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Abstract

We consider a meromorphic function of finite lower order that has∞ as its deficient value or as its Borel
exceptional value. We prove that the set of limiting directions of its Julia set must have a definite range
of measure.

2000Mathematics subject classification: primary 30D45, 37F10.

1. Introduction

Let f be a meromorphic function defined in the complex planeC or on the Riemann
sphereSC = C ∪ {∞}. TheFatou setF. f / of f is the subset ofSC where the iterates
f n (n = 1; 2; : : : ) of f are defined and{ f n} forms a normal family. The complement
of F. f / is called theJulia set. It is obvious thatF. f / is an open set andJ. f / is
closed. In general, the Julia set is very complicated.

Let f .z/ be a transcendental meromorphic function in the complex plane. Suppose
that argz = � is a ray from the origin. We say that� is a limiting direction ofJ. f / if,
for any" > 0 and anyR > 0, the domain{z : � − " < argz < � + "; |z| > R} has
nonempty intersection withJ. f /. We define the setE ∈ [0; 2³/ to be all the limiting
directions ofJ. f /.

Baker first proved in [3] that, for a transcendental entire functionf , the setE
contains infinitely many points. Later Qiao [6] proved that if the function is of finite
lower order, thenE contains an interval whose length depends on the lower order.
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In [8], the authors considered the case of meromorphic functions with∞ as their
deficient value and, under some additional conditions, they proved the setE has a
definitely positive measure.

In this paper, we remove the additional condition in [8, Theorem 1] and prove the
following result.

THEOREM 1.1. Let f .z/ be a meromorphic function of lower order¼ < ∞ with
deficiencyŽ.∞; f / > 0. Then

mesE ≥ min

{
2³;

4

¼
arcsin

√
Ž.∞; f /

2

}
:

If ∞ is a Borel exceptional value, then we can proveE contains an interval with
a definite length. Letf .z/ be a meromorphic function inC of order 0< ½ < ∞.
Recall thata ∈ SC is aBorel exceptional value off .z/ if it satisfies

lim
r →∞

logn.r; f = a/

logr
< ½;

wheren.r; f = a/ is the counting function in value distribution theory of meromorphic
functions.

In this case,we have the following result.

THEOREM 1.2. Let f .z/ be a transcendental meromorphic function of finite order
½ > 0. Suppose that∞ is a Borel exceptional value off .z/. Then there exists
a closed intervalI ∈ R such that all� ∈ I are limiting directions ofJ. f / and
mesI ≥ ³=max.1=2; ½/.

The proofs of the theorems depend strongly on the Nevanlinna theory of meromor-
phic functions. The reader can refer to [4] and [7] for the basic definitions and results
in value distribution theory of meromorphic functions, in particular for the symbols
such asT.r; f /, N.r; f /, and so on.

2. Proof of Theorems1.1and 1.2

The following lemma, which is a special form of the result proved in [2], is sufficient
to prove our theorem.

LEMMA 2.1 ([2]). Let f .z/ be a meromorphic function of finite lower order¼.
Suppose∞ is a deficient value off with Ž.∞; f / > 0. Let M j → +∞ . j → ∞/

and define

E.r / = {
� : ∣∣ f .rei � /

∣∣ > r M j
}
:(2.1)
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Then there is a sequence{r j } with r j → ∞ . j → ∞/ such that

lim inf
j →∞

mesE.r j / ≥ min

{
2³;

4

¼
arcsin

√
Ž.∞; f /

2

}
:

In the following we denote the angular domain{z : � − Ž < arg.z − z0/ < � + Ž}
by �.z0; �; Ž/, where� ∈ R and 0< Ž < ³ . We state Lemma 1 from [6] in the
following form.

LEMMA 2.2 ([6]). Let f .z/ be analytic in�.z0; �; Ž/. Suppose thatf .�.z0; �; Ž//

is contained in a simply connected hyperbolic domain inC. Then

| f .z/| < O.|z|/³=Ž; z ∈ �.z0; �; Ž
′/

for anyŽ′ ∈ .0; Ž/.
The proof of Lemma2.2 is the same as that of [6, Lemma 1]. For meromorphic

functions, the form we state in Lemma2.2 is more convenient for our use.

PROOF OFTHEOREM1.1. Set

¦ = min

{
2³;

4

¼
arcsin

√
Ž.∞; f /

2

}
:

We conversely suppose that mesE < ¦ and seek a contradiction.
Take at > 0 such that¦ − mesE > t > 0. SinceE is closed,S = [0; 2³/ \ E

consists of (at most countably many) open intervalsI from which we can find finitely
many open intervalsI i (i = 1; 2; : : : ;m) such that mes

(
S\ ⋃m

i =1 I i

)
< K=2, where

K = ¦−mesE−t > 0. By the assumption of Theorem1.1, it follows from Lemma2.1
that there exists a sequence{r j } of positive numbers such that mesE.r j / > ¦ − t > 0,
whereE.r j / is defined as in (2.1). Obviously we have

mes.E.r j / ∩ S/ = mes
(
E.r j / \ .E ∩ E.r j //

) ≥ mesE.r j /− mesE ≥ K > 0:

Thus there exists an open intervalI = I i0 ⊂ S such that for infinitely manyj

mes.E.r j / ∩ I / >
K

2m
> 0:(2.2)

By passing to a subsequence if it is necessary, we can assume that for eachj , (2.2)
holds. WriteI = .a; b/. Take a positive numberÞ such that

mes.E.r j / ∩ IÞ/ >
K

3m
> 0; j = 1; 2; : : : ;(2.3)
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where we denote byIÞ the interval.a + Þ; b − Þ/, .0 < 8Þ < b − a/. It is easy to
see fromI ∩ E = ∅ that there exists a positiveR such that

�.R; IÞ/ = {
z ∈ C : |z| ≥ R and argz ∈ IÞ

} ⊂ F. f /:

By choosing a pointz0 on the bisector ofI , we see that the angular domain{
z : z ∈ C; |z − z0| ≥ 0 and arg.z − z0/ ∈ IÞ

} ⊂ F. f /:

So without loss of generality, we can suppose�.0; IÞ/ ⊂ F. f /.
In the following we assume thatÞ is a fixed number such that (2.3) holds. Since

�.0; IÞ/ ⊂ F. f /, f .z/ has no pole in� and also does not take the values inJ. f /.
Take two fixed pointsw j ∈ J. f /, . j = 1; 2/. Thus f is meromorphic in�.0; IÞ/
and misses three points including infinity. Therefore the family{ f ◦ '}, where' is
a conformal automorphism of�.0; IÞ/, is normal in�.0; IÞ/ (compare [5]). So take
a sequence of automorphisms' j .z/ of �.0; IÞ/ such that' j .z/ = r j z, r j = |zj |. We
see thatf ◦ ' j converges to a functiong, which is either analytic or identically∞ in
�.0; IÞ/. Now f is unbounded on{zj } and henceg ≡ ∞. Thus f ◦ ' j converges
uniformly on{z : |z| = 1} ∩�.0; IÞ/ to ∞. This implies that

lim
z∈L j
j →∞

| f .z/| = +∞;(2.4)

whereL j = {z : |z| = r j } ∩�.0; I2Þ/.
In the following we prove the number of bounded components ofC \ f .�′/, where

�′ = �.0; I2Þ/ is at most one. If our conclusion is wrong, then we can take two
bounded componentsU1, U2 from C \ f .�′/. Choose two Jordan curves1, 2 in
f .�′/ such that1 and2 do not pass through critical values off .z/, U1 ⊂ int.1/,
U2 ⊂ int.2/, and int.1/ ∩ int.2/ = ∅. We choose a branch off −1 such that
f −1.1/, f −1.2/ ⊂ �′. Then f −1.1/ ∩ f −1.2/ = ∅. Take a fixedR > 0 such
that1; 2 ⊂ {z : |z| < R}. Noting that (2.4) holds, we see that every component of
f −1. j /, j = 1; 2, is bounded. Since the interior of j contains some points inJ. f /,
it is easy to see that any component off −1. j /, j = 1; 2, cannot be closed. So it is
a Jordan arc. Now we take fixedj0 such that| f .z/| > R for all z ∈ L j . j > j0/ and
f −1. j / ∩�′ ∩ {|z| < r j0} 6= ∅, j = 1; 2.

Take a component off −1. j /, j = 1 or 2, in�′
j0

= �′ ∩ {|z| < r j0}. Let ¦ j be a
component off −1. j / in �′

j0
, j = 1; 2. It is easy to see that¦1 is homotopic to¦2.

As f .z/ is analytic onS�′
j0
, we deduce that1 = f .¦1/ is homotopic to2 = f .¦2/.

This is a contradiction, which proves our claim.
For a transcendental meromorphic functionf , its Julia set is an unbounded set

in C. If J. f / contains an unbounded component0, thenC \ 0 is a simply connected
hyperbolic domainD and f .�′/ ⊂ D. Otherwise all components ofJ. f / are bounded



[5] Radial distributions 367

and there are infinitely many bounded components inJ. f /. Using the fact we just
proved, it is not hard to find a simply connected hyperbolic domainD ⊂ C such that
f .�′/ ⊂ D.

Using Lemma2.2, there exists a positive numberM such that| f .z/| < |z|M for all
sufficiently largez ∈ �′. On the other hand, there arezj ∈ L j such that| f .zj /| >
|zj |M j for all sufficiently large j . Noting thatM j → ∞, we get a contradiction and
Theorem1.1 is proved.

PROOF OFTHEOREM 1.2. Let f .z/ be a transcendental meromorphic function in
the complex domain of order 0< ½ < ∞. If ∞ is the Borel exceptional value off ,
then

lim
r →∞

log N.r; f /

logr
< ½:

Thus f .z/ must have the formf .z/ = G.z/=5.z/, whereG.z/ is a transcendental
entire function and5.z/ is an entire function that is the typical product of the poles
of f .z/. The functionsG.z/ and5.z/ have the following properties.

lim
r →∞

log T.r;5/

logr
= lim

r →∞
logm.r;5/

logr
= lim

r →∞
log N.r; f /

logr
= ¦ < ½

and

lim
r →∞

log T.r; f /

logr
= lim

r →∞
log T.r;G/

logr
= lim

r →∞
logm.r;G/

log r
= ½:

SinceG.z/ is a transcendental entire function of finite order½, it follows from the
Phragḿen-Lindel̈of Theorem that there is an interval.a; b/with b−a ≥ min.2³; ³=½/
such that

lim sup
r →∞

log log|G.rei � /|
log r

= ½

for all � ∈ .a; b/.
We are now able to prove[a; b] ⊂ E. If it is not true, then there is an subinterval

I ⊂ .a; b/ such that the angular domain�.{|z| > R; argz ∈ I }/ ⊂ F. f /. Let
argz = �0 be the bisector ofI . Then we have log|5.rei �0/| < r ¦+", and

log | f .r j e
i �0/| = log

∣∣∣∣ G.r j ei �0/

5.r j ei �0/

∣∣∣∣ = log |G.r j e
i �0/| − log |5.r j e

i �0/|
> r ½−"j − r ¦+"

j = r ½−"
′

j

for some"′ > 0. Thus we can find a sequences of points{zj } on the bisector such that
log | f .zj /| > |zj |½−" for some" > 0.
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Therefore, as in the proof of Theorem1.1, we can find a sequence of

L j = {|zj |ei � : a + Þ ≤ � ≤ b − Þ
}
; 0< Þ < .b − a/=8;

such that (2.4) holds.
By the same argument of the proof of Theorem1.1, we arrive at a contradiction.

The proof of Theorem1.2 is completed.

REMARK. Theorem1.2 is also true for meromorphic functions of finite lower
order¼ with poles having order of growth less than¼. In fact in this case, as in
the proof of Theorem1.2, f can be written asf .z/ = G.z/=5.z/, whereG.z/ is an
entire function of finite lower order¼, and5.z/ is an entire function with order less
than¼. So applying a theorem of Baernstein in [1] to G.z/, we get a similar result as
in Theorem1.2.
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