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Abstract

We consider the weak convergence of the set of strongly additive functi@)swith rational argument

g. It is assumed thaf (p) and f(1/p) € {0, 1} for all primes. We obtain necessary and sufficient
conditions of the convergence to the limit distribution. The proof is based on the method of factorial
moments. Sieve results, and Est’s and Ruzsa's inequalities are used. We present a few examples of
application of the given results to some sets of fractions.

2000Mathematics subject classificatioprimary 11K65, 11N37, 11N64.
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1. Introduction

Let{f, : N — R, x > 2} be a set of additive functiongy be some subset of natural
numbers, and

Ve (A) = % #Nn <X, ne A}

be a frequency of natural numbers= A. The setA is allowed to depend or and
other parameters.

The central problem of probabilistic number theory is to find conditions under which
the frequencies, ( f,(n) —a(X) < u), with a suitably chosen centering functierx),
converge to the limit law ag — oo. Starting with Tuan’s proof of the Hardy-
Ramanujan theorem on the normal order of prime factors in 1934, many works have
been devoted to this problem. This problem is the main object of the monographs of
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Kubilius [5] and Elliott[1, 2]. There are three different cases in the investigation of a set
of additive functions (see, for examplé, , 5]). The first case is whef(n) does not
depend onx. The Erds-Wintner theorem (see, for exampl®, page 187]) is the most
celebrated result of this case. The second case arisesfatren= f (n)/b(x), where

b(x) is some normalizing unbounded function satisfying some additional conditions.
The well-known Levin-Timofeev theorem (see, for exampk,dages 122-123]) is
one such result about the weak convergence of distributigifsn) /b(x) —a (X) < u)

to the limit law.

The third, most general case, we obtain when the additive funé{idepends ox
in an arbitrary way. The first result in this direction was obtained by Rusza. He found
necessary and sufficient conditions for the weak convergengg ff(n) — a(x) < u)
to the improper law (sees]). Siaulys continued the investigation of the set of such
functions. He derived necessary and sufficient conditions for the convergence of
the distributionsu, ( fx(n) < u) to the Poisson law in the case whépare strongly
additive andf,(p) € {0, 1} (see B]).

In the present paper we consider the additive function defined on the set of pos-
itive rational number€),. We suppose throughout that the natural numbers in the
representation of the rational numlempe= m/n, are coprime, thatigm, n) = 1. Any
rational numbery has a unique representation as a produet pi*--- pgs, where
pi, ..., ps are distinct prime numbers, and, ..., as are integers. The power of
prime p in such a product for the rationgl is denoted byx,(q). We say that the
rational numben; = my/n dividesg, = m,/n; (q1]q) if Myjm, andny|n,, and that
they arecoprimeif (mg, my) = (Mg, NR) = (M3, Ny) = (N, Ny) = 1.

For any additive functiorf : Q, — C the equalityf(q) = >_, f (p**@) holds.

If, in addition, f(p*) = f(p®™) for all integersa and primesp, the function f
is called strongly additive. Thus for any strongly additive functiorvith rational
argumentf (q) = ", f(p%), wheres € {—1, 1}.

Forx > 2, for an intervall := (&, n], and for some conditior\, where&, n and A

are allowed to depend on we write:

| m m | o |
Q:=fa="in=x g <= <), B ={geQ a0 =a}.
vl (A) = (#Q'X)‘l#{q €Q :qe A}, Py = {p*™ : E}(p*) # ¥} .

In the expression for! (A) we suppose @ > 0. We call the elements fro, the
prime ones. The quantity, (A) denotes the frequency of the rational numbers which
satisfy the conditionA. In the particular casé = (0, 1] we omit the symbol and
instead ofQ}, E! (p®), P!, v (A) we simply writeQy, Ex(p*), Py, vx(A). We observe
thatQ, = {m/n: n < x, m/n < 1} is the classical set of Farey fractions.

The probabilistic model for solving problems on the value distribution of additive

functions with rational arguments can be developed in analogy with the Kubilius
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model (see4, 11, 13, 12]). In this work, we consider the distribution of the set of
strongly additive functions,( f,(q) < u) using the factorial moments method.

Throughout the paper we use the following notations. The funetighis always
vanishing ax tends to infinity. The absolute constants are denoted iy, . ... The
expressiora < b is equivalent toa] < cb, with some positive constamt If the
vanishing function or bounding quantities dependipmwe writeey(X), Oqg, Kq.

Let P, := {p* € Py : fx(p’) = 1}. For the sake of brevity, we use a star and a
above the summation sign ™ to denote a summation expanded over all collections
of p*, p2, ..., p* e P, (with some fixed) such thatp, # p;,1<i < j <t. The
most frequent case is wher= . In this case we will omit and write}_".

The main result of this paper is the following statement.

THEOREM1.1. Let{f,, X > 2} be a set of strongly additive functions with rational
argument. Letf,(p®) € {0, 1} for every prime numbep and exponent € {—1, 1}.
Then the frequency, (f,(q) < u) converges weakly to some distribution function if
and only if the limit

31 02

- * Ax(pl P, _._pla,)
1.1 | =
(1) m ) e hmED (D =9

exists for every fixed natural numberHere

1 ifitexistsq, € Qy : q|Ch,

Ay =
@ 0 if thatq; does not exist

Moreover, if the limit distribution exists, then its characteristic function is equal to
1+ 32, (a/IhE D).

2. Examples

Using Theoreni.1we can calculate the asymptotic densities of some arithmetically
interesting sets of fractions. Let us give a few examples.

ExampLE 1. Define the strongly additive functiof by

1 ifp=23 1 ifp=3,5
P 7 and f(1/p) = P 7

f =
(P 0 otherwise 0 otherwise

It follows from (1.1) thatg; = 1,9, = 11/18,g3 = 1/6,g = 0,1 > 4. Hence the
limit law of v, (f () < u) has the characteristic function

5 17 2. 1 .
2.1 St e+ et
(21) 18 736° T9% T36°
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From the well-known asymptoticddt € Q,} ~ (3/72)x?, X — oo, and the structure
of characteristic function2(1), we have that

. . 5
#{q € Q, : prime elements 23, 1/3, 1/5 do not divideg} ~ 602 X,
7T

2
#{q € Q, : exactly two elements fror2, 3, 1/3, 1/5} divideq} ~ 302 X2,
T

1
#{q € Q, : exactly three elements frof2, 3, 1/3, 1/5} divideq} ~ o2 X2,

asx — oo.
ExampPLE 2. Define the strongly additive functiofy by

1 iflogx < p < log®x,
f(p) = f(1/p) = 9% =p=19
0 otherwise

In this caseg; = 2log 2,0, = (210og 2?, g = (2log2',| > 3. Thus the limit law of
v (fx(q) < u) is the Poisson law with parameter= 2 log 2, and we have

3
#aeQc: pia. (/P fafor pe (logx. log’ x]} ~ 5= x°.

3log2
#{q € Qx : q has exactly one prime divisg’ for pe (logx, log”x]} ~ 2092 2,
JT
o ) 3log'2 ,
#{q € Qy : g has exactly two prime divisorg’ for p € (logx, log® x]} ~ oz X
JT

asx — oo.
ExampLE 3. Let the strongly additive functioti, be defined by

1 ifIXx<p=<x,

fy = f, (1 =
(P &/p) 0 otherwise

Putd = log3 log2+ Liy(1/3) — Li»(2/3), where Lp(u) is the polylogarithm of
second order, that is,

. > uk
le(U)zzp uf < 1.
k=1

We have thay, = 2log3,9, = 2((log3)? + 6), gs = 60log 3, g, = 66% g = 0O,
| > 5.
Since the limit law ofv, ( f,(q) < u) has the characteristic function

(1—1og3)(1—log3+6)+ 6%/4+ (2log 31 —log3) + (3log3— 2 — 0)0) €"
+ (log”3+ (1 — 3log 3+ 30/2)0) €" +(log3— 0)0 €*' +6? ™ /4,
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the following asymptotic expressions (for— oo) are true:

#{q € Qy : prime elements fronip, 1/p, p € (V/X, x]} do not divideq}

~ % ((1—log3)(1—log 3+ 0) + 67/4) x* ~ 0.0007,
#{q € Q, : exactly 3 elements frofp, 1/p, p € (X, X]} divideq}

~ % (log3—60)6x* ~ 0.0719%,

T

#{q € Q, : exactly 4 elements frop, 1/p, p € (V/x, x]} divide q}

~ 3 42x? ~ 0.00659¢,

T

3. Auxiliary lemmas

The proof of Theoreni.lis based on the factorial moments method, but some
sieve results (Lemma.1), and the inequalities of Hasz (seed]) and Ruzsa (se€’])
are of key importance as well. In this section we present the analogues, sufficient for
our needs, of these inequalities for functions of rational argument (Lefgand
Lemma3.3).

LEMMA 3.1 (seel2]). Letl = (&, n], 0 < & < n, be an interval of real numbers.
Let No, N1, N> be natural numbers, which do not have any common prime divisor. All
quantities, n, No, N, N, may depend or > 2. Then

#{? € Q' : (M, NoNy) = (n, NoNy) = 1}

3 e (1 _ 1)
=m0 1(-553) 11 (55

PINo

log x 1
ez (B2, 1Y)
( X X(n —§)

wherew (M) is the number of distinct primes dividimg,.

LEMMA 3.2 (see 10Q]). Letl = (&, n] be an interval of real numbers, whefeand
n may depend or > 2 and satisfy the limit conditions

3.1 li <cp i =
S P —5 =% ext—o
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Let f : Q — N U {0} be an integer-valued additive function. Then, for every
L e NU {0},

-1/2
3.2) v;(f(q)zL)fcz(maX{ > Yp, > 1/p}) :

pePy. f(p7#0 (1/p)ePy, f(1/p)#0

wherec, depends oie; and on the convergence rate(8.1).

LEMMA 3.3 (see 9]). Let | = (&, n] be an interval satisfying the conditions
& < CX(n — &), X(n — &) > ¢4. Then, for an arbitrary strongly additive function
f : Q — C and for every natural numbeéy

I 12
f AV f AL
<<X2(n—€)((z| <g>|) Ly (SH)’

pPeP) pPeP)

2

qeQ;

f S
f(q)—Z%

pPeP)

where the constant implied in the symkalmay depend oo, ¢, andl.

4. Boundedness of factorial moments

ProOPOSITION4.1. Let | = (&, n] be an interval of real numbers, whegeand
may depend or > 2 and satisfy the limit conditions

lim sup < o0, lim =0.
X—>00 X(Tl - g) X=00 X(Tl - S)

Let f, be a set of strongly additive functions with rational argument. f,&p°) €
{0, 1} for every prime numbep and exponent € {—1, 1}. Let

1
#Q!

(4.1) 0. = = > H@(f(@ — - (f(@) =1 + 1)

qeQy

for every natural numbelr.
If the distributionsv, (f«(q) < u) have a weak limit ag — oo, then

limsupe(, x) < 1.

X—00

Here the constant irK depends oh and on the structure of the limit law.
PROOF. SupposeX is a random variable for which

vl (f(q) < u) = P(X < u).
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The random variabl& is integer valued, hence there existss {0} U N for which
P(X = L) > 0. From the limit

(4.2) Jim v (f(@) = L) = P(X=1L),

we have thaw,(fy(q) = L) > %P(X = L) for x > cs, wherecs depends on
P(X = L) and on the rate of convergence h3).
It follows from Lemma3.2 that

1
max{ > yp, > 1/p}<<m.

pePl, fu(p)=1 1/peP}, fx(1/p=1

Hence

(4.3) limsup > 1/p=<ce
X7 pepl, f(ph=1
The constants depends on the structure of the limit random variable. According
to Lemma3.1, #Q) > x?(n — &) for x sufficiently large. Therefore fron%(3) and
Lemma3.3we obtain
|

< (e +c).

lim sup (12 >

|
X—00 # quQ'X

fe(p°

pPeP)
| |
f . (p?
runl [ 3 2D )
pPeP) P

Since

f . (p?
L@- Y (pp)

Y i@ <2 (Z

qeQ; qeQy pPeP)
we conclude finally from4.3) that
1
lim supe(l, x) < limsup Z fi(a) < max(cy?, 1).
X—00 X—00 #Ql( qeQ)

Propositiond.1is proved. O
5. The factorial moments method

PrOPOSITIONS.1. Let| = (&, n) be an interval of real numbers anfj be a set of
strongly additive functions satisfying the condition of Propositioh Let X be an
integer-valued random variable and

g =Zk(k—l)---(k—l+1)P(X=k)
k=l
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for every natural. If g, < oo for somd and

(5.1) vl (fe(q) < u) = P(X < u),
then
(5.2) XIim o, ) =g.

Furthermore, if (5.2) is satisfied for every fixed naturbland Y, (2'g//I!) < oo,
then(5.1) holds for a random variabl& that has the characteristic function

1+Z?—!‘(ét _y,
=1

PROOF (necessity).Let condition 6.1) be satisfied. Since the random variable
is integer-valued, it follows from&.1) that

(5.3) !l (f(@) = k) = P(X = K) + &x(X)

foreach fixeckk =0, 1, 2, ....
Let us split the factorial moment(l, x) (see £.1)) into two parts:

(5.4) e,x) =B, X, y) + Ba(l, X, y), y=>1+3,

wherepi (I, X, y) is that part of sum4.1) for which f,(q) < [y] andB.(, X, y) is the
part for which f,(q) > [yI.
From (6.3) we have

[yl-1

Bull. X y) =D Kk =1y (k=1 + Dy (fu(@) = k)

[yl-1
= Zk(k—l)---(k—l +D(P(X =K) + (X))

=g +e&x)— Y kk—1 - (k—l+DPX=k).
k=[y]
Since

D kK=1 (k=1 +DHP(X =K

k=[y]
<Y kk=1--(k=1+1
k=[y]

ZJ(J—l) (—=1+D(G-D({G—-1-D
jg-1-- (J—l+1)(J—I)(J—I 1

PX=1])
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k(k—1)---(k—1+1)
_kX[:]k(k D k=I+DHk-IHk-1-1)

X Z G- (—-1-DP(X=))

j=1+2
S 1 - 1 O+2
<Op) ————==0 ) —<——0,
k=[y] (k —1 - 1)2 r=[y]-I-1 re [Y] -1 -2
we find that
_ O+2
(5:5) . xy =9+ 6,00+ 0 (97,
Applying the estimate of Propositioh1we obtain, forx sufficiently large,
1 fx(q) —1
l,X,y) = fx fu@ =21 - (@ -1 +1)-——
pall, X ¥) = g qz@; @(fu(@ =1+ (Fe(@) @
@=Lyl
el +1,%) 1
= < .
yl—1 Iyl -

The last estimate and equaliti€s4) and 6.5) imply that

~ G2 1
90(|7X)—g|+8y(x)+o([y]—l —2)+OI([Y]_|)'

Consequently equalitys(2) holds. O

ProOOF (sufficiency). Let equation %.2) be satisfied for every fixed naturalLet

Ux(t) =

Q |

X geq}

be the characteristic function of the distributiof( f«(q) < u).
Foreveryr € {0}UN andL € N
r it L+l
=1
= (L a)e

eutr 11— Z( >(e|t
od.x) L +1, .
Uy(t) =1+ .21: W(é‘ -1)'+0 (%| g —1|L+1>

Consequently
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for every natural numbelk.
According to equality %.2) we have

L
lim yr(t) = 1+ > ?—,‘(ét -1)'+0 (£| e —1|L+1)
=1

(L+ 1!
> g (et —1) <°° 2g 2L+1gL+1>
—1+° 2 7 1o 9, ,

wheret € R.
Letting L go to infinity, we can assert that

. s g, I
fim s =1+ 237 (€' -1)
for everyt € R.

Since the limit function is continuous5.() holds for some random variabls,
which has the above characteristic function. Proposiidris proved. O

6. Main term of the factorial moment

PrOPOSITIONG. 1. Let f, be a set of strongly additive functions with rational argu-
ment. Assumé, (p’) € {0, 1} for each prime numbep and exponens € {—1, 1}.
Then

1
p(l,x) = Z m + &(X).

p’ Py
fx(p’)=1
If
1
(6.1) > =«
p’ePy P
fx(pa):l

then for every naturadl

A (pyp2 - pY)
(m+D(p+D - (p+1)

ProoF. First we consider the case= 1. It is evident that

(p(l’ X) = % fx(q) = Z % Zl

qeQy peB, o plg

(6.2) ol =Y" + &(X).
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Assumep e Py andx is sufficiently large(x > ¢;). Using Lemma3.1, we obtain

Zl_(#@gx) 1#{ ;?51, n<x, (mp,n):l}

pla

#Qx

—1, (M ©0.1/p] _
(#Q0#| = e Q0¥ n p =1}

1 (l+o(logx+_p>): 1 +O(Iogx).
p+1 X X p+1 X

Ifl/pe @X andx > c;, we have similarly from Lemma.1

1 1 plogx/p) | 1)) _ 1 logx
#szl_erl(Ho( X +x>>_p+1+o(x)'

1/p)lq

If p° € Pyandp > X := x¥-¥Vloox then

1
o 5— 1<<—
#Q p g ;

p’[(m/m)

for x > ¢;. Hence

go(l,x>=§ (pil+o(logx)>+o<52%)

’ Py p*ePx
p<x p>%
1 log x 1
= — 4o (=214 =
eI X))
p5e[P>x p=Xx X<p=X
1 -1
= ——+4+O|log(1- viod
p%; ljL ( g( «/Iogx) )

Finally 9(1,x) = >~ 5, (P + D+ e(x).
Now letl > 2. Itis easily seen that

« 1
(6.3) o) =) >
#Q,
qEQx
p'sllmnbl ‘q
We split €.3) into four parts and denote them Iy, x)}i, i = 1, 2, 3,4. Into the
first and second sums we include all summands for which,, ..., 8 = 1 or —1,

respectively. The third sum

-1
{w(I,X)}3=Z<L> =S

k=1
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The fourth sum{e(l, X)}4 is constructed in the same manner{a8l, x)}s with the
conditionp,1--- p < X replaced by its oppositpc,1--- p > X.
If A(pl---p’)=1forp...p", we define

i=
5=

[
P, = P1 : th Pzzpz(péll"‘pfl): 1_[ i,

Let p1, P2, ..., p be distinct prime numbers. It follows from Lemr3al that, forx
sufficiently large(x > ¢;),

(6.4)

Z 1=y #l™ M 1 <x (Pm P =1
#Q, T n’ nk 2 e

_ (#QX)‘l#{? € QORI (m, Py = (n, Py = 1}

1 (= P
— (1 + 0 (ﬂ + _1>>
p|PLP> p+ X X
1 log x 1
pIPLP; p+ XF S
On the other hand, for eaqtil .. pf' = P,;/P, we have

(6.5) % > <<—ZZl_PlP2

qeQy n<x msx
(P1/Po)lq PzIn Pim

for x > c;.
Using condition 6.1), expression@.4) and Landau’s inequality (see, for example,
[14]),

x  (loglogx)i—*

(6.6) #HMm<Xx:oMh) =]} K G-1! logx

)

wherej is a fixed natural number, we obtain

* Ax(P1--- P)
6.7 [, =
(6.7) {ed, x)}1 51,§_1 (pr+D---(p+1

log x * 1 1 *
+ 0 J Z + = Z 1
X 5 Pr--- P X a1

PLPr<X PLopr<X
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Y A

PitD-(psp %

81,.,0=1
because the first remainder termOg(x *log x( > 5, 1/ p)') = Oy(x Ylogx), and
the second i) (x #{m < x : (M) =1}) = O((logx)*(log logx)'*).
Similarly from (6.1) and 6.4)—(6.6), we have

(6:8) {v(, %)}
Ly A
(Pr+1-(A+D

81,8 =—1
1P <R
1y 1 e Ag(1/(py- -
+q-—Z( Mm0+§: (1/(Py-- P)
81, 8=—1 Pr--- P P P P
pl"'plff( p1p|>)”(

Z* Ax(1/(pr---P) +g|(x)+0|(VV|(X))v

(Ppr+D---(p+D

81,...,8=—1

where

W= Y

51 b=—1 Pi--- P ’

R<pr-p<x

Using 6.1) and 6.4)—(6.6) again, we obtain
(6.9) {pd.x)}s

_ (I) Z* Ax((plpk)/(pk—}—lr‘m))
k=1 K 51 (pr+D---(p+1D

1 — | * e |0 X 1
+ O _Z(k>ZAx(pl“Pk>( g + )
X4 S1ve Bi=1 Pt P P1 P« Pt P

Sktdseees=—1
Pri1 P <X
-1 . A, (ppr--p;) 1
= s +&(x)+ O ( \le(x)> :
Sktdseees=—1

Finally, inequality 6.1) and estimateq.5) imply that

-1
(6.10) {pd, ¥} =0 (Z V\/l—k(X)> .

k=1
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Substituting 6.7)—(6.10 into (6.3), we can assert that

N Ay d1 82 R -1
(6.11) o(,x) = Z (pps - p) +ea(X)+ O (Z Wk(X)) .

(P +D(p2+D---(p+ 1D =
We have that

-1
W, = Z —;SZ%:bg(l—\ﬂ%) +O<€7W).

(1/pr)elPy R<p=x
X<p=<x

Define% = x99 for natural numbet. Applying (6.1) for each fixedk > 2,
we obtain

Wi (X)
e 1 log(x/%) )
=< —(log({1+ _
51,..;__1 p1~-~pk_1( g( log(X/(ps- - - Px-1))
p1Pr-1<X2
1 #(k—1) 1
+ 0( 5 >>+O -
log(R/(py- -+ Pe-1) “ 5521 P Peas
R2<Pre-Pr-1<X
1 #(k—1) 1
| gt 2w

R2<P1--Pr-1=X

1 #(k-2) 1 log(x/%2) )
_o | * — (e (1+ !
“| dogx)¥s 2 p1-~-pk_z( I\ o9/ (P -+ P2

1,.00,0k—2=—1
P Pe-2<%s
1 #(k-2) 1
+0 (102 )+ e
log(RX2/ (P~ -+ Pr-2) 517"'22_1 Pr-- - Pr-2

R3<P1--Pr-2=<X

1

1 #(k—2) 1
0| ———— S
“| Gog 2 P Pz

150 Sk—2=—1
R3<Pr--Pr—2 =X

__0o : Ll-o :

(1/p1)ePx
R < pr<x
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Equality ©.2) follows from (6.11). This completes the proof of Propositiénl. [

7. Proof of Theorem1.1

PrOOF (Necessity).Let v (fi(q) < u) = P(X < u) for some integer-valued
random variableX. It follows from Propositiord.1 that

1
#Qx

pLx)=—> f(@ <1

qeQx

Hence, according to Propositidhl, »_ .3 1/p < Cs, Wherecg depends on the
structure of the limit law oiX.
Using 6.5), we have forx sufficiently large

IA

k
1 1 1k 1 1 1

Pt Pk pePy
Since lim_ . v« (fx(q) = k) = P(X = k) for everyk =0, 1, 2, ..., we obtain that
P(X = k) « c§/k!, k € N. Hence

Cs
k—1)!

g=> kk—1-k-l+DHPX=k < Y_ = ce™
k=l k=l
for each fixed natural
The necessity of the condition in Theordm now follows from Propositions.1
and6.1 n

ProoF(Sufficiency). Let all the limits in the statement of Theoreiml exist. Since

lim t _
X—>00 —~ p—{—l_gl’

p’ePx

we have that

|
. s A (pee-pl) . 1
= | | — | =g¢.
9=lm) o D (D EE‘OPZ pri| ~ %

Therefore the seriey | ~,(2'g /I!) converges.

On the other hand, Propositighl implies that lim_ . ¢(,X) = g for each
naturall.

The statement of Theoreil now follows from Propositiord. 1. O
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