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Abstract

The paper 3] proved a necessary algebraic condition for a Banach algAbséth finite-dimensional
radicalR to have a unique complete (algebra) norm, and conjectured that this condition is also sufficient.
We extend the above theorem. The conjecture is confirmed in the case Avlseseparable and /R is
commutative, but is shown to fail in general. Similar questions for derivations are discussed.
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1. Introduction

This paper is concerned with the questionuofqueness of norm-the question of
when a Banach algebra hasunique complete normwhich means, by definition,

that each complete algebra norm on the algebra is equivalent to the given norm. A
celebrated theorem of Johnso®B]([[2, Chapter 5.1.6]) states that each semisimple
Banach algebra has a unique complete norm. However, it has been known for a long
time that even a commutative Banach algebra with 1-dimensional radical may fail to
have this property; the first such example is due to Feldman Zs&zhppter 5.4.6]).
There are other conditions that such an algebra needs to satisfy.

The question of uniqueness of norm for algebras with finite-dimensional radical
has been discussed if]], [12], and also implicitly in §f] (see also 2]). The most
thorough treatment of this problem has been, however3jin There, the authors
propose necessary and sufficient algebraic conditions for a Banach algebra with non:
zero, finite-dimensional radical to have a unique complete norm. They proved the
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following theorem (see3d, Theorem 2.2], or3, Chapter 5.1.12]). The notation is
given in Sectior®.

THEOREM. Let A be a unital Banach algebra with finite-dimensional radical. Sup-
pose that there exists a minimal radical idé&alsuch thatk; K, has infinite codimen-
sion in A. ThenA does not have a unique complete norm.

It was conjectured ind] that the converse of the above theorem holds. This
conjecture was proved under various additional hypotheses, but, in its generality, was
left unresolved.

In Section3, we give a new proof of the above theorem. Moreover, we extend
the result by proving that the algebra in consideration actually has a discontinuous
automorphism. In Sectiofy the conjecture is proved in the case where the algébra
is separable and the quotieA]/(radA) is commutative. This resolves the question,
left open in B], of uniqgueness of norm for an interesting class of algebras. Finally, in
Section6, we construct a counter-example to show that the conjecture fails, even in
the case where the algebra is separable and the radical is 2-dimensional.

It should be remarked that, for an algelavith finite-dimensional radical, iA is
separable with respect to a complete algebra norm, ghienseparable with respect
to each complete algebra norm (s8eRroposition 3.16]).

There is a related question about the automatic continuity of derivations. It is
proved in B] that derivations on each semisimple Banach algebra are continuous.
We consider two automatic continuity problems; one is for derivatmm8anach
algebras with finite-dimensional radical and the other is for derivafiimms Banach
algebras into finite-dimensional Banach modules. Our results on these problems
are ‘in parallel’ to those on the uniqueness-of-norm problem. Moreover, the results
on constructing discontinuous automorphisms are all derived from similar results on
constructing discontinuous derivations (see Sectiand Sectiorb).

There is another related topic, the Wedderburn decomposition of Banach algebras
with finite-dimensional radical, which was developed . [ However, we do not
cover this topic here.

In summary, we prove the following ‘characterization’ theorems. Weis
non-unital we can always considaf — the unitization ofA.

THEOREMA. Let A be a separable Banach algebra with finite-dimensional radi-
cal R such thatA/R is both unital and commutative. Then the following are equiva-
lent

(a) each derivation orA is continuous

(b) each derivationD : A — Rwith D? = 0is continuous

(c) each automorphism @k is continuous

(d) each complete algebra norm dhis equivalent to the given norm
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(e) for each minimal radical ideaK in A, the idealK; K, has finite codimension
in A

THEOREM B. Let A be a separable, unital Banach algebra, and }ebe a finite-
dimensional Banac-bimodule such thaf/ X+ is commutative. Then the following
are equivalent

(a) each derivation fromA into X is continuous
(b) for each minimal sub-bimodul¥ in X, the idealY,Y, has finite codimension
in A

2. Preliminaries

First, we recall some terminology explained i8];[ see also J]. Let A be an
algebra. For two subspacg&sandF in A, we denote byE F the linear span of the set
{ab:ac E, be F}.

A minimal radical idealof A is a minimal non-zero ideal oA that is contained
in rad A, the radical ofA. In each non-zero and finite-dimensional ideal contained in
radA, we can always find a minimal radical ideal.

When radA = Ris finite-dimensional, there existse N such thatR" = {0} and,
for each minimal radical ided, we haveRK = KR = {0}.

For a subspack of A, define thdeft andright annihilatorsof | by

l,={aeA:al ={0}} and I,={aec A:la={0}},

respectively. Define thennihilatorof | by I+ = 1, N 1,. Similarly, we can define the
left annihilator X; of a left A-moduleX andright annihilator Y, of a right A-module
Y; X, andY, are ideals inA. For anA-bimodule Z, we also define thannihilator
Z-tobezZ, NZ,.

For eachm € N, let M, denote the full matrix algebra ofi x m-matrices over.
For eachm, n € N, let M,,, denote the space ofi x n-matrices ovelC; the space
M, is naturally considered as &fi,,-M,-bimodule.

Let A andB be algebras. Recall that a&B-bimodule X is minimalif X is non-
zero and has no other non-zero submodule, asdripleif, furthermore,AX B # 0.
For a finite-dimensional, simplé-B-bimodule X, there existl,r € N such that
A/ X, = M, andB/ X, = M, and, when considered as &fy-M, -bimodule, X is
isomorphic toM ,; see, for example,2[ page 65]. The modul®f, , is the unique
simple M, -M -bimodule (up to isomorphism).

Each unitalM,-M, -bimodule can be considered as a unital Mjft-module, and
hence each unita¥l,-M, -bimodule issemisimpleso that it is an algebraic direct sum
of its simple submodules, or equivalently, each of its submodules is an algebraic direct
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summand (irM;-mod-M;, ). For the semisimplicity of unital lef#l,-modules see, for
example, §, pages 28, 33].

The following are standard results from automatic continuity theory; for details,
see P]. Let T : E — F be a linear operator from a Banach sp&céto another
Banach spac€&. Theseparating spacef T, denoted byS(T), is defined as

{v € F : there exists a sequen@e,) C E with u, — 0 andT (u,) — v}.

The spaceS(T) is a closed subspace 6f and, by the closed graph theorem,is
continuous if and only if5(T) = {0}. LetS: F — G be a bounded linear operator
from F into a Banach spad8. Then we have

S(ST) = S(6(M);

see P, Theorem 5.2.2 (ii)].

Now let6 : A — B be a homomorphism from a Banach algeBranto a Banach
algebraB. Then the separating spa€g6) is a closed ideal i (A). Define theleft
andright continuity idealsof 6 by

£, ) ={ae A: b~ 6(ab), A— B, iscontinuou$, and
F,0)={ac A:b— 0(ba), A— B, iscontinuou},

respectively. By the previous paragraph, we have
F0)={ac A:0@6(©)={0}} and .Z,(0)={ac A:5(6)0(a) ={0}}.

As expected,” (0) and.Z,(9) are ideals irA; in general, they are not closed
Let D be a derivation from a Banach algeb&anto a BanachA-bimodule X; by
definition, D is a linear map fromA into X satisfying

D(ab)=a-Db+(Da)-b (a,be A).

Then the separating spa¢& D) is a closed submodule of. The left andright
continuity idealsof D are defined to be

S (D)={ae A:a-6(D)={0}} and.#,(D) ={aec A:S(D)-a={0}},
respectively. We see that

#(D)={ae A:b+— D(ab), A— X, iscontinuous, and
4,(D)={ae A:b+ D(ba), A— X, is continuous.

In this case, the ideal?; (D) and.#,(D) are closed irA.
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3. Construction of discontinuous derivations and automorphisms

In [3, Theorem 2.2], the authors construct directly, on a Banach algébia
complete algebra norm that is not equivalent to the given norm whesatisfies
certain algebraic conditions. Theored8 below, extends that theorem by providing
a discontinuous automorphism Af(as well as a discontinuous derivation Ah The
method is to construct a discontinuous automorphism out of a certain derivation.

First, we construct a discontinuous derivation from a Banach algébnato a
finite-dimensional BanacA-bimodule.

LeEmMMA 3.1. Let A be a Banach algebra, and I8t be a finite-dimensional, simple
Banach A-bimodule. Suppose that/(Y,Y,) is unital and has infinite dimension.
Let F be any finite-dimensional subspaceYof. Then there exists a discontinuous
A-mod-A homomorphisnT from Y=+ ontoY such thafT is zero onY,Y, + F.

PROOF. SinceY* = Y, NY, has finite codimension ii\, we see that,Y, is of
infinite codimension irY+. Then

| =VY,Y, + F + AF + FA+ AFA

is also an ideal of infinite codimension ¥t-. SinceA/(Y,Y,) is unital, the quotient
spaceY*/I can be considered as a unitd}Y,-A/Y,-bimodule. As discussed in
Section2, we have that bottA/Y, and A/Y, are isomorphic to some full matrix
algebras, and that* /1 is an algebraic direct sum of simpke/Y;-A/Y,-submodules.
SinceY+ /| has infinite dimension, there exist distinct such simple submoduleg,say
(n € N). For eachn € N, let T, be anA/Y;-mod-A/Y, homomorphism frony+*/I
onto Y such thatT, is an isomorphism fronk, ontoY and zero on the remaining
submodules. Letr : YX — Y1/l be the quotient map. Then eadho = is an
A-mod-A homomorphism ontd, andT, o 7 is zero onl . It is easily seen that

Yt =| JkenT,om).

n=1

The Baire category theorem applied to the Banach spatken shows that ké€f, o)
is not closed for somay € N. Hence, by settind = T,, o 7, we obtain the desired
mapT. O

THEOREM3.2. Let Abe a Banach algebra, and I&tbe a finite-dimensional Banach
A-bimodule such thaf/(X; X,) is unital. Suppose that there exists a minimal sub-
bimoduleY of X such thaty, Y, has infinite codimension iA. Then, for each finite-
dimensional subspadeé of Y+, there exists a discontinuous derivatin: A — X
such thatD(A) =Y and D(F) = {0}.
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PROOF. Lete € Abe such thae + X, X, is the identity ofA/(X; X,).
SinceY is a minimal A-bimodule, eitherAY = {0} or AY = Y. Assume towards
a contradiction thaAY = {0}. Leta € Y,. Sincea — ea e X, X,, we see that

acAY, + XX, = Y,Y,.

SoY, C Y,Y,. This contradicts the assumption th&l, has infinite codimension in
A. ThereforeAY =Y and, similarly, we see that A= Y. ThusY is indeed a simple
A-bimodule.

Consider the following two cases.
CaselY, =Y, =Y ThenA/Y! = M, for somen € N. Let

{pij :i,j=l,...,n}CA

be such tha{p; + Y+ :i, j = 1,...,n} corresponds to the standard basis\éf.
Then each elememtin A can be expressed uniquely as

@ a= Yy op+u,
ILJj=n
whereo;; € Cfor1 <i, j <nandueY".
Let F, be the linear span df U {p;j pst — 8jspit : 1 <i,j,s,t <n}. ThenF,is
a finite-dimensional subspace¥f. LetT : YX — Y be a discontinuoug-mod-A
homomorphism that is zero aiY+)2 + F,, the existence of which is guaranteed by

Lemma3.l DefineD : A — Y by D(a) = T(u) for eacha € A written in the form
specified in {). Itis routine to check thaD is a derivation satisfying the requirement.

Case 2 Y, # Y,. SinceY, andY, are distinct maximal ideals if\ (by the sim-
plicity of Y again), we haveA = Y, +Y,, and soY,/Y+ = A/Y, = M, and
Y,/Y+ = A/Y, = M,, for somel,r € N. Choose{p; :i,j=1,...,1} C Y, and
{gj :i,j=1,...,r} CY, suchthat

{pij—FYLZi,j:l,...,I} and {qij-{-YlZi,j:l,...,r}

correspond to the standard basedfandM;, respectively. Then we see that each
elementa in A can be expressed uniquely as

(2) a:Zaij Bij +Zﬁstht+ua
ij=l s.t<r
where;; € Cforl<i,j <I,Bq4e Cforl<s,t <r,andue Y’
Let F; be the linear span of
FU{pjOsx:1<i,j<I andl<st<r}
U{pjpsc—Sjspe: 1 <i,j,s t<l}
U{Qistt—5stn31§i,j,5,t§r}-
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Then F; is a finite-dimensional subspace ¥f-. By Lemma3.1, we can find a
discontinuousA-mod-A homomorphismT : Y+ — Y that is zero onY,Y, + Fi.
DefineD : A — Y by D(a) = T(u) for eacha € A written in the form specified in
(2). Again, it can be verified thd satisfies our requirement. O

THEOREM 3.3. Let A be a Banach algebra with finite-dimensional radiéakuch
that A/(R+ R,R,) is unital. Suppose that there exists a minimal radical id€al
such thatk; K, has infinite codimension iA. Then

(1) there exists a discontinuous derivatién: A — R with D? = 0;
(2) there exists a discontinuous automorphismAon

In particular, A has a complete algebra norm which is not equivalent to the given
norm.

PrOOF (i) SinceK is a minimal radical ideal, we hasRK = KR = {0}. ThusK
can be considered as a minimaf R-bimodule. We see thad/R andK satisfy the
hypothesis of Theore® 2, so there exists a discontinuous derivation: A/R — K.
SetD = Dy o 7, wherer : A — A/Ris the quotient map. TheD : A > K isa
discontinuous derivation witD (K) = {0}.

(i) Let D : A — Abe adiscontinuous derivation such tit = 0. Denote byd
the identity map ormA. Setd = ida + D. Thené is a discontinuous automorphism
on A, its inverse map i = idy — D.

The mapa — [6(@)]], A — RT, is an algebra norm o\, easily seen to be
complete, and is not equivalent to the given norm. O

4. Banach algebras having a unique complete norm topology

In this section, we prove the mentioned conjecture for separable Banach algebra:s
with finite-dimensional radical under some additional hypothesis. In particular, we
prove the conjecture in the case wheéxés separable and/(rad A) is commutative.

This case was proved i8] under the additional hypothesis that either faid central

or (radA)? = {0}. Part of our argument is an extension of the argumengfinQur
approach is to use separating spaces as well as continuity ideals to prove the continuity
of certain homomorphisms.

Let A be an algebra. Aomposition seriesf an A-bimodule X is a chainX =
XoD Xy D Xy D - D X1 D X = {0} of submodules o such that, for each
1 <i < s, the A-bimoduleX;_;/ X; is minimal. We introduce the following concept.

DEFINITION 4.1. An admissible seriefor an A-bimodule X is a chain

X=XoDX1DXyD---D Xs1 D Xs = {0}
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of submodules oX such that the ideal6X;_1/ X;), (Xi_1/ Xi),, for 1 <i < s, are
each of finite codimension iA.

LEMMA 4.2. Let A be an algebra, and leX be anA-bimodule. Suppose that
has a composition series. Then the following are equivalent

(@) X has an admissible serips
(b) X has an admissible series that is a composition series
(c) each composition series &f is an admissible series.

When one of the above three conditions hold then each submodu{ehafs an
admissible series.

PrOOFR That (a) implies (b) follows by ‘refining’ the given admissible series to
obtain a composition series, which is easily seen to be admissible. That (b) implies
(c) follows from the Jordan-Blder theorem 1, pages 117-120]. The remaining
implication ((c) implies (a)) is obvious. The final assertion then follows from (€).

A finite-dimensionalA-bimodule X always has a composition series.

LEMMA 4.3. Let A and B be commutative algebras, and Etbe a finite-dimen-
sional A-B-bimodule. ThelX = B, X; whereX; are submodules of (1 <i < n)
such that, for each <i < n, we have

(1) either A/(X;), is radical or bothA/(X;), is local and there exista € A such
thata - x = x for x € X;, and

(2) eitherB/(X), is radical or bothB/(X;), is local and there existb € B such
thatx - b = x for x € X;.

PrROOF. Since X is finite-dimensional, we can writ& = @i”:l Xi, wheren € N
and eachX; is an A-B-submodule ofX with no non-trivial direct summand (ir-
mod-B). Fixi with 1 <i < n. ThenA = A/(Xi), and B = B/(Xj), are
finite-dimensional, commutative algebras which act faithfully on the left and right
of X;, respectively. By the Wedderburn structure theorem (see, for exaniple, [
Chapter 1.5.8]), there exists an orthogonal{ggt . . ., px} (Which may be empty) of
non-zero idempotents iA; such that

k
A =P Cp; @ radA.
j=1
It then follows that

k k
Xi =@pj'xi@(l_zpj>'xi»
=1 i—1
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wherep; - X; (L < j <Kk) and(l—Z'j‘:1 pj)-Xi are easily seen to b& B-bimodules,
and eaclp; - X; is non-zero. Therefore, by the assumptionXgnwe must have that
eitherk = 0 ork = 1. ThusA is either radical or local; in the later case we must
havep; - x = x (x € X).

The assertion (i) is proved similarly. O

LEMMA 4.4, Let A be an algebra, and lety, |5, J;, J, be finite codimensional
ideals in A such that there exist® € N with J" C I, and J)" C 1,. Suppose that
J1J, has finite codimension iA. Thenl; I, has finite codimension iA.

PrROOF. This is [3, Lemma 1.6]. O

PROPOSITION4.5. Let A be an algebra, and leiX be a finite-dimensionalA-
bimodule, such thaf/ X+ is commutative. Then the following are equivalent

(a) for each minimal sub-bimodul¢ of X, the idealY,Y, has finite codimension
in A;

(b) there are sub-bimodules,, ..., X, of X such thatX = EBi”:l X;, and such that
(X1 (Xi), has finite codimension iA,

(c) X has an admissible series.

ProOOFR That (b) implies (c) is obvious, and that (c) implies (a) follows from
Lemma4.2. We prove (a) implies (b).

Suppose that (a) holds. SBt = A/X*, so thatB is a commutative algebra.
Let X = @/, X; be the decomposition as in Lemma3 (working in B-mod-B).
Returning toA-mod-A, we see that the decompositidh= P;_, X; still satisfies the
conditions (i) and (ii) in Lemmd.3,

Fix 1 <i <n. LetY be a minimal sub-bimodule oX;. First, if A/(X), is
radical, then so 1%, /(X;),. Otherwise, ifA/(X;), is local, then, by Lemm4.3, there
existsa € Asuch thata-x = x for x € X, and sca ¢ Y,. This implies thaty; is a
proper ideal inA, and therefore, by localityy, /(Xi), is, again, radical. Thus, in both
casesyY,/(X), is radical and finite-dimensional. It follows thaY;)' c (X;), for
somel € N. Similarly, there exists an € N such that'Y,)" C (X),. By hypothesis,
we have thaty,Y, is of finite codimension irA. Hence, by Lemma.4, the ideal
(Xi),.(Xi), also has finite codimension iA.

This completes our proof. O

DEFINITION 4.6. Let A be an algebra with a finite-dimensional radi€al We say
that A satisfies theA-propertyif the A-bimoduleR N R* has an admissible series.

That (a) implies (b) from following proposition, in the case wh&&e= {0}, was
implicit in the proof of B, Theorem 3.13] (in fact, the argument there can be modified
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to work in the general case of (a) implies (b); our proof is different but still follows
the idea of B]).

PrOPOSITION4.7. Let A be an algebra with finite-dimensional radicRlsuch that
A/Ris commutative. Then the following are equivalent

(a) for each minimal radical ideaK in A, the idealK,; K, has finite codimension
in A;

(b) there are idealsRy, ..., R, in A such thatRN Rt = @i”:l R, and such that
(R):.(R), has finite codimension iA;

(c) A satisfies theA-property.

PrROOF This is a corollary of Propositiod.5, since each minimal radical ideKl
is contained iR N R*. O

LEMMA 4.8. Let A be a separable Banach algebra, and Etand F be closed
linear subspaces oA with E F having finite codimension i. ThenEF is closed,
and there exist a constaf > 0 andm € N such that, for eacla € EF, there exist
(x)", c Eand(y)", C F such that

a=>Y xy and Y x|yl <Clal.

i=1 i=1
PrROOF This is [3, Lemma 3.1] (see als@[ Chapter 2.2.16] andL[)]). O

The next result is an extension of Corollaries 3.7-3.93jn We cannot use an
induction scheme (like the one provided k8, [Theorem 3.6]) to prove the next
theorem, as was the case for those corollaries.

THEOREM4.9. Let A be a separable Banach algebra with finite-dimensional radi-
cal. Suppose thah satisfies theA-property. Then each complete algebra norm4on
is equivalent to the given norm.

PrOOF. The radical ofA is denoted byR. Consider another complete algebra
norm|| - || on A. We need to prove that the identity map(A, || - ) — (A, || - ) is
continuous. By Johnson’s automatic continuity theorem for epimorphisms, we have
S() c R. Foreacha € R, sincei is continuous orR— a finite-dimensional ideal,
we havea € .%, (i) N .Z,(i). Thus, indeed (i) C RN R*.

Assume towards a contradiction ti@fi) # {0}. Thenthere exists an idedlthatis
maximal among the ideals properly containedsifi). SinceK is finite-dimensional,

K is closed in both topologies. Consider the ntap (A, || - ) — (A/K, [l - 1D
induced byi. Then&(¥) = &(1)/K, and

S,0) ={ae A:0@6(©0) = {0}} = (6(1)/K),,
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and, similarly,.#,(0) = (6()/K),. S0.#,(0) and.#,(0) are closed (in both topolo-
gies). Then, since the bilinear map

T: (X y) > 0(xy), 0 x .7,0) - A/K

is separately continuous, it follows thatis bounded.

By the A-property of A and by Lemma4.2, the ideal %, (0).7,(0) is of finite
codimension inA. Then, by Lemmat.8, we see thaf is bounded on#; (0).7,(0),
which is, by the same lemma, a closed, finite-codimensional subspateTdfuso
is continuous on the whole @&, contradicting the fact tha®(9) = &()/K # {0}.
Hence, we must hav@ (i) = {0}, implying the continuity of. O

The following theorem resolves a question that was left opef]in [

THEOREM 4.10. Let A be a separable Banach algebra with finite-dimensional
radical R such thatA/R is commutative. Suppose th&f K, has finite codimension
in A for each minimal radical ideaK in A. Then each complete algebra norm An
is equivalent to the given norm.

PrROOF. This follows from Propositiort.7, and Theorerd.9. O

REMARK. Theorem4.10and Propositiort.7 still hold with the much weaker hy-
pothesis thatA/R + R* is commutative’ instead of the hypothesis that R is com-
mutative’ (with the same proofs). The aIgebkyiR + Rt is ‘only’ finite-dimensional.

5. The continuity of derivations

Recall that we are interested in two classes of derivations: derivaiivakgebras
with finite-dimensional radical, and derivatiofiem algebras into finite-dimensional
bimodules. The proofs in this section are similar to those in Sedtion

THEOREMS.1. Let D be a derivation from a separable Banach algelranto a Ba-
nach A-bimoduleX. Suppose tha® (D) is finite-dimensional and has an admissible
series as arA-bimodule. TherD is continuous.

PrROOF. Assume towards a contradiction th&(D) # {0}. Then there exists an
A-bimoduleY which is maximal among the propé+bimodules contained i& (D).
Consider the ma; : A — X/Y induced byD. ThenD; is a derivation and
S(Dy) = &(D)/Y. S0.4,(Dy) ={ae A:a-&(Dy) = {0}} = (&(D)/Y),, and,
similarly, .#,(D;) = (6(D)/Y),.

Continuing as in the proof of Theore9, we obtain a contradiction. Hence
&(D) = {0}, implying the continuity ofD. O
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COROLLARY 5.2. Let A be a separable Banach algebra, and Mtbe a finite-
dimensional BanactA-bimodule. Suppose tha€ has an admissible series as an
A-bimodule. Then derivations frodinto X are continuous.

PrOOF. This follows from Propositiort.2and Theorens. L O

COROLLARY 5.3. Let A be a separable Banach algebra, and Mtbe a finite-
dimensional BanachA-bimodule such thatA/ X+ is commutative. Suppose that
Y,Y, has finite codimension i for each minimal sub-bimodulé in X. Then all
derivations fromA into X are continuous.

PrOOF. This follows from Propositior.5and Corollary5.2. O

REMARK. In [5], a Banach algebrd@ is constructed whose squafé has finite
codimension, but is not closed. L&t = C with trivial A-bimodule actions. Then
A/X+t = 0. ThusA and X satisfy the hypothesis of Corollary.3 except for the
separability ofA. However, any discontinuous linear functional that is zerd\éis a
discontinuous derivation from into X. This shows that the separability condition in
the hypothesis of the previous corollary and theorem is necessary. We shall see late
that the commutativity condition is also necessary (TheoBeth (Un)fortunately,
the algebraA is neither commutative nor has finite-dimensional radical. Therefore
we cannot say anything about the separability hypothesis in other results.

Now we consider derivations on Banach algebras. It is prove@]ithpt, for a
semisimple Banach algebr® each derivatiorD on A is continuous, which means
that&(D) = {0} = radA. Although it is still open whethe® (D) c rad A holds for
all Banach algebraé and all derivation® on A, we have the following result.

LEMMA 5.4. Let A be a Banach algebra with radic& such thatR? is closed and
has finite codimension iR. Then, for each derivatio® on A, we haveS(D) C R.

PrROOF We can assume tha& is unital with the identity denoted bg. For each
primitive ideal P in A, definerp to be the natural projection frorA onto A/ P.

Assume towards a contradiction th&t(D) ¢ R. Then&(D) ¢ P, for some
primitive ideal P; in A, which is equivalent to the discontinuity afs, D. By [8,
Theorem 3.3], we haver D is continuous for all except finitely many primitive ideals
P. (1 <i < n), and eachP, has finite codimension i\ (hence is maximal). Now,
let P, be the intersection of all the primitive idedisdifferent fromP, (1 <i < n).

Then ] ]
Po/R = (Po+ﬂpi)/ﬂpi,
i=1 i=1
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which is finite-dimensional, and 97 is closed and has finite codimensionRyn We
have&S (D) C Py, but&(D) ¢ Py, so thatP, ¢ P;. SinceP; is a maximal ideal in
A, we see thaP, + P, = A. In particular, we have = py + p;, wherep, € Py and
p1 € Pi. Thene =€ = p + p?, wherep = p3 + pop1 + P1Po = Po + P1Po € Po.
Thus, for eacta € A, we haverrp D(a) = np,D(ea) = np,D(pa). This implies
thatsp, D is discontinuous orP,.. However, it easily seen thatp, D is zero onR?,
a closed subspace &% of finite codimension, and s@p, D is continuous orP,, a
contradiction. O

COROLLARY 5.5. Let Abe a separable Banach algebra with finite-dimensional rad-
ical. Suppose thaf satisfies theA-property. Then derivations oA are continuous.

PrROOF The radical ofA is denoted byR. Let D : A — A be a derivation. By
Lemmab5.4, we haveS(D) ¢ R. As in the proof of Theorend.9, we see that
& (D) ¢ RN R, Hence, the result follows from Theoresril O

COROLLARY 5.6. Let A be a separable Banach algebra with finite-dimensional
radical R such thatA/R + Rt is commutative. Suppose th&t K, has finite codi-
mension inA for each minimal radical ideaK in A. Then each derivation oA is
continuous.

REMARK. The results in this section hold without modification for a more general
class of operators, thatertwining operators Let A be a Banach algebra. A linear
operatorT from a BanachA-bimodule X into a BanachA-bimoduleY is said to be
intertwining overA if, for eacha € A, the maps

X—T@-x)—a-T(x) and x— T(x-a)—T(X)-a,

both from X to Y, are continuous; see, for instancg, Chapter 2.7.1]. Thus each
derivation fromA into a BanachA-bimodule is an intertwining operator.

6. The general case of dimension at least two

In this section, we present a counter-example to the main conjectus rime-
tioned in Sectiori.

For a separable Banach algel#&avith 1-dimensional radicaR, the only minimal
radical ideal isR itself. We see that the conjecture holds in this casbas a unique
complete norm if (and only ifR, R, has finite codimension i\, by Theorem4.9
(and3.3) or by [3, Corollary 3.9]. However, for greater dimensions, even for dimen-
sion 2, the problem becomes more complicated. 3nExample 5.5], a separable,
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unital Banach algebra with 2-dimensional radical was successfully constructed, which
satisfies the hypothesis of the conjecture, but not the hypothesis of any res@]it in [
(nor does it satisfy the hypothesis of our results); the construction is rather involved.
Yet it was proved directly that this algebra has a unique complete norm.

Our example will be a separable, unital Banach algebra with 2-dimensional radical
(showing that the conjecture fails for each dimension greater than 1). Following
the approach of our previous construction, we first construct similar examples for the
problem of derivationfrom Banach algebras into 2-dimensional Banach modules, and
then for the problem of derivatiors Banach algebras with 2-dimensional radical.

THEOREMG6.1. There exist a separable, semisimple, unital Banach algétsad a
2-dimensional, unital BanachA-bimoduleX such that both the following hald

(a) for each minimal sub-bimodulé in X, the idealY,Y, has finite codimension
in A;
(b) there exist a discontinuous derivati@hfrom A into X.

The following provides a counter-example to the conjecture.

COROLLARY 6.2. There exists a separable, unital Banach algebwva with 2-
dimensional radical such that all the following hold

(a) for each minimal radical ideaK, the idealK; K, has finite codimension i¥/;
(b) there exists a discontinuous derivation .of]
(c) there exists a discontinuous automorphismagn

In particular, there exists a complete algebra norm.@hthat is not equivalent to the
given norm.

PrOOF. Let A, X andD : A — X be as in Theorer.1. Sets = A® X. Then,
with £1-norm and with product given by

@@x)(boy) =abd(@ay+xb) (a,be A x,ye M),

&/ is a separable, unital Banach algebra withséd= X. We extendD by linearity
to the whole of& by mappingX to 0. Then we obtain a discontinuous derivation
on«. Define

f:adx—ad(Da+x), & — .

Then it is easily seen thatis a discontinuous automorphism an. The map
adx— [[fp@adx), & — R,

gives a complete algebra norm, gpy, on.<7, and|| - || is not equivalent to the given
norm|| - ||. Finally, condition (a) follows from Theore.1 (a). O
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PROOF OF THEOREM 6.1 Denote byM} the algebra of upper triangular:2 2-
matrices (ove(C).

Let B be a separable, commutative, semisimple Banach algebra sudd’thas
infinite codimension iB (many such examples exist, for examglewith pointwise
product). Denote by,(B) the Banach algebra of 2 2-matrices with coefficients
in B. ThenM;(B) is also semisimple and separable. 3et= M) & M,(B). A
generic element oA has the form

a pB S u
(6 7= )
wherea, 8,y € C ands, t,u, v € B. ThenA s an algebra with pointwise addition

and with product being the matrix multiplication, so thdt and M,(B) can be
naturally identified with subalgebras 8f Further,

M3 - Mo(B) € My(B) and My(B) - M; C My(B).

Giving Athe¢!-norm, we obtain a separable, unital Banach algebra (with the identity
given by the identity oM3}), and thatM,(B) is a closed ideal oA.
We see thatA has the following two obvious characters:

oo 7)ol e wa v (G D)o )

We claim that A is semisimple. Indeed, let

a:(% i)@(ts ;J)eradA.

Then, sincep(a) = ¥ (a) = 0, we must have = y = 0. We next see that

alO_sO and OOa_OO
0 o) \t o 0 1) \t o)’
so the two elements on the right areNiy(B) Nrad A = radM,(B), and sss =t =
v = 0. Now, letw € B. Multiplying a on the left by( % $), we obtain

0 0
0 Bw+wu

which, again, must be in the radical bf,(B), and sofw + wu = 0 for w € B.
Since B cannot have a right identity, we must hage= 0, and then, since3 is
semisimple, we see that= 0. Thus, we have proved that rAd= {0}.
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Next, weclaim that Mj has finite codimension i\, whereM,, is the kernel ofp.
Indeed, for each, t, u, v € B, we have

s uy_ (0 0y\(/0 O n u 0\/0 1 n 0 1\/O0 O
t v/ \0 1/\t v 0O 0/\0 O 0 0/\s 0)°
so thatM,(B) C Mj. In fact, we can checkthaﬂj =M,.

ConsiderX = C? as a unital Banaci-bimodule by defining the module multipli-
cations asMl,(B) X = XM(B) = {0} and the multiplications b} as

(6 2) )= (") = ()G 2)- G

fora, B, y, ¢, n € C. ThenX has exactly one minimah-mod-A submodule, namely

v=|(5):eec).

We see that, =Y, = M,, so thatY; Y, = M? has codimension 1 iA.
Now, sinceB? has infinite codimension i, there exists a discontinuous linear
functional A on B such thati is zero onB?. Define a discontinuous linear map

D:A— Xby
(a B s u A(S)
D'(o y>@(t v)H(Mt))‘

It can be verified thab is a derivation. O

7. Conclusion

It remains open to determine conditions that are both necessary and sufficient
for a (separable) Banach algebra with finite-dimensional radical to have a unique
complete norm. We have seen that the necessary condition (in the unital case) ‘for
each minimal radical ided, the idealK; K, has finite codimension’ is not sufficient.

Our construction is, however, not ‘systematic’ enough to provide a clue on finding
and proving additional necessary conditions.
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