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Abstract

We give a complete description of maximal compatible partial orders on the mono-unary &lgelbya
wheref : A — Ais an arbitrary unary operation.
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1. Introduction

The well-known Szpilrajn theoremq]) asserts that any partial ordey (orr) on a
set A can be extended to a linear ordeg. Recent work related to this early result
includes (R, 3, 4, 6, 7]). As a consequence of Szpilrajn’s theorem we obtain that the
maximal partial orders (with respect to the containment relatiord\ are exactly the
linear orders ofA. A general scheme for extending Szpilrajn’s theorem consists of
restricting attention to orders with some prescribed property, and requiring that the
linear extension also possess this property (4Pe [In particular, if f : A — A

is a unary operation, then we can restrict our consideration to the so caliepat-

ible partial orders of(A, f), that is, to partial orders with the following property:

X <, yimplies f(x) <, f(y) for all x,y € A. In the present paper we investigate
the compatible extensions of a givenin a partially ordered mono-unary algebra
(A, f, <). Using f-prohibited pairs, for compatible partial orders we define the
notion of f-quasilinearity. Our main result states, that a compatible partial order
on (A, f) can always be extended to a compatilblguasilinear partial ordeR. As
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a consequence, we obtain that the maximal compatible partial order&,dn are
exactly the compatiblef -quasilinear partial orders. It turns out, that a compatible
f-quasilinear partial order is linear if and only if the functiérhas no proper cycle
(acyclicaccording to the terminology o8]). Thus the following main theorem o8]
will appear as a special case of our Theore

Let f : A — A be an acyclic functiorfthere is noc € A such thatf(c) # c
and f"(c) = c for some integen > 2) andr € A x A a compatible partial order
on (A, f). Then there exists a compatible linear ord@rc A x A on (A, f) with
rc R

On the other hand, we shall make extensive use of the above result in proving
Theoremd.2

2. Components, cycles and distance

Let f : A— Abe afunction (unary operation on the #9t We define the relation
~ as follows: forx,y € Aletx ~; yif fX(x) = f'(y) for some integerk > 0 and
| > 0. Itis straightforward to see that; is an equivalence oA. The equivalence
class[x]; of an elemenk € Ais called thef -componenof x. Clearly,[x]; € Aisa
subalgebra A, f), thatis, f ([x];) C [X]¢. An element € Ais calledcyclic with
respect tof (or cyclicin (A, f)), if f™(c) = cfor some integem > 1. For a cyclic
element,

n=n(c) =minfm|m>1andf™(c) = c}

is called theperiod of ¢ or thelengthof thecycleC = {c, f(c),..., f"(c)}; itis
easy to prove that has exactlyn elements,f (C) = C and f¥(c) = f'(c) holds if
and only ifk — | is divisible byn. A pair (X, y) € A x Ais called f -prohibited if
we can find integerk > 0,1 > 0 andm > 2 such tham is not a divisor ok — |, the
elementsf&(x), f*1(x), ..., fk<™1(x) are distinct andf **M(x) = fk(x) = f'(y).
For an f -prohibited pair(x, y) and an integek > 0 as above, we hawe e [x];, and
f¥(x) is a cyclic element irix]; of periodm. It is easy to verify, that a paiix, y) is
f -prohibited, if and only iff¥(x) = f'(y) is cyclic and f ¥ (x) # f¥*(y) for some
integersk > 0 andl > O (the latter condition can be replaced bYy(x) # f'(y) for
all integerst > 0). Thedistancebetween an element € [x]; and a given cyclic
element € [x]; is defined in part (1) of the following proposition, the proof of which
is straightforward and hence omitted.

PROPOSITION2.1. Lety € [X]; andc € [X]; be a cyclic element of periaa > 1.
Then we have the following.
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(1) There exists an integér> 0 such thatf'(y) = c. Let
d(y,c) =min{t |t > 0and f'(y) = ¢}

denote the distance gffromc.

(2) d(f(c),c)=n—1andfory # c, we haved(f(y),c) =d(y,c) — 1L

(3) All cyclic elements gfx]; are inC = {c, f(c),..., f"%(c)} and each element
in C is cyclic of periodn.

(4) If | > 0is an integer, thenf'(y) = ¢ holds if and only ifl > d(y, c) and

| —d(y, ¢) is divisible byn.

(5) (x,y)is f-prohibited if and only ifd(x, ¢) — d(y, c) is not divisible byn.

PrOPOSITION2.2. If (A, f, <,) is a partially ordered mono-unary algebra, then we
have the following.
(1) If c € Ais acyclic element of period > 1, thenC = {c, f(c),..., f"(c)}is
an antichain with respect tg:, .
(2) If (x,y) € Ax Ais an f-prohibited pair, therx andy are incomparable with
respect to<, .

PROOF. (1) Takec* = fi(c) andt = j —i. Then ft(c) = fi(c). Now
c <, fi(c*) impliesc* <, f'(c*) < f%(c") < --- < f"™(c*) = c*, in con-
tradiction withc* # f'(c*). The reverse relatiorf'(c*) <, c¢* leads to a similar
contradiction.

(2) Let f¥(x), ..., f¥™1(x) be distinct elements antk+™(x) = fk(x) = f'(y)
for some integer& > 0,1 > 0 andm > 2 withmt k — . The assumptiox <, y
implies

%) < ()

forthe elements “*' (x) and f "' (y) = f*(f'(y)) = fX(fk(x)) = f%(x) ofthe cycle
C = {fkx), f*¥1(x),..., f*"™1(x)}, which contradicts (1), since { 2k — (k +1).
The casegy <, x can be treated similarly. O

3. The order components of(A, f, <;)

Let (A, f, <) be a partially ordered mono-unary algebra. Consider the factor set
B=A/~i={[x]t | x € A}l

We define the relatiori, on B as follows: [X]; <, [Y]¢ if X; <, y; forsomex; € [X];
andy, € [y]s.
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ProPOSITION3.1. (1) < is a quasiorder (reflexive and transitive) @&
(2) If [x]¢ < [yls and[y]s < [X]¢ for the f-component$x]s # [y]¢, then there
is no cyclic element € [x]; U [y]s of periodn > 1.

PrROOF (1) In order to see transitivity, suppo$e]s <i; [yl+ < [z];. Then
X1 <r Y1 andy; <, z for somex; € [X]s, Y1, y; € [ylf andz € [z];. Since
y: ~¢ Y;, we can find integerk > 0 andl > 0 such thatf¥(y;) = f'(y;). However,

) < oy = fliyp < (@),

for f¥(x) € [x]s and f'(z) € [z];, SO[X]; <\ [Z]+.

(2) Suppose thdix]¢ <; [yl+ < [X]t, [X]t # [Y]¢ and, without loss of generality,
¢ € [x]; isacyclicelement of periodl > 1. There exisky, X, € [X]; andyy, V> € [y]+
with the propertiex; <; y; andy, <, x,. By part (1) of Propositior2.1,

fi(x) =c= f2(xp)

for some integers, > 0 andt, > 0. Sincef(y;) ~; f%(y,), we can find integers
k > 0 andl > 0 such that

FR(Fy)) = F1(F2(y2).
The compatibility of<, gives
f¥) = X (fh(x)) = X (Fr () = F'(F2(y) = f1(F2 () = f'(0),

where f¥(c) and f'(c) are cyclic elements. Applying part (1) of Propositidrz, we
obtain thatf¥(c) = f¥(fu(y;)) = f'(c) in contradiction with[x]; N[y]; = @. O

The relation=, is defined orB = A/ ~ as follows: forx, y € Alet[x]s = [y]s
if [xX]; < [y]s and[y]; <, [X];. Itis well-known that starting from the quasiorder
<, the above definition provides an equivalencBorWe define the@rder component
of xin (A, f, <) by

= J .

yeAand[yl =[xt

Clearly,[x]; € (x) € Aand(x) is a subalgebra i0A, f), which corresponds to the
=, equivalence clasgx]:]-, of [x]¢ in B. Itis easy to see thdf{x) | x € A}is a
partition of A.

If c € (x) is a cyclic element, then part (2) of Propositiohgives that(x) = [X];.
We make use of the partial ordet, on B/ =;, which can be derived from, in a

natural way:(x) < (y) if [X]¢ <r [yls.
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LEMMA 3.2. Let (A, f, <) be a partially ordered mono-unary algebra. Xfe A
and there is no cyclic element {®), then there exists a linear orderon (x) with the
following properties

(1) p is compatible or((x), ),
(2) p is an extension of, on the elements d@k).

PrROOF. The absence of cyclic elements ensures that(x) —> (x) is acyclic,
preserving the partial ordem ((x) x (x)). A straightforward application of the Main
Theorem in §] gives the existence of the desirged O

LEMMA 3.3. Let(A, f, <;) be a partially ordered mono-unary algebra,c A and
c € (X) a cyclic element of period > 1. Then there exists a partial order on
(x) = [x]¢ with the following properties
(1) p is compatible on([x]s, f),
(2) p is an extension of, on the elements ¢k]+,
(3) [X]f = EQUE;U---U E,_; is a pairwise disjoint union, where each set

Ei = {u e [x]f | d(u,c) —i is divisible byn}, 0<i<n-1,

is a chain with respect tp, and fori # j the elements of; x E; are f-prohibited
pairs.

PrROOF. Let E = [x]; and consider the equivalence relatior= Ag U (C x C)
on E, whereA¢ is the diagonal oE x E andC = {c, f(c), ..., f""1(c)} is the set of
cyclic elements irE. Clearly,[u], = {u}if u e E\ C and[u], = Cif u € C. Using
the factor seE* = E /¢, define a functionf * : E* — E* and a relatiom* C E* x E*
as follows: f*([u],) = [ f (u)]. andr* is the transitive closure of the reflexive relation

s = {(lul., [v].) | u,v € E andu’ <, v’ for someu’ € [u]., v" € [v].}.

Then f* is well-defined sincd (C) € C. Itis immediate from the definitions that
preserves, whencef* preserves*. We claim, that * is a partial order orE*. Itis
enough to show that there is no proper cyclé&inwith respect tcs. If a proper cycle

[ui]esfuz]es- - - S[uk].s[uile
does not contai, then we have
ul Sr u2 Sr Sr uk Sr ul

implying thatu; = u, = --- = uy, a contradiction. IfC appears in a proper cycle,
then we can exhibit a segment of it as

Cslvil.s[vzles- - - s[u].sC,
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wherevy, v, ..., v ¢ C. Now we have
C<us s Sy

for somec’, ¢’ € C. Applying part (1) of Propositio2.2 gives thatt’ = ¢”. Thus the
elementsy; = v, = --- =y = ¢ = ¢’ are inC, a contradiction. The only cyclic
element of(E*, f*)is C and f*(C) = C, so we can apply the Main Theorem @] [
to the partially ordered algeb(&*, f*, r*), in order to get a compatible linear order
p*on(E* f*)withr* C p*. We claim that

p={u,v)|u,veE, (ul,[v]) € p*andn | d(u,c) —d(v, C)}

is one of the desired relations @&

The reflexive and transitive propertiesotan be easily verified. L&, v) € p and
(v,u) € p. Then([u],, [v].) € p* and([v],, [u].) € p* imply [u], = [v],, whence
u=voru,v e C. Ifu v € C, then we also have = v sincen | d(u, ¢c) — d(v, ¢),
proving antisymmetry.

Supposdgu, v) € p. Then([ul,, [v],) € p* and the compatibility op* provides
that

(fWl, [f]) = (F*(ulo), F*([v].)) € p*.
Using part (2) of Propositio.1, we obtainn | d(f (u), c) — d(f (v), c) as a conse-
quence of the divisibilityh | d(u, ¢) — d(v, ), proving that( f (u), f(v)) € p.

Supposeu,v € E andu <, v. Then first we get([u]., [v],) € s and next
([ul, [v]e) € r* € p*. If n { d(u,c) — d(v,c), then(u,v) is f-prohibited by
part (5) of Propositior2.1, contradicting part (2) of Propositich2. Thus we have
n|d(u,c)—d(v, c)and(u, v) € p, provingr < p.

Foru, v € E;, the divisibility n | d(u, ¢) — d(v, ¢) follows fromn | d(u, ¢) —i and
n|d(v,c) —i. Sincep* is linear, either[u],, [v].) € p* or ([v],, [u].) € p* holds.
Thus we have eitheu, v) € p or (v, u) € p, proving thatE; is a chain with respect
to p.

If i # jand(u,v) € E x Ej, thenn | d(u,c) —i andn | d(v,c) — j imply
thatd(u, ¢) — d(v, c) is not divisible byn, so by part (5) of Propositio8.1, (u, v) is
f -prohibited. O

REMARK 3.4. According to b, Proposition 3.6], the convexity of the antichdin
implies thate = Ag U (C x C) is an order congruence 6E, f,r N (E x E)).

4. The main results

A compatible partial ordeR on a mono-unary algebi@, f) is called f -quasili-
near, if (X,y) € Ror (y, x) € Rfor all non f-prohibited pairsx,y) € A x A. In
view of part (2) of Propositior2.2, we have the following simple observation.
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ProPOSITION4. 1. If a compatible partial ordeiR on a mono-unary algebrgA, f)
is f-quasilinear, then it is maximdlvith respect to containmenamong the compat-
ible partial orders of(A, f).

THEOREM4.2. If (A, f, <;) is a partially ordered mono-unary algebra, then there
exists a compatible partial ordeR on (A, f) with the following properties

(1) Risan extension af,
(2) Ris f-quasilinear.

PROOF. Let «; be an arbitrary linear extension of the partial oreer on the set
B/ =, of order components ifA, f, <), whereB = A/ ~;. Letx € A. If there
is no cyclic element inx), then fix a compatible linear order,, on (x) with the
properties described in Lemn3a2. If there is a cyclic element of period> 1 in (x),
then fix a compatible partial order, on (x) = [X]; with the properties described in
Lemma3.3. We claim that

R={(X,y) € Ax A| (X) <, (y) and(X, y) € py in case of(x) = (y)}

satisfies (1) and (2).

The reflexive, antisymmetric and transitive propertiefRafan be easily verified.
In order to prove the compatibility dR, it is enough to note thatf (x)) = (x) and
thatp, is a compatible partial order arx), f).

Supposex <; y. Then[x]s <, [Yl¢, whence we obtaifx) <, (y) as well
as(x) <, (y). Inthe case ofx) = (y), the relation(x, y) € py follows from
rN((x) x (X)) € p- Thus we havéx, y) € R, provingr € R. Therefore (1) holds.

Suppose nowx, y € A are incomparable elements with respecRo Then the
linearity of <, implies that(x) = (y), (X, ¥) & px and(y, X) ¢ py,. Sincepy, is
not linear, the order compone{x) must contain a cyclic elementof periodn > 2.
In view of the properties op,, described in Lemma&.3, we obtain thak € E; and
y € Ejforsomei, j € {0,1,...,n—1} withi s j. Now the last property of thg;’s
guarantees thdk, y) is an f -prohibited pair. Thus (2) holds. O

COROLLARY 4.3. A compatible partial ordeR on (A, f) is maximal(with respect
to containmentif and only if Ris f-quasilinear.
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