivalence class[[x] f ]≡r of [x] f in B. It is easy to see that{〈x〉 | x ∈ A} is a
partition of A.

If c ∈ 〈x〉 is a cyclic element, then part (2) of Proposition3.1gives that〈x〉 = [x] f .
We make use of the partial order�r on B= ≡r , which can be derived fromCr in a
natural way:〈x〉 �r 〈y〉 if [x] f Cr [y] f .
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LEMMA 3.2. Let .A; f;≤r / be a partially ordered mono-unary algebra. Ifx ∈ A
and there is no cyclic element in〈x〉, then there exists a linear order² on 〈x〉 with the
following properties:

(1) ² is compatible on.〈x〉; f /,
(2) ² is an extension of≤r on the elements of〈x〉.

PROOF. The absence of cyclic elements ensures thatf : 〈x〉 −→ 〈x〉 is acyclic,
preserving the partial orderr ∩ .〈x〉× 〈x〉/. A straightforward application of the Main
Theorem in [8] gives the existence of the desired².

LEMMA 3.3. Let.A; f;≤r / be a partially ordered mono-unary algebra,x ∈ A and
c ∈ 〈x〉 a cyclic element of periodn ≥ 1. Then there exists a partial order² on
〈x〉 = [x] f with the following properties:

(1) ² is compatible on.[x] f ; f /,
(2) ² is an extension of≤r on the elements of[x] f ,
(3) [x] f = E0 ∪ E1 ∪ · · · ∪ En−1 is a pairwise disjoint union, where each set

Ei = {u ∈ [x] f | d.u; c/− i is divisible byn}; 0 ≤ i ≤ n − 1;

is a chain with respect to², and fori 6= j the elements ofEi × Ej are f -prohibited
pairs.

PROOF. Let E = [x] f and consider the equivalence relation" = 1E ∪ .C × C/
on E, where1E is the diagonal ofE × E andC = {c; f .c/; : : : ; f n−1.c/} is the set of
cyclic elements inE. Clearly,[u]" = {u} if u ∈ E \ C and[u]" = C if u ∈ C. Using
the factor setE∗ = E=", define a functionf ∗ : E∗ → E∗ and a relationr ∗ ⊆ E∗ × E∗

as follows: f ∗.[u]"/ = [ f .u/]" andr ∗ is the transitive closure of the reflexive relation

s = {
.[u]"; [v]"/ | u; v ∈ E andu′ ≤r v

′ for someu′ ∈ [u]"; v′ ∈ [v]"
}
:

Then f ∗ is well-defined sincef .C/ ⊆ C. It is immediate from the definitions thatf ∗

preservess, whencef ∗ preservesr ∗. We claim, thatr ∗ is a partial order onE∗. It is
enough to show that there is no proper cycle inE∗ with respect tos. If a proper cycle

[u1]"s[u2]"s · · · s[uk]"s[u1]"
does not containC, then we have

u1 ≤r u2 ≤r · · · ≤r uk ≤r u1

implying thatu1 = u2 = · · · = uk, a contradiction. IfC appears in a proper cycle,
then we can exhibit a segment of it as

Cs[v1]"s[v2]"s · · · s[vl ]"sC;
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wherev1; v2; : : : ; vl =∈ C. Now we have

c′ ≤r v1 ≤r v2 ≤r · · · ≤r vl ≤r c′′

for somec′; c′′ ∈ C. Applying part (1) of Proposition2.2gives thatc′ = c′′. Thus the
elementsv1 = v2 = · · · = vl = c′ = c′′ are inC, a contradiction. The only cyclic
element of.E∗; f ∗/ is C and f ∗.C/ = C, so we can apply the Main Theorem of [8]
to the partially ordered algebra.E∗; f ∗; r ∗/, in order to get a compatible linear order
²∗ on .E∗; f ∗/ with r ∗ ⊆ ²∗. We claim that

² = {.u; v/ | u; v ∈ E ; .[u]"; [v]"/ ∈ ²∗ andn | d.u; c/− d.v; c/}
is one of the desired relations onE.

The reflexive and transitive properties of² can be easily verified. Let.u; v/ ∈ ² and
.v; u/ ∈ ². Then.[u]"; [v]"/ ∈ ²∗ and.[v]"; [u]"/ ∈ ²∗ imply [u]" = [v]", whence
u = v or u; v ∈ C. If u; v ∈ C, then we also haveu = v sincen | d.u; c/− d.v; c/,
proving antisymmetry.

Suppose.u; v/ ∈ ². Then.[u]"; [v]"/ ∈ ²∗ and the compatibility of²∗ provides
that

.[ f .u/]"; [ f .v/]"/ = . f ∗.[u]"/; f ∗.[v]"// ∈ ²∗:

Using part (2) of Proposition2.1, we obtainn | d. f .u/; c/− d. f .v/; c/ as a conse-
quence of the divisibilityn | d.u; c/− d.v; c/, proving that. f .u/; f .v// ∈ ².

Supposeu; v ∈ E and u ≤r v. Then first we get.[u]"; [v]"/ ∈ s and next
.[u]"; [v]"/ ∈ r ∗ ⊆ ²∗. If n - d.u; c/ − d.v; c/, then .u; v/ is f -prohibited by
part (5) of Proposition2.1, contradicting part (2) of Proposition2.2. Thus we have
n | d.u; c/− d.v; c/ and.u; v/ ∈ ², provingr ⊆ ².

Foru; v ∈ Ei , the divisibility n | d.u; c/− d.v; c/ follows fromn | d.u; c/− i and
n | d.v; c/− i . Since²∗ is linear, either.[u]"; [v]"/ ∈ ²∗ or .[v]"; [u]"/ ∈ ²∗ holds.
Thus we have either.u; v/ ∈ ² or .v; u/ ∈ ², proving thatEi is a chain with respect
to ².

If i 6= j and .u; v/ ∈ Ei × Ej , thenn | d.u; c/ − i andn | d.v; c/ − j imply
thatd.u; c/− d.v; c/ is not divisible byn, so by part (5) of Proposition2.1, .u; v/ is
f -prohibited.

REMARK 3.4. According to [5, Proposition 3.6], the convexity of the antichainC
implies that" = 1E ∪ .C × C/ is an order congruence of.E; f; r ∩ .E × E//.

4. The main results

A compatible partial orderR on a mono-unary algebra.A; f / is called f -quasili-
near, if .x; y/ ∈ R or .y; x/ ∈ R for all non f -prohibited pairs.x; y/ ∈ A × A. In
view of part (2) of Proposition2.2, we have the following simple observation.
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PROPOSITION4.1. If a compatible partial orderR on a mono-unary algebra.A; f /
is f -quasilinear, then it is maximal(with respect to containment) among the compat-
ible partial orders of.A; f /.

THEOREM4.2. If .A; f;≤r / is a partially ordered mono-unary algebra, then there
exists a compatible partial orderR on .A; f / with the following properties:

(1) R is an extension ofr ,
(2) R is f -quasilinear.

PROOF. Let �½ be an arbitrary linear extension of the partial order�r on the set
B= ≡r of order components in.A; f;≤r /, whereB = A= ∼ f . Let x ∈ A. If there
is no cyclic element in〈x〉, then fix a compatible linear order²〈x〉 on 〈x〉 with the
properties described in Lemma3.2. If there is a cyclic element of periodn ≥ 1 in 〈x〉,
then fix a compatible partial order²〈x〉 on 〈x〉 = [x] f with the properties described in
Lemma3.3. We claim that

R = {.x; y/ ∈ A × A | 〈x〉 �½ 〈y〉 and.x; y/ ∈ ²〈x〉 in case of〈x〉 = 〈y〉}

satisfies (1) and (2).
The reflexive, antisymmetric and transitive properties ofR can be easily verified.

In order to prove the compatibility ofR, it is enough to note that〈 f .x/〉 = 〈x〉 and
that²〈x〉 is a compatible partial order on.〈x〉; f /.

Supposex ≤r y. Then [x] f Cr [y] f , whence we obtain〈x〉 �r 〈y〉 as well
as 〈x〉 �½ 〈y〉. In the case of〈x〉 = 〈y〉, the relation.x; y/ ∈ ²〈x〉 follows from
r ∩ .〈x〉×〈x〉/ ⊆ ²〈x〉. Thus we have.x; y/ ∈ R, provingr ⊆ R. Therefore (1) holds.

Suppose nowx; y ∈ A are incomparable elements with respect toR. Then the
linearity of �½ implies that〈x〉 = 〈y〉, .x; y/ =∈ ²〈x〉 and.y; x/ =∈ ²〈x〉. Since²〈x〉 is
not linear, the order component〈x〉 must contain a cyclic elementc of periodn ≥ 2.
In view of the properties of²〈x〉 described in Lemma3.3, we obtain thatx ∈ Ei and
y ∈ Ej for somei; j ∈ {0; 1; : : : ; n−1} with i 6= j . Now the last property of theEi ’s
guarantees that.x; y/ is an f -prohibited pair. Thus (2) holds.

COROLLARY 4.3. A compatible partial orderR on .A; f / is maximal(with respect
to containment) if and only if R is f -quasilinear.
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