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Abstract

The paper [3] proved a necessary algebraic condition for a Banach algebraA with finite-dimensional
radicalR to have a unique complete (algebra) norm, and conjectured that this condition is also sufficient.
We extend the above theorem. The conjecture is confirmed in the case whereA is separable andA=R is
commutative, but is shown to fail in general. Similar questions for derivations are discussed.
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1. Introduction

This paper is concerned with the question ofuniqueness of norm— the question of
when a Banach algebra has aunique complete norm, which means, by definition,
that each complete algebra norm on the algebra is equivalent to the given norm. A
celebrated theorem of Johnson ([6], [2, Chapter 5.1.6]) states that each semisimple
Banach algebra has a unique complete norm. However, it has been known for a long
time that even a commutative Banach algebra with 1-dimensional radical may fail to
have this property; the first such example is due to Feldman (see [2, Chapter 5.4.6]).
There are other conditions that such an algebra needs to satisfy.

The question of uniqueness of norm for algebras with finite-dimensional radical
has been discussed in [11], [12], and also implicitly in [4] (see also [2]). The most
thorough treatment of this problem has been, however, in [3]. There, the authors
propose necessary and sufficient algebraic conditions for a Banach algebra with non-
zero, finite-dimensional radical to have a unique complete norm. They proved the
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following theorem (see [3, Theorem 2.2], or [2, Chapter 5.1.12]). The notation is
given in Section2.

THEOREM. Let A be a unital Banach algebra with finite-dimensional radical. Sup-
pose that there exists a minimal radical idealK such thatK½K² has infinite codimen-
sion in A. ThenA does not have a unique complete norm.

It was conjectured in [3] that the converse of the above theorem holds. This
conjecture was proved under various additional hypotheses, but, in its generality, was
left unresolved.

In Section3, we give a new proof of the above theorem. Moreover, we extend
the result by proving that the algebra in consideration actually has a discontinuous
automorphism. In Section4, the conjecture is proved in the case where the algebraA
is separable and the quotientA

/
.radA/ is commutative. This resolves the question,

left open in [3], of uniqueness of norm for an interesting class of algebras. Finally, in
Section6, we construct a counter-example to show that the conjecture fails, even in
the case where the algebra is separable and the radical is 2-dimensional.

It should be remarked that, for an algebraA with finite-dimensional radical, ifA is
separable with respect to a complete algebra norm, thenA is separable with respect
to each complete algebra norm (see [3, Proposition 3.16]).

There is a related question about the automatic continuity of derivations. It is
proved in [8] that derivations on each semisimple Banach algebra are continuous.
We consider two automatic continuity problems; one is for derivationson Banach
algebras with finite-dimensional radical and the other is for derivationsfrom Banach
algebras into finite-dimensional Banach modules. Our results on these problems
are ‘in parallel’ to those on the uniqueness-of-norm problem. Moreover, the results
on constructing discontinuous automorphisms are all derived from similar results on
constructing discontinuous derivations (see Section3 and Section6).

There is another related topic, the Wedderburn decomposition of Banach algebras
with finite-dimensional radical, which was developed in [7]. However, we do not
cover this topic here.

In summary, we prove the following ‘characterization’ theorems. WhenA is
non-unital we can always considerA# — the unitization ofA.

THEOREM A. Let A be a separable Banach algebra with finite-dimensional radi-
cal R such thatA=R is both unital and commutative. Then the following are equiva-
lent:

(a) each derivation onA is continuous;
(b) each derivationD : A → R with D2 = 0 is continuous;
(c) each automorphism ofA is continuous;
(d) each complete algebra norm onA is equivalent to the given norm;
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(e) for each minimal radical idealK in A, the idealK½K² has finite codimension
in A.

THEOREM B. Let A be a separable, unital Banach algebra, and letX be a finite-
dimensional BanachA-bimodule such thatA=X⊥ is commutative. Then the following
are equivalent:

(a) each derivation fromA into X is continuous;
(b) for each minimal sub-bimoduleY in X, the idealY½Y² has finite codimension

in A.

2. Preliminaries

First, we recall some terminology explained in [3]; see also [2]. Let A be an
algebra. For two subspacesE andF in A, we denote byE F the linear span of the set
{ab : a ∈ E; b ∈ F}.

A minimal radical idealof A is a minimal non-zero ideal ofA that is contained
in radA, the radical ofA. In each non-zero and finite-dimensional ideal contained in
radA, we can always find a minimal radical ideal.

When radA = R is finite-dimensional, there existsn ∈ N such thatRn = {0} and,
for each minimal radical idealK , we haveRK = K R = {0}.

For a subspaceI of A, define theleft andright annihilatorsof I by

I½ = {a ∈ A : aI = {0}} and I² = {a ∈ A : I a = {0}} ;
respectively. Define theannihilatorof I by I ⊥ = I½∩ I². Similarly, we can define the
left annihilator X½ of a left A-moduleX andright annihilator Y² of a right A-module
Y; X½ andY² are ideals inA. For anA-bimoduleZ, we also define theannihilator
Z⊥ to beZ½ ∩ Z² .

For eachm ∈ N, letMm denote the full matrix algebra ofm × m-matrices overC.
For eachm; n ∈ N, letMm;n denote the space ofm × n-matrices overC; the space
Mm;n is naturally considered as anMm-Mn-bimodule.

Let A andB be algebras. Recall that anA-B-bimoduleX is minimal if X is non-
zero and has no other non-zero submodule, and issimpleif, furthermore,AX B 6= 0.
For a finite-dimensional, simpleA-B-bimodule X, there existl ; r ∈ N such that
A=X½

∼= Ml and B=X²
∼= Mr and, when considered as anMl -Mr -bimodule, X is

isomorphic toMl ;r ; see, for example, [2, page 65]. The moduleMl ;r is the unique
simpleMl -Mr -bimodule (up to isomorphism).

Each unitalMl -Mr -bimodule can be considered as a unital leftMlr -module, and
hence each unitalMl -Mr -bimodule issemisimple, so that it is an algebraic direct sum
of its simple submodules, or equivalently, each of its submodules is an algebraic direct
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summand (inMl -mod-Mr ). For the semisimplicity of unital leftMn-modules see, for
example, [9, pages 28, 33].

The following are standard results from automatic continuity theory; for details,
see [2]. Let T : E → F be a linear operator from a Banach spaceE into another
Banach spaceF . Theseparating spaceof T , denoted byS.T/, is defined as{

v ∈ F : there exists a sequence.un/ ⊂ E with un → 0 andT.un/ → v
}
:

The spaceS.T/ is a closed subspace ofF and, by the closed graph theorem,T is
continuous if and only ifS.T/ = {0}. Let S : F → G be a bounded linear operator
from F into a Banach spaceG. Then we have

S.ST/ = S.S.T// ;

see [2, Theorem 5.2.2 (ii)].
Now let � : A → B be a homomorphism from a Banach algebraA into a Banach

algebraB. Then the separating spaceS.�/ is a closed ideal in�.A/. Define theleft
andright continuity idealsof � by

I½.�/ = {a ∈ A : b 7→ �.ab/; A → B; is continuous}; and

I².�/ = {a ∈ A : b 7→ �.ba/; A → B; is continuous};
respectively. By the previous paragraph, we have

I½.�/ = {a ∈ A : �.a/S.�/ = {0}} and I².�/ = {a ∈ A : S.�/�.a/ = {0}} :
As expected,I½.�/ andI².�/ are ideals inA; in general, they are not closed inA.

Let D be a derivation from a Banach algebraA into a BanachA-bimoduleX; by
definition, D is a linear map fromA into X satisfying

D.ab/ = a · Db + .Da/ · b .a; b ∈ A/:

Then the separating spaceS.D/ is a closed submodule ofX. The left and right
continuity idealsof D are defined to be

I½.D/ = {a ∈ A : a ·S.D/ = {0}} andI².D/ = {a ∈ A : S.D/ · a = {0}} ;
respectively. We see that

I½.D/ = {a ∈ A : b 7→ D.ab/; A → X; is continuous}; and

I².D/ = {a ∈ A : b 7→ D.ba/; A → X; is continuous}:
In this case, the idealsI½.D/ andI².D/ are closed inA.
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3. Construction of discontinuous derivations and automorphisms

In [3, Theorem 2.2], the authors construct directly, on a Banach algebraA, a
complete algebra norm that is not equivalent to the given norm whenA satisfies
certain algebraic conditions. Theorem3.3below, extends that theorem by providing
a discontinuous automorphism ofA (as well as a discontinuous derivation onA). The
method is to construct a discontinuous automorphism out of a certain derivation.

First, we construct a discontinuous derivation from a Banach algebraA into a
finite-dimensional BanachA-bimodule.

LEMMA 3.1. Let A be a Banach algebra, and letY be a finite-dimensional, simple
BanachA-bimodule. Suppose thatA=.Y½Y²/ is unital and has infinite dimension.
Let F be any finite-dimensional subspace ofY⊥. Then there exists a discontinuous
A-mod-A homomorphismT from Y⊥ ontoY such thatT is zero onY½Y² + F.

PROOF. SinceY⊥ = Y½ ∩ Y² has finite codimension inA, we see thatY½Y² is of
infinite codimension inY⊥. Then

I = Y½Y² + F + AF + F A + AF A

is also an ideal of infinite codimension inY⊥. SinceA=.Y½Y²/ is unital, the quotient
spaceY⊥=I can be considered as a unitalA=Y½-A=Y² -bimodule. As discussed in
Section2, we have that bothA=Y½ and A=Y² are isomorphic to some full matrix
algebras, and thatY⊥=I is an algebraic direct sum of simpleA=Y½-A=Y² -submodules.
SinceY⊥=I has infinite dimension, there exist distinct such simple submodules, sayEn

(n ∈ N). For eachn ∈ N, let Tn be anA=Y½-mod-A=Y² homomorphism fromY⊥=I
onto Y such thatTn is an isomorphism fromEn onto Y and zero on the remaining
submodules. Let³ : Y⊥ → Y⊥=I be the quotient map. Then eachTn ◦ ³ is an
A-mod-A homomorphism ontoY, andTn ◦ ³ is zero onI . It is easily seen that

Y⊥ =
∞⋃

n=1

ker.Tn ◦ ³/ :

The Baire category theorem applied to the Banach spaceY⊥ then shows that ker.Tn0◦³/
is not closed for somen0 ∈ N. Hence, by settingT = Tn0 ◦ ³ , we obtain the desired
mapT .

THEOREM3.2. Let Abe a Banach algebra, and letX be a finite-dimensional Banach
A-bimodule such thatA=.X½X²/ is unital. Suppose that there exists a minimal sub-
bimoduleY of X such thatY½Y² has infinite codimension inA. Then, for each finite-
dimensional subspaceF of Y⊥, there exists a discontinuous derivationD : A → X
such thatD.A/ = Y and D.F/ = {0}.
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PROOF. Let e ∈ A be such thate+ X½X² is the identity ofA=.X½X²/.
SinceY is a minimalA-bimodule, eitherAY = {0} or AY = Y. Assume towards

a contradiction thatAY = {0}. Let a ∈ Y². Sincea − ea ∈ X½X² , we see that

a ∈ AY² + X½X² = Y½Y²:

SoY² ⊂ Y½Y² . This contradicts the assumption thatY½Y² has infinite codimension in
A. ThereforeAY = Y and, similarly, we see thatY A= Y. ThusY is indeed a simple
A-bimodule.

Consider the following two cases.
Case 1: Y½ = Y² = Y⊥. ThenA=Y⊥ ∼= Mn for somen ∈ N. Let

{pi j : i; j = 1; : : : ; n} ⊂ A

be such that
{

pi j + Y⊥ : i; j = 1; : : : ; n
}

corresponds to the standard basis ofMn.
Then each elementa in A can be expressed uniquely as

a =
∑
i; j ≤n

Þi j pi j + u;(1)

whereÞi j ∈ C for 1 ≤ i; j ≤ n andu ∈ Y⊥.
Let F1 be the linear span ofF ∪ {pi j pst − Ž js pit : 1 ≤ i; j ; s; t ≤ n}. ThenF1 is

a finite-dimensional subspace ofY⊥. Let T : Y⊥ → Y be a discontinuousA-mod-A
homomorphism that is zero on.Y⊥/2 + F1, the existence of which is guaranteed by
Lemma3.1. DefineD : A → Y by D.a/ = T.u/ for eacha ∈ A written in the form
specified in (1). It is routine to check thatD is a derivation satisfying the requirement.

Case 2: Y½ 6= Y² . SinceY½ andY² are distinct maximal ideals inA (by the sim-
plicity of Y again), we haveA = Y½ + Y² , and soY²=Y⊥ ∼= A=Y½ ∼= Ml and
Y½=Y⊥ ∼= A=Y² ∼= Mr , for somel ; r ∈ N. Choose

{
pi j : i; j = 1; : : : ; l

} ⊂ Y² and{
qi j : i; j = 1; : : : ; r

} ⊂ Y½ such that{
pi j + Y⊥ : i; j = 1; : : : ; l

}
and

{
qi j + Y⊥ : i; j = 1; : : : ; r

}
correspond to the standard bases ofMl andMr , respectively. Then we see that each
elementa in A can be expressed uniquely as

a =
∑
i; j ≤l

Þi j pi j +
∑
s;t≤r

þstqst + u;(2)

whereÞi j ∈ C for 1 ≤ i; j ≤ l , þst ∈ C for 1 ≤ s; t ≤ r , andu ∈ Y⊥.
Let F1 be the linear span of

F ∪ {pi j qst : 1 ≤ i; j ≤ l ; and 1≤ s; t ≤ r
}

∪ {pi j pst − Ž js pit : 1 ≤ i; j ; s; t ≤ l
}

∪ {qi j qst − Ž jsqit : 1 ≤ i; j ; s; t ≤ r
}
:
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Then F1 is a finite-dimensional subspace ofY⊥. By Lemma3.1, we can find a
discontinuousA-mod-A homomorphismT : Y⊥ → Y that is zero onY½Y² + F1.
DefineD : A → Y by D.a/ = T.u/ for eacha ∈ A written in the form specified in
(2). Again, it can be verified thatD satisfies our requirement.

THEOREM 3.3. Let A be a Banach algebra with finite-dimensional radicalR such
that A=.R + R½R²/ is unital. Suppose that there exists a minimal radical idealK
such thatK½K² has infinite codimension inA. Then:

(1) there exists a discontinuous derivationD : A → R with D2 = 0;
(2) there exists a discontinuous automorphism onA.

In particular, A has a complete algebra norm which is not equivalent to the given
norm.

PROOF. (i) SinceK is a minimal radical ideal, we haveRK = K R = {0}. ThusK
can be considered as a minimalA=R-bimodule. We see thatA=R and K satisfy the
hypothesis of Theorem3.2, so there exists a discontinuous derivationD0 : A=R → K .
SetD = D0 ◦ ³ , where³ : A → A=R is the quotient map. ThenD : A → K is a
discontinuous derivation withD.K / = {0}.

(ii) Let D : A → A be a discontinuous derivation such thatD2 = 0. Denote byidA

the identity map onA. Set� = idA + D. Then� is a discontinuous automorphism
on A; its inverse map is' = idA − D.

The mapa 7→ ‖�.a/‖, A → R+, is an algebra norm onA, easily seen to be
complete, and is not equivalent to the given norm.

4. Banach algebras having a unique complete norm topology

In this section, we prove the mentioned conjecture for separable Banach algebras
with finite-dimensional radical under some additional hypothesis. In particular, we
prove the conjecture in the case whereA is separable andA=.radA/ is commutative.
This case was proved in [3] under the additional hypothesis that either radA is central
or .radA/2 = {0}. Part of our argument is an extension of the argument in [3]. Our
approach is to use separating spaces as well as continuity ideals to prove the continuity
of certain homomorphisms.

Let A be an algebra. Acomposition seriesof an A-bimodule X is a chainX =
X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xs−1 ⊃ Xs = {0} of submodules ofX such that, for each
1 ≤ i ≤ s, the A-bimoduleXi −1=Xi is minimal. We introduce the following concept.

DEFINITION 4.1. An admissible seriesfor an A-bimoduleX is a chain

X = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xs−1 ⊃ Xs = {0}
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of submodules ofX such that the ideals.Xi −1=Xi /½.Xi −1=Xi /² , for 1 ≤ i ≤ s, are
each of finite codimension inA.

LEMMA 4.2. Let A be an algebra, and letX be anA-bimodule. Suppose thatX
has a composition series. Then the following are equivalent:

(a) X has an admissible series;
(b) X has an admissible series that is a composition series;
(c) each composition series ofX is an admissible series.

When one of the above three conditions hold then each submodule ofX has an
admissible series.

PROOF. That (a) implies (b) follows by ‘refining’ the given admissible series to
obtain a composition series, which is easily seen to be admissible. That (b) implies
(c) follows from the Jordan-Ḧolder theorem [1, pages 117–120]. The remaining
implication ((c) implies (a)) is obvious. The final assertion then follows from (c).

A finite-dimensionalA-bimoduleX always has a composition series.

LEMMA 4.3. Let A and B be commutative algebras, and letX be a finite-dimen-
sionalA-B-bimodule. ThenX = ⊕n

i =1 Xi whereXi are submodules ofX .1 ≤ i ≤ n/
such that, for each1 ≤ i ≤ n, we have

(1) either A=.Xi /½ is radical or bothA=.Xi /½ is local and there existsa ∈ A such
thata · x = x for x ∈ Xi , and
(2) either B=.Xi /² is radical or bothB=.Xi /² is local and there existsb ∈ B such

that x · b = x for x ∈ Xi .

PROOF. SinceX is finite-dimensional, we can writeX = ⊕n
i =1 Xi , wheren ∈ N

and eachXi is an A-B-submodule ofX with no non-trivial direct summand (inA-
mod-B). Fix i with 1 ≤ i ≤ n. Then Ai = A=.Xi /½ and Bi = B=.Xi /² are
finite-dimensional, commutative algebras which act faithfully on the left and right
of Xi , respectively. By the Wedderburn structure theorem (see, for example, [2,
Chapter 1.5.8]), there exists an orthogonal set{p1; : : : ; pk} (which may be empty) of
non-zero idempotents inAi such that

Ai =
k⊕

j =1

Cpj ⊕ radAi :

It then follows that

Xi =
k⊕

j =1

pj · Xi ⊕
(

1 −
k∑

j =1

pj

)
· Xi ;
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wherepj · Xi (1 ≤ j ≤ k) and
(
1−∑k

j =1 pj

) · Xi are easily seen to beA-B-bimodules,
and eachpj · Xi is non-zero. Therefore, by the assumption onXi , we must have that
eitherk = 0 or k = 1. ThusAi is either radical or local; in the later case we must
havep1 · x = x (x ∈ X).

The assertion (ii) is proved similarly.

LEMMA 4.4. Let A be an algebra, and letI1, I2, J1, J2 be finite codimensional
ideals in A such that there existsm ∈ N with Jm

1 ⊂ I1 and Jm
2 ⊂ I2. Suppose that

J1J2 has finite codimension inA. ThenI1I2 has finite codimension inA.

PROOF. This is [3, Lemma 1.6].

PROPOSITION 4.5. Let A be an algebra, and letX be a finite-dimensionalA-
bimodule, such thatA=X⊥ is commutative. Then the following are equivalent:

(a) for each minimal sub-bimoduleY of X, the idealY½Y² has finite codimension
in A;
(b) there are sub-bimodulesX1; : : : ; Xn of X such thatX = ⊕n

i =1 Xi , and such that
.Xi /½.Xi /² has finite codimension inA;
(c) X has an admissible series.

PROOF. That (b) implies (c) is obvious, and that (c) implies (a) follows from
Lemma4.2. We prove (a) implies (b).

Suppose that (a) holds. SetB = A=X⊥, so thatB is a commutative algebra.
Let X = ⊕n

i =1 Xi be the decomposition as in Lemma4.3 (working in B-mod-B).
Returning toA-mod-A, we see that the decompositionX = ⊕n

i =1 Xi still satisfies the
conditions (i) and (ii) in Lemma4.3.

Fix 1 ≤ i ≤ n. Let Y be a minimal sub-bimodule ofXi . First, if A=.Xi /½ is
radical, then so isY½=.Xi /½. Otherwise, ifA=.Xi /½ is local, then, by Lemma4.3, there
existsa ∈ A such thata · x = x for x ∈ Xi , and soa =∈ Y½. This implies thatY½ is a
proper ideal inA, and therefore, by locality,Y½=.Xi /½ is, again, radical. Thus, in both
cases,Y½=.Xi /½ is radical and finite-dimensional. It follows that.Y½/l ⊂ .Xi /½ for
somel ∈ N. Similarly, there exists anr ∈ N such that.Y²/r ⊂ .Xi /² . By hypothesis,
we have thatY½Y² is of finite codimension inA. Hence, by Lemma4.4, the ideal
.Xi /½.Xi /² also has finite codimension inA.

This completes our proof.

DEFINITION 4.6. Let A be an algebra with a finite-dimensional radicalR. We say
that A satisfies theA-propertyif the A-bimoduleR ∩ R⊥ has an admissible series.

That (a) implies (b) from following proposition, in the case whereR2 = {0}, was
implicit in the proof of [3, Theorem 3.13] (in fact, the argument there can be modified
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to work in the general case of (a) implies (b); our proof is different but still follows
the idea of [3]).

PROPOSITION4.7. Let A be an algebra with finite-dimensional radicalR such that
A=R is commutative. Then the following are equivalent:

(a) for each minimal radical idealK in A, the idealK½K² has finite codimension
in A;
(b) there are idealsR1; : : : ; Rn in A such thatR ∩ R⊥ = ⊕n

i =1 Ri , and such that
.Ri /½.Ri /² has finite codimension inA;
(c) A satisfies theA-property.

PROOF. This is a corollary of Proposition4.5, since each minimal radical idealK
is contained inR ∩ R⊥.

LEMMA 4.8. Let A be a separable Banach algebra, and letE and F be closed
linear subspaces ofA with E F having finite codimension inA. ThenE F is closed,
and there exist a constantC > 0 andm ∈ N such that, for eacha ∈ E F, there exist
.xi /

m
i =1 ⊂ E and.yi /

m
i =1 ⊂ F such that

a =
m∑

i =1

xi yi and
m∑

i =1

‖xi ‖‖yi ‖ ≤ C‖a‖:

PROOF. This is [3, Lemma 3.1] (see also [2, Chapter 2.2.16] and [10]).

The next result is an extension of Corollaries 3.7–3.9 in [3]. We cannot use an
induction scheme (like the one provided by [3, Theorem 3.6]) to prove the next
theorem, as was the case for those corollaries.

THEOREM4.9. Let A be a separable Banach algebra with finite-dimensional radi-
cal. Suppose thatA satisfies theA-property. Then each complete algebra norm onA
is equivalent to the given norm.

PROOF. The radical ofA is denoted byR. Consider another complete algebra
norm ||| · ||| on A. We need to prove that the identity mapi : .A; ‖ · ‖/ → .A; ||| · |||/ is
continuous. By Johnson’s automatic continuity theorem for epimorphisms, we have
S.i/ ⊂ R. For eacha ∈ R, sincei is continuous onR— a finite-dimensional ideal,
we havea ∈ I½.i/ ∩I².i/. Thus, indeedS.i/ ⊂ R ∩ R⊥.

Assume towards a contradiction thatS.i/ 6= {0}. Then there exists an idealK that is
maximal among the ideals properly contained inS.i/. SinceK is finite-dimensional,
K is closed in both topologies. Consider the map� : .A; ‖ · ‖/ → .A=K ; ||| · |||/
induced byi. ThenS.�/ = S.i/=K , and

I½.�/ = {a ∈ A : �.a/S.�/ = {0}} = .S.i/=K /½ ;



[11] Automatic continuity and Banach algebras 289

and, similarly,I².�/ = .S.i/=K /². SoI½.�/ andI².�/ are closed (in both topolo-
gies). Then, since the bilinear map

T : .x; y/ 7→ �.xy/; I½.�/×I².�/ → A=K

is separately continuous, it follows thatT is bounded.
By the A-property of A and by Lemma4.2, the idealI½.�/I².�/ is of finite

codimension inA. Then, by Lemma4.8, we see that� is bounded onI½.�/I².�/,
which is, by the same lemma, a closed, finite-codimensional subspace ofA. Thus�
is continuous on the whole ofA, contradicting the fact thatS.�/ = S.i/=K 6= {0}.
Hence, we must haveS.i/ = {0}, implying the continuity ofi.

The following theorem resolves a question that was left open in [3].

THEOREM 4.10. Let A be a separable Banach algebra with finite-dimensional
radical R such thatA=R is commutative. Suppose thatK½K² has finite codimension
in A for each minimal radical idealK in A. Then each complete algebra norm onA
is equivalent to the given norm.

PROOF. This follows from Proposition4.7, and Theorem4.9.

REMARK. Theorem4.10and Proposition4.7 still hold with the much weaker hy-
pothesis that ‘A

/
R + R⊥ is commutative’ instead of the hypothesis that ‘A=R is com-

mutative’ (with the same proofs). The algebraA
/

R + R⊥ is ‘only’ finite-dimensional.

5. The continuity of derivations

Recall that we are interested in two classes of derivations: derivationson algebras
with finite-dimensional radical, and derivationsfrom algebras into finite-dimensional
bimodules. The proofs in this section are similar to those in Section4.

THEOREM5.1. Let D be a derivation from a separable Banach algebraA into a Ba-
nachA-bimoduleX. Suppose thatS.D/ is finite-dimensional and has an admissible
series as anA-bimodule. ThenD is continuous.

PROOF. Assume towards a contradiction thatS.D/ 6= {0}. Then there exists an
A-bimoduleY which is maximal among the properA-bimodules contained inS.D/.
Consider the mapD1 : A → X=Y induced byD. Then D1 is a derivation and
S.D1/ = S.D/=Y. SoI½.D1/ = {a ∈ A : a ·S.D1/ = {0}} = .S.D/=Y/½, and,
similarly,I².D1/ = .S.D/=Y/² .

Continuing as in the proof of Theorem4.9, we obtain a contradiction. Hence
S.D/ = {0}, implying the continuity ofD.
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COROLLARY 5.2. Let A be a separable Banach algebra, and letX be a finite-
dimensional BanachA-bimodule. Suppose thatX has an admissible series as an
A-bimodule. Then derivations fromA into X are continuous.

PROOF. This follows from Proposition4.2and Theorem5.1.

COROLLARY 5.3. Let A be a separable Banach algebra, and letX be a finite-
dimensional BanachA-bimodule such thatA=X⊥ is commutative. Suppose that
Y½Y² has finite codimension inA for each minimal sub-bimoduleY in X. Then all
derivations fromA into X are continuous.

PROOF. This follows from Proposition4.5and Corollary5.2.

REMARK. In [5], a Banach algebraA is constructed whose squareA2 has finite
codimension, but is not closed. LetX = C with trivial A-bimodule actions. Then
A=X⊥ = 0. Thus A and X satisfy the hypothesis of Corollary5.3 except for the
separability ofA. However, any discontinuous linear functional that is zero onA2 is a
discontinuous derivation fromA into X. This shows that the separability condition in
the hypothesis of the previous corollary and theorem is necessary. We shall see later
that the commutativity condition is also necessary (Theorem6.1). (Un)fortunately,
the algebraA is neither commutative nor has finite-dimensional radical. Therefore
we cannot say anything about the separability hypothesis in other results.

Now we consider derivations on Banach algebras. It is proved in [8] that, for a
semisimple Banach algebraA, each derivationD on A is continuous, which means
thatS.D/ = {0} = radA. Although it is still open whetherS.D/ ⊂ radA holds for
all Banach algebrasA and all derivationsD on A, we have the following result.

LEMMA 5.4. Let A be a Banach algebra with radicalR such thatR2 is closed and
has finite codimension inR. Then, for each derivationD on A, we haveS.D/ ⊂ R.

PROOF. We can assume thatA is unital with the identity denoted bye. For each
primitive idealP in A, define³P to be the natural projection fromA onto A=P.

Assume towards a contradiction thatS.D/ 6⊂ R. ThenS.D/ 6⊂ P1 for some
primitive ideal P1 in A, which is equivalent to the discontinuity of³P1 D. By [8,
Theorem 3.3], we have³P D is continuous for all except finitely many primitive ideals
Pi (1 ≤ i ≤ n), and eachPi has finite codimension inA (hence is maximal). Now,
let P0 be the intersection of all the primitive idealsP different from Pi (1 ≤ i ≤ n).
Then

P0=R ∼=
(

P0 +
n⋂

i =1

Pi

)/ n⋂
i =1

Pi ;
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which is finite-dimensional, and soR2 is closed and has finite codimension inP0. We
haveS.D/ ⊂ P0, butS.D/ 6⊂ P1, so thatP0 6⊂ P1. SinceP1 is a maximal ideal in
A, we see thatP0 + P1 = A. In particular, we havee = p0 + p1, wherep0 ∈ P0 and
p1 ∈ P1. Thene = e2 = p + p2

1, wherep = p2
0 + p0 p1 + p1 p0 = p0 + p1 p0 ∈ P0.

Thus, for eacha ∈ A, we have³P1 D.a/ = ³P1 D.ea/ = ³P1 D.pa/. This implies
that³P1 D is discontinuous onP0. However, it easily seen that³P1 D is zero onR2,
a closed subspace ofP0 of finite codimension, and so³P1 D is continuous onP0, a
contradiction.

COROLLARY 5.5. Let A be a separable Banach algebra with finite-dimensional rad-
ical. Suppose thatA satisfies theA-property. Then derivations onA are continuous.

PROOF. The radical ofA is denoted byR. Let D : A → A be a derivation. By
Lemma5.4, we haveS.D/ ⊂ R. As in the proof of Theorem4.9, we see that
S.D/ ⊂ R ∩ R⊥. Hence, the result follows from Theorem5.1.

COROLLARY 5.6. Let A be a separable Banach algebra with finite-dimensional
radical R such thatA

/
R + R⊥ is commutative. Suppose thatK½K² has finite codi-

mension inA for each minimal radical idealK in A. Then each derivation onA is
continuous.

REMARK. The results in this section hold without modification for a more general
class of operators, theintertwining operators. Let A be a Banach algebra. A linear
operatorT from a BanachA-bimoduleX into a BanachA-bimoduleY is said to be
intertwining overA if, for eacha ∈ A, the maps

x 7→ T.a · x/− a · T.x/ and x 7→ T.x · a/− T.x/ · a;

both from X to Y, are continuous; see, for instance, [2, Chapter 2.7.1]. Thus each
derivation fromA into a BanachA-bimodule is an intertwining operator.

6. The general case of dimension at least two

In this section, we present a counter-example to the main conjecture in [3] men-
tioned in Section1.

For a separable Banach algebraA with 1-dimensional radicalR, the only minimal
radical ideal isR itself. We see that the conjecture holds in this case;A has a unique
complete norm if (and only if)R½R² has finite codimension inA, by Theorem4.9
(and3.3) or by [3, Corollary 3.9]. However, for greater dimensions, even for dimen-
sion 2, the problem becomes more complicated. In [3, Example 5.5], a separable,
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unital Banach algebra with 2-dimensional radical was successfully constructed, which
satisfies the hypothesis of the conjecture, but not the hypothesis of any result in [3]
(nor does it satisfy the hypothesis of our results); the construction is rather involved.
Yet it was proved directly that this algebra has a unique complete norm.

Our example will be a separable, unital Banach algebra with 2-dimensional radical
(showing that the conjecture fails for each dimension greater than 1). Following
the approach of our previous construction, we first construct similar examples for the
problem of derivationsfromBanach algebras into 2-dimensional Banach modules, and
then for the problem of derivationsonBanach algebras with 2-dimensional radical.

THEOREM6.1. There exist a separable, semisimple, unital Banach algebraA and a
2-dimensional, unital BanachA-bimoduleX such that both the following hold:

(a) for each minimal sub-bimoduleY in X, the idealY½Y² has finite codimension
in A;
(b) there exist a discontinuous derivationD from A into X.

The following provides a counter-example to the conjecture.

COROLLARY 6.2. There exists a separable, unital Banach algebraA with 2-
dimensional radical such that all the following hold:

(a) for each minimal radical idealK , the idealK½K² has finite codimension inA ;
(b) there exists a discontinuous derivation onA ;
(c) there exists a discontinuous automorphism onA .

In particular, there exists a complete algebra norm onA that is not equivalent to the
given norm.

PROOF. Let A, X andD : A → X be as in Theorem6.1. SetA = A ⊕ X. Then,
with `1-norm and with product given by

.a ⊕ x/.b ⊕ y/ = ab⊕ .ay + xb/ .a; b ∈ A; x; y ∈ M/ ;

A is a separable, unital Banach algebra with radA = X. We extendD by linearity
to the whole ofA by mappingX to 0. Then we obtain a discontinuous derivation
onA . Define

� : a ⊕ x 7→ a ⊕ .Da + x/; A → A :

Then it is easily seen that� is a discontinuous automorphism onA . The map

a ⊕ x 7→ ‖�.a ⊕ x/‖; A → R+;

gives a complete algebra norm, say||| · |||, onA , and||| · ||| is not equivalent to the given
norm‖ · ‖. Finally, condition (a) follows from Theorem6.1(a).



[15] Automatic continuity and Banach algebras 293

PROOF OFTHEOREM 6.1. Denote byMu
2 the algebra of upper triangular 2× 2-

matrices (overC).
Let B be a separable, commutative, semisimple Banach algebra such thatB2 has

infinite codimension inB (many such examples exist, for example,`1 with pointwise
product). Denote byM2.B/ the Banach algebra of 2× 2-matrices with coefficients
in B. ThenM2.B/ is also semisimple and separable. SetA = Mu

2 ⊕ M2.B/. A
generic element ofA has the form(

Þ þ

0 


)
⊕
(

s u
t v

)
;

whereÞ; þ; 
 ∈ C ands; t; u; v ∈ B. ThenA is an algebra with pointwise addition
and with product being the matrix multiplication, so thatMu

2 andM2.B/ can be
naturally identified with subalgebras ofA. Further,

Mu
2 ·M2.B/ ⊂ M2.B/ and M2.B/ ·Mu

2 ⊂ M2.B/:

Giving A the`1-norm, we obtain a separable, unital Banach algebra (with the identity
given by the identity ofMu

2), and thatM2.B/ is a closed ideal ofA.
We see thatA has the following two obvious characters:

' :
(
Þ þ

0 


)
⊕
(

s u
t v

)
7→ Þ and  :

(
Þ þ

0 


)
⊕
(

s u
t v

)
7→ 
 :

Weclaim that A is semisimple. Indeed, let

a =
(
Þ þ

0 


)
⊕
(

s u
t v

)
∈ radA :

Then, since'.a/ =  .a/ = 0, we must haveÞ = 
 = 0. We next see that

a

(
1 0
0 0

)
=
(

s 0
t 0

)
and

(
0 0
0 1

)
a =

(
0 0
t v

)
;

so the two elements on the right are inM2.B/ ∩ radA = radM2.B/, and sos = t =
v = 0. Now, letw ∈ B. Multiplying a on the left by

(
0 0
w 0

)
, we obtain

(
0 0
0 þw +wu

)

which, again, must be in the radical ofM2.B/, and soþw + wu = 0 for w ∈ B.
Since B cannot have a right identity, we must haveþ = 0, and then, sinceB is
semisimple, we see thatu = 0. Thus, we have proved that radA = {0}.
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Next, weclaim that M2
' has finite codimension inA, whereM' is the kernel of'.

Indeed, for eachs; t; u; v ∈ B, we have(
s u
t v

)
=
(

0 0
0 1

)(
0 0
t v

)
+
(

u 0
0 0

)(
0 1
0 0

)
+
(

0 1
0 0

)(
0 0
s 0

)
;

so thatM2.B/ ⊂ M2
' . In fact, we can check thatM2

' = M'.
ConsiderX = C2 as a unital BanachA-bimodule by defining the module multipli-

cations asM2.B/X = XM2.B/ = {0} and the multiplications byMu
2 as

(
Þ þ

0 


)(
�

�

)
=
(
Þ� + þ�


 �

)
and

(
�

�

)(
Þ þ

0 


)
=
(
Þ�

Þ�

)
;

for Þ; þ; 
; �; � ∈ C. ThenX has exactly one minimalA-mod-A submodule, namely

Y =
{(
�

0

)
: � ∈ C

}
:

We see thatY½ = Y² = M', so thatY½Y² = M2
' has codimension 1 inA.

Now, sinceB2 has infinite codimension inB, there exists a discontinuous linear
functional ½ on B such that½ is zero onB2. Define a discontinuous linear map
D : A → X by

D :
(
Þ þ

0 


)
⊕
(

s u
t v

)
7→

(
½.s/
½.t/

)
:

It can be verified thatD is a derivation.

7. Conclusion

It remains open to determine conditions that are both necessary and sufficient
for a (separable) Banach algebra with finite-dimensional radical to have a unique
complete norm. We have seen that the necessary condition (in the unital case) ‘for
each minimal radical idealK , the idealK½K² has finite codimension’ is not sufficient.
Our construction is, however, not ‘systematic’ enough to provide a clue on finding
and proving additional necessary conditions.
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