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Abstract

We consider a meromorphic function of finite lower order thatdess its deficient value or as its Borel
exceptional value. We prove that the set of limiting directions of its Julia set must have a definite range
of measure.

2000Mathematics subject classificatioprimary 30D45, 37F10.

1. Introduction

Let f be a meromorphic function defined in the complex pl@n& on the Riemann
sphereC = C U {oo}. TheFatou setF(f) of f is the subset of where the iterates
f"(n=1,2,...)of f are defined anfif "} forms a normal family. The complement
of F(f) is called thedulia set It is obvious thatF (f) is an open set and(f) is
closed. In general, the Julia set is very complicated.

Let f (2) be a transcendental meromorphic function in the complex plane. Suppose
that argz = 6 is a ray from the origin. We say thatis alimiting direction of J( f) if,
foranye > 0 and anyR > 0, the domainz: 6 — ¢ < argz < 6 + ¢, |z| > R} has
nonempty intersection witd (f). We define the seE € [0, 2r) to be all the limiting
directions ofJ(f).

Baker first proved in 3] that, for a transcendental entire functidn the setE
contains infinitely many points. Later Qia6][proved that if the function is of finite
lower order, therE contains an interval whose length depends on the lower order.
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In [8], the authors considered the case of meromorphic functions awiths their
deficient value and, under some additional conditions, they proved the ket a
definitely positive measure.

In this paper, we remove the additional condition 8 Theorem 1] and prove the
following result.

THEOREM 1.1. Let f (z) be a meromorphic function of lower ord@r < oo with
deficiencys (oo, f) > 0. Then

. 4 .
mesE > min {271, — arcsin
n

8(oc0, T)

> )

If oo is a Borel exceptional value, then we can pr@&veontains an interval with
a definite length. Leff (z) be a meromorphic function it of order 0 < A < oo.
Recall thata € C is aBorel exceptional value of (2) if it satisfies

= logn(r, f =a)

<A,
r—o0 logr

wheren(r, f = a) isthe counting function in value distribution theory of meromorphic
functions.
In this case,we have the following result.

THEOREM 1.2. Let f (2) be a transcendental meromorphic function of finite order
A > 0. Suppose thato is a Borel exceptional value of (z). Then there exists
a closed intervall € R such that allo € | are limiting directions ofJ(f) and
mesl > w/max(1/2, 1).

The proofs of the theorems depend strongly on the Nevanlinna theory of meromor-
phic functions. The reader can refer # nd [7] for the basic definitions and results
in value distribution theory of meromorphic functions, in particular for the symbols
such asT (r, f), N(r, f), and so on.

2. Proof of Theoremsl.1and 1.2

The following lemma, which is a special form of the result prove@]ni§ sufficient
to prove our theorem.

LEMMA 2.1 ([2]). Let f(z) be a meromorphic function of finite lower ordgr
Supposex is a deficient value of with §(co, f) > 0. LetM; — 400 (j — 00)
and define

(2.1) Er)=1{0:|fae”)|>r"}
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Then there is a sequengg} withr; — oo (j — oo) such that

4 f
liminf mesE(r;) > min {271’ 2 arcsin 5(02, ) } _
J—>o0 n

In the following we denote the angular doméin: 6 — § < arg(z — z,) < 6 + 8}
by Q(z, 0, 8), whered € R and O0< § < 7. We state Lemma 1 fromg] in the
following form.

LEMMA 2.2 ([6]). Let f (2) be analytic inQ2(z, 0, 8). Suppose that (2(z, 0, §))
is contained in a simply connected hyperbolic domaif inrhen

1f(@] <0(z)™, zeQ(2,0,8)
foranys’ € (0, 5).

The proof of Lemma2.2 is the same as that 06[Lemma 1]. For meromorphic
functions, the form we state in Lemn2a2 is more convenient for our use.

PROOF OFTHEOREM 1.1 Set

4 /
a=min{2n,—arcsi 5(c0, f)}.
" 2

We conversely suppose that ntes< o and seek a contradiction.

Take at > 0 such thab — mesE > t > 0. SinceE is closed,S = [0, 27) \ E
consists of (at most countably many) open intervaisom which we can find finitely
many open interval$ (i = 1,2,..., m) such that me6S\ |, Ii) < K/2, where
K = o —mesE—t > 0. By the assumption of Theorelr, it follows from Lemma2.1
that there exists a sequer{cg} of positive numbers such that mesr;) > o —t > 0,
whereE(r;) is defined as in4.1). Obviously we have

mesEr;) NS = mes(E(r;)\ (ENE(rj))) > mesE(r;) — mesE > K > 0.
Thus there exists an open interntat |;, € Ssuch that for infinitely many
(2.2) mesEr;)N1) K 0

. i > — .

: om

By passing to a subsequence if it is necessary, we can assume that for €aeh
holds. Writel = (a, b). Take a positive number such that

K
2.3 Er)Nl)>—>0 j=12...,
(2.3) mesE(r)) >>3m> J
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where we denote by, the interval(a + o, b — «), (0 < 8¢ < b — a). Itis easy to
see froml N E = ¢ that there exists a positiVe such that

QR 1,)={zeC: |zl > Rand arz € |,} C F(f).
By choosing a point, on the bisector of , we see that the angular domain
{z:2€Clz— 2| >0and argz— 2) € I} C F(f).

So without loss of generality, we can supp&s, 1) C F(f).

In the following we assume that is a fixed number such tha?.@) holds. Since
Q(, l,) c F(f), f(2) has no pole ir2 and also does not take the valuesJiaf ).
Take two fixed pointsv; € J(f), (j = 1,2). Thusf is meromorphic in2(0, I,)
and misses three points including infinity. Therefore the farpflyo ¢}, wheregp is
a conformal automorphism @&t (0, 1,), is normal inQ2(0, 1,) (compare p]). So take
a sequence of automorphispgz) of (0, 1,) such thay;(z) =r;z,r; = |z|. We
see thatf o ¢; converges to a functiog, which is either analytic or identicallyc in
(0, 1,). Now f is unbounded oriz;} and henceg = oo. Thusf o ¢; converges
uniformly on{z: |z]| = 1} N (0, |I,) to co. This implies that

(2.4) lim | (2)] = +o0,

j—o00

whereLj ={z:|z| =r;} N Q(0, l3,).

In the following we prove the number of bounded component of (©2'), where
Q' = Q(0, I,,) is at most one. If our conclusion is wrong, then we can take two
bounded componentd;, U, from C \ f (). Choose two Jordan curves, y, in
f (") such thaty; andy, do not pass through critical values 6fz), U; C int(yy),
U, C int(y»), andint(y,) Nint(y») = @. We choose a branch of~! such that
f1), T c Q. Thenf-1(y) N f1(y,) = ¥. Take a fixedR > 0 such
thaty,, y» C {z: |z < R}. Noting that £.4) holds, we see that every component of
f~1(y;), j = 1,2, is bounded. Since the interior pf contains some points id( f),
it is easy to see that any componentfof'(y;), j = 1, 2, cannot be closed. So it is
a Jordan arc. Now we take fixgglsuch that f (z)| > Rforallze L;(j > jo) and
flypn@ n{lzl<r,} #0,j=1,2.

Take a component of “*(y;), j = 1 or 2, inQ, = N{|z| <r;}. Leto; bea
component off "*(y;) in @, j = 1, 2. Itis easy to see that is homotopic tav,.
As f(z) is analytic on<2| , we deduce thag; = f(o1) is homotopic toy, = f(02).
This is a contradiction, which proves our claim.

For a transcendental meromorphic functibnits Julia set is an unbounded set
in C. If J(f) contains an unbounded componé&nthenC \ T is a simply connected
hyperbolic domaiD and f (') ¢ D. Otherwise all components d{ f) are bounded
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and there are infinitely many bounded componentd (). Using the fact we just
proved, it is not hard to find a simply connected hyperbolic doniaia C such that
f(Q) c D.

Using Lemma2.2, there exists a positive numbbt such that f (z)| < |z|™ for alll
sufficiently largez € Q. On the other hand, there azg e L; such that f ()| >
|z;|™ for all sufficiently largej. Noting thatM; — oo, we get a contradiction and
Theoreml.lis proved. O

PROOF OF THEOREM 1.2 Let f (2) be a transcendental meromorphic function in
the complex domain of order @ A < co. If oo is the Borel exceptional value df,
then

— |

= ogNe. B

r—o00 logr
Thus f (z) must have the forntf (z2) = G(2)/I1(z), whereG(2) is a transcendental
entire function and1(2) is an entire function that is the typical product of the poles
of f(z). The functiongG(z) andII(z) have the following properties.

i log T (r, IT) _im logm(r, IT) _m log N(r, f) s
r—co  logr r—o  logr r—oo  logr
and
i logT(r, ) _im logT(r, G) _im logm(r, G) _
r—oo  logr r—oo  logr r—oo logr

SinceG(z) is a transcendental entire function of finite ordeit follows from the
Phragnén-Lindebf Theorem thatthere is aninterv@al b) withb—a > min(2rz, /1)
such that

i0
IimsupIog log|G(re'?)|

=1
r— o0 logr

forall 6 € (a, b).

We are now able to provia, b] ¢ E. Ifitis not true, then there is an subinterval
| C (a, b) such that the angular domaia({|z]| > R,argz € |}) c F(f). Let
argz = 6, be the bisector of. Then we have log1(re'®)| < r+¢, and

G(r;e™) riet)

I1(r;€%)

A—e _pote _ i -
]

>r]- j

log|f(r;é®)| =log | ———| = log|G(r;€*)| — log |T1(r;€")|

for somes’ > 0. Thus we can find a sequences of po{{$ on the bisector such that
log|f(z)| > |z|*~* for somege > 0.
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Therefore, as in the proof of Theorell, we can find a sequence of
L; = {|Zj|ei0 rata <6< b—a}, O<a<(b—a)/8,

such that2.4) holds.
By the same argument of the proof of Theoréri, we arrive at a contradiction.
The proof of Theorem..2is completed. O

REMARK. Theorem1.2 is also true for meromorphic functions of finite lower
order u with poles having order of growth less than In fact in this case, as in
the proof of Theoren..2, f can be written ad (z) = G(2)/T1(2), whereG(z) is an
entire function of finite lower order, andI1(z) is an entire function with order less
thanu. So applying a theorem of Baernstein i} {o G(z), we get a similar result as
in Theorem1.2.
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