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Abstract

A A-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite
labeled graphs and presents a subshifDde. Math 7 (2002) 1-30, the author constructe@&aalgebra

O¢ associated with a-graph systent from a graph theoretic view-point. If &graph system comes

from a finite labeled graph, the algebra becomes a Cuntz-Krieger algebra. In this paper, we prove that
there is a bijective correspondence between the lattice of all saturated hereditary sulfsatslahe

lattice of all ideals of the algebr@¢, under a certain condition ofi called (Il). As a result, the class

of the C*-algebras associated withgraph systems under condition (ll) is closed under quotients by its
ideals.

2000Mathematics subject classificatioprimary 46L35; secondary 46L05, 37B10.

1. Introduction

In [7], Cuntz and Krieger presented a class@falgebras associated with finite
square matrices with entries {0, 1}. The C*-algebras are calle@untz-Krieger
algebras They are simple if the matrices are irreducible with condition (). Cuntz-
Krieger observed that theé*-algebras have a close relationship to topological Markov
shifts ([7]). The topological Markov shifts form a subclass of subshifts. For a finite
setX, asubshift(A, o) is a topological dynamical system defined by a closed shift-
invariant subsef\ of the compact set’ of all bi-infinite sequences at with shift
transformations. In [21] (compare 5, 5]), the author generalized the class of the
Cuntz-Krieger algebras to a class©f-algebras associated with subshifts. He also
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introduced several topological conjugacy invariants and presentations for subshifts by
using K-theory and algebraic structure of the associ@tedlgebras with the subshifts
in [23]. For presentation of subshifts, notions of thgraph system and symbolic
matrix system have been introduceéd]). They are generalizations of thegraph
(labeled graph) and the symbolic matrix for sofic subshifts to general subshifts.

We henceforth denote b¥, the set of all nonnegative integers. 2tbe a finite
set that is called an alphabet.)Agraph systent = (V, E, A, ¢) consists of a vertex
setV = U,ELV, an edge seE = U,EL E/ .1, a labeling map. : E — ¥ and
a surjective map(= v 41) : Vi;1 — V, for eachl € Z, with a certain compatible
condition, called the local property. Its matrix presentatid, ;. 1, 1,,41),| € Z is
called a symbolic matrix system, denoted@Vt, 1). TheA-graph systems give rise
to subshifts by gathering label sequences appearing in the labeled Bratteli diagrams o
the A-graph systems. Conversely, there is a canonical method to constrtgriagh
system from an arbitrary subshif2d]. It is called thecanonicali-graph systenfior
subshiftA.

In [24], the author constructe@*-algebras fromi-graph systems and studied
their structure. LetC = (V, E, A,1) be axr-graph system over alphab&t. Let
{vy. ..., vy, ) be the set of the verteY,. We henceforth assume thai.ayraph sys-
tem £ is left-resolving, that is, there are no distinct edges with the same label and the
same terminal vertex. The*-algebraO. is realized as a universal uniq@é&-algebra
subject to certain operator relations among generating partial isom&rieorre-
sponding to the symbols € ¥ and projectionsE| corresponding to the vertices
v e V,i =1...,ml),| € Z,, encoded by the concatenation rule &f Irre-
ducibility and aperiodicity for finite directed graphs have been generalizeejtaph
systems in24]. If £ satisfies condition (I), a condition generalizing condition (l) for
finite square matrices defined by][and is irreducible, then th€*-algebraQO; is
simple. In particular, if€ is aperiodic, therQ. is simple and purely infinite P4,
compare 27)).

In this paper, we investigate ideal structures of@iealgebrag).. The discussions
are based on aline of Cuntz’s pap@}ip which the ideal structure of the Cuntz-Krieger
algebras were studied (compals]). We generalize condition (11) for finite directed
graphs, defined irg], to A-graph systems. By considering saturated hereditary subsets
of £ with respect to arrows of edges, we show the following theorem.

THEOREMA (Proposition3.5, Theoren8.6). Suppose that satisfies conditiofll).
There is a bijective correspondence between the lattice of all saturated hereditary
subsets of and the lattice of all ideals of the algeb@¢. Furthermore, for any
ideal Z of Og, the quotienC*-algebraO¢ /7 is isomorphic to the&C*-algebraOgc,
associated with the.-graph systent\°z, obtained by removing the corresponding
saturated hereditary subs€Y; for 7.
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COROLLARY B. In the A-graph systems satisfying conditi¢h), the class of the
C*-algebras associated with-graph systems is closed under quotients by ideals.

By CorollaryB, it is expected that rich examples of simple purely infinite nuclear
C*-algebras of this class live outside Cuntz-Krieger algebras (compdyelheo-
rem 7.7], [L€], [26] and [20]). We further study the structure of an ideal ©f in
Section4. We prove that an ideal dD. is stably isomorphic to th€*-subalgebra
of O¢ associated with the corresponding saturated hereditary sub&ét(®heo-
rem4.3). As a result, the K-theory formulae for ideals@f. are presented in terms
of the corresponding saturated hereditary subseté @theorem4.5).

If a A-graph systent. comes from a finite directed gragh, the associate@*-
algebraO. becomes a Cuntz-Krieger algelith,. for its adjacency matriXdg with
entries in{0, 1}. The results of this paper, Theorei Corollary B, Theorem4.3,
Theoremd.5, and Propositiod.6are generalizations of Cuntz’s resulf Theorem 2.5]
for Cuntz-Krieger algebras. Other generalizations of Cuntz-Krieger algebras from
this graph point of view have been studied By10, 12, 15, 17, 18, 30, 34] and [35).
Related discussions f@*-algebras generated by Hilb&2t-bimodules can be found
in [14].

2. Review of theC*-algebras associated with.-graph systems

Recall that ar-graph systentl = (V, E, A, ) over an alphabek is a directed
Bratteli diagram with vertex se¥ = U,EL V, and edge seE = U,EL E ;1 that
is labeled with symbols itk by A : E — X, and that is supplied with surjective
mapsu(= y41) : Vizis — V forl € Z,. Here, both the vertex set, | € 7,
and the edge set§, |4, | € Z, are finite disjoint sets. An edgein E;,; has
its source vertex(e) in V, and its terminal vertex(e) in V,,; respectively. Every
vertex inV has a successor and every verte¥ijrfor | € N has a predecessor. It is
required that there exists a bijective correspondence, which preserves labels, betwee
{ee B |t =v,us(e) =u}and{e € E_1, | s(e) = u,t(e) = «(v)} for
all pairs of verticess € V,_; andv € V| ;. This property of the.-graph systems is
called thelocal property We call an edge € E;,.; aA-edgeand a connecting finite
sequence of-edges a-path Foru,v € V, if ((v) = u, we say that there exists an
1-edgefrom v to u. Similarly we use the termpath We denote byv}, v}, ..., v}, }
the vertex seV| of V at levell. A finite labeled graphiG, 1) overX with underlying
finite directed graplG = (V, E) and labeling map. : E — X yields axi-graph
system& ;) by settingV, = V, E;,; = E forl € Z, and: = id (compare 4,
Section 7]).

Let us now briefly review th€*-algebra0 associated with the-graph systent,
which was originally constructed ir2f]] to be a groupoidC*-algebra of a groupoid
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of a continuous graph obtained ly(compare 8, 9, 31]). The C*-algebrasO. are
generalization of th&€*-algebras associated with subshifts. That is, if thgraph
system is the canonicalgraph system for a subshift, the constructe€*-algebra
coincides with theC*-algebraQ, associated with the subshift in [26] (compare
[5D).

Let £ = (V, E, A, 1) be a left-resolvingi-graph system ovekE. We denote
by A the presented subshift. by £. We denote byA* the set of admissible
words inA of lengthk. We setA* = |-, A¥, whereA° denotes the empty word.
Define the transition matrice, ., I,,1 of £ by setting fori = 1,2,..., m(),
i=12....ml+1),xex,

o 1 if s(e =1, r(e) =, t(e) = v\ for somee € E, .,
A|,|+1(|,Ot,J):{ © = v, 1(® (€ =v I+1

0 otherwise,

[N

i +1y
lisals ) = { it 2] = v,

0 otherwise.

TheC*-algebraQy. is realized as the universal unitat-algebra generated by partial

isometriesS,, « € ¥ and projectionsE!, i = 1,2,...,m(l), | € Z, subject to the
following operator relations calle@)
(2.1) Y ss=1
oEX
m(l) m(l+1)
(2.2) Z EiI =1 EiI = Z iadis j)EIjJrl,
i=1 j=1
(2.3) SS,E = ESS,.
m(+1)
(2.4) SES = > Aial.p. HE™
j=1
forpe X, i=12....ml),| € Z,. Itis nuclear (4, Proposition 5.6]). The
relations 2.1), (2.3) and @.4) yield the relations
m(l+1)
(2.5) E =) > Al o DSE™S,
aex j=1
fori =21,2,...,m(),| € Z,. Forawordu = pi---ux € A¥, we setS, =

S.. -+ S,. Then the algebra of all finite linear combinations of the elements of the
form S,E'S, foru,v e A*,i =1,...,m(l),| € Z,, is a dense-subalgebra 00..

We define threeC*-subalgebrasF, (k < |), F° and F¢ of Oq. The first one,

Fl, is generated b5, E!'S:, n,v € AKX, i = 1,...,m(l), the second oneF>, is
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generated byF}, k < 1,1 € Z,, and the third oneFyg, is generated by-°, k € Z,.
There exist two embeddings.+1 Flo— ]—"'*1 coming from the second relation
of (2.2 andikys1 : Fy < Fi'1, coming from @.5). The latter embeddings induce
an embedding of;° into 72, that we also denote by 1. Since the algebr&; is
finite dimensional, the embeddings,, : 7. < F ™, | € N yield the AF-algebra
F*, and the embeddings «+1 : F° — Fi54, K € Nyield the AF-algebraFe.

For a vertex| € V,, set

such that; = s(&41), t(€yn+1) = S(Err1.n+2),

there exists an edg® .1 € Eqnyq forn > | }
Arn+1) = Anois1

I”@D:{@LWMH)EEN

the set of all label sequencesfnstarting at|. We say that® satisfies condition (1)

if for eachv! € V, the setl'*(v!) contains at least two distinct sequences. Under
condition (1), the algebr&. can be realized as the unig@é-algebra subject to the
relations(£). This means that i, « € £, andE,i = 1,....,m(),| € Z, are
another family of nonzero partial isometries and nonzero projections satisfying the
relations(£), then the mag, — S, E — E extends to an isomorphism frofe

onto theC*- aIgebraOg generated b;SX a € ¥, andE E,.i=1....m0),| €7,

([24, Theorem 4.3]).

Let A¢ be theC*-subalgebra of. generated by the projectiof®,i = 1,2, ...,
m(l), | € Z,. Let Qg the projective limit of the system,,; : Vi;;s — V, | € Z,.
We endow2¢ with the projective limit topology so that it is a compact Hausdorff
space. An element a2, is called an-orbit. By the universality of the algebr@.
the algebrad, is isomorphic to the commutativé*-algebraC(Q2¢) of all complex
valued continuous functions d&e. As a corollary of 4, Theorem 4.3], ifC satisfies
condition (1), for a nonzero ided of O¢, we havel N A # {0}.

A A-graph systent is said to bdrreducible if for a vertexv € V, and an-orbit
X = (Xi)icz. € Qg¢, there exists a-path starting ab and terminating ax;.y for some
N e N. Define a positive operatdrs on Ag by 1o (X) =) . SIXS for X € As.
The operatoi¢ on A induces the embedding® C F,, k € N so as to define the
AF-algebraFe = Il_)m F. We say that. ¢ isirreducible if there exists no non-trivial
ideal of A invariant undei.e. Theng is irreducible if and only ifa ¢ is irreducible.

If £is irreducible with condition (1), th€*-algebraO¢ is simple (R4, Theorem 4.7],

compare 27)).

3. Hereditary subsets of the vertices and ideals

This section and the next section are the main parts of this paper. Inwhat follows we
assume that a-graph systentl = (V, E, A, ) over X is left-resolving and satisfies
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condition (I). We mean by an ideal ofG-algebra a closed two-sided ideal. Recall
that the vertex se¥; is denoted by{v}, ..., v}, }.
Forv € Vi andv|™ € Viiy, we writev! > vi™ if 1,10} = v|. We also write

V! é V|1 if there exists an edge € E 4, such thats(e) = v/, t(e) = v;*". For

. . s . .
ol e Vi andvl* e Vi, we writev] > o't (respectivelyv! S v!#¥) if there exist

pl+t vtk 1 such that

PRI |k1

A A 1 A
S ok (respectivelyv! 5 vlFt S . S el L glek),

m k1 = “m

=
A subseCC of V is said to be-hereditary(respectivelyi.-hereditary if for v/ € CNV,

the conditionv! > v{™* (respectivelyv! Z v|™) implies v{** € C. Itis said to be
hereditaryif C is both(-hereditary and A-hereditary It is said to bei-saturated
(respectivelyi-saturated if it contains every vertex! € C NV, for which v! g v']-+ !
(respectively! V™Y impliesv|™ e C. If C is bothi-saturatedandA-saturated it

is said to besaturated

DEFINITION. A A-graph systent)’ = (V’, E’, 1/, /') overX' is said to be a.-graph
subsysterof £ if it satisfies the following conditions:

w#\/(CV, @# E|/,|+1C E|q|+1, for | €Z+,
)"|E’ = )"/’ L|V’ = l/a Z/ - Z,

and an edge € E belongs toE’ if and only if the both vertices(e), t(e) belong
to V’. Hence ak-graph subsystem is determined by only its vertex set.

LEmMMA 3.1. For a saturated hereditary subs€étc V, set

V\¢ = V\C,
={ee E|s(e), t(e) € V\C},

)\.\C =A |E\C, L\C =1 I\/\C .
Then(V\¢, E\¢, A\, (\®) is aA-graph subsystem ovér of £.

PrROOF. For a vertexu € V,'°, there exists a vertex € \/I+l such that(w) = u,
becaus€ is:-saturated. Similarly, there existan edge E, andavertex’ e VG
such thats(e) = u, t(e) = w’, becauseC is A-saturated. Let, v be vertices with
ueV,'% veV\S Puty’ =(v). AsCis:-hereditary, we have that belongs tov,\
AsC is A-hereditary, if an edge € E, |, satisfieg(e) = v, one sees tha{e) belongs
to V,\ and hence belongs toE,, ;. Therefore(V\®, E\®, 1\, (\®) inherits the local

property of€. Thus(V'\®, E\¢, A\, /\®) becomes a-graph system. O
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We denote by2\C the A-graph systentV\©, E\°, 1\¢, /\*) and call it ther-graph
subsystem of. obtained by removin€. LetZc be the closed ideal @ generated
by the projectionsE! for v € C, that is,Zc = O¢{El | v/ € C}O, the closure of
OQ{EII | vi' S C}Og

LEMMA 3.2. The set of all linear combinations of elements of the form

(3.1) S.E'S, for v eC, u,veA

i
is dense irlc.

PROOF. Since the finite linear combinations of elements of the f@&&{'S; for
€], Inl < p, f=1,...,m(p)is dense iDg, elements of the form

SE!SESE!S, forv eC, [£l.Inl<p, £l.lyl<q
span the idealc. PutT = SE{S E/S EJS; and assum@& # 0. The equality

m(+1n)
SES = Y Apgl.n DE™
j=1

holds, whereA, |.,, (i, n, }) = 1, if there exists a-path fromy! to v| " with labels,
otherwiseA, ;. (i, n. j) = 0. The vertexo;""" belongs toC if A 14, 1, j) = 1,
because| € C andC is i-hereditary. AsT = SE{SE/S S SES and we may
assume thdtis large enoughT is assumed to be of the forfn= S E/S'S EJS; for
vl € C. AsT # 0, the elemenE| S'S is either of the formE| S, or E{ S/ for some
wordv. In the former case, we hale= S S, S E{S,E]S;. SinceS E|S is a finite
linear combination of;*" for v;"" € C andl is large enoughT is a finite linear
combinations of elements of the forr.{), becauseC is A-hereditary. In the latter
case, we havé = SE/SEJSSS;. SinceSEJS is a finite linear combinations of
E{™" for v]*"" € Vq,, andl is large enough, we have = S E!'S;,. Hence we get
the desired assertion. d

LEMMA 3.3. If E! belongs to the idedlc, the vertexs] belongs to the set.

ProoOFE Fork <1, set
Ea= ) SES
W
lnl=k,vjeC

belonging toZ:. For an operatol = &E.'S; with v! € C, it follows thatT By =

E«, T =T for large enouglk, |. Lemma3.2says thaf Ey }«, is an approximate unit
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for Zc. Suppose that a verteX € V does not belong t€. It suffices to show that
the equality

(3.2) IEjE — ESll =1

holds for all large enoughk, I. We fixk < | large enough. We may assume that
EYEw # 0andL +k < |. There exists an admissible wogdof lengthk such that
S,E}S.E| # 0and henceS;E} S, > E|. On the other hand; is saturated, so we
may find ax-paths in E. | ,« whose source verte(r) is v, and an-path from the
terminal vertext () of 7 to a verteXU'p that does not belong 6. We sety = A(x)
the label ofr so thatS E}S, > E,,. It then follows that

E! > S, SE'S.S +SSE'SS = SES +SES

Since)_, . Jec S.E| S is orthogonal tdS, E| S;, one obtains that

ESEx — ES > S,E'ij
so that 8.2) holds. O

LEMMA 3.4. For any nonzero closed idedl of theC*-algebraO¢, put
Cr={v eV|E eI}
ThenCyz is a nonempty saturated hereditary subse¥of

PROOF Since £ satisfies condition (1), the s&t; is nonempty because of the
uniqueness of the algebd.. Takev! € Cz. Suppose that|™* satisfiesv! > v|*".
The inequalityE! > E|** assuresE|*! € Z. Suppose next| = v!*L. There exists a
symbola € ¥ such thatA|,1(i, @, j) = 1. By (2.4), we haveS' E| S, > E'jJrl so that
E}™* € 7. HenceC; is hereditary. Fop!, suppose that! > v} impliesv|™ € Cy.
ThIS means that;;,4(i, j) =1 |mpI|es EI+l € Z. By the second equallty of(2),
we seeE! € 7. Suppose next that > v'“ implies vj** € Cz. This means that
A (i, o, j) = 1impliesE|*™* € 7. By (2. 4) we haveS*E'Sx eZforalla € X, s0

thatEl = > .. S S'E/S.S; belongs tdZ. ThusZ is saturated. O

PrROPOSITION3.5. Letf = (V, E, A, ) be ak-graph system satisfying conditi¢ii.
Let C be a saturated hereditary subset\6f A vertexv! belongs toC if and only if
E! belongs tdZc. Hence there exists a bijective correspondence between the set of all
saturated hereditary subsets\éfand the set of all ideals i@¢.

PROOF. Let C be a saturated hereditary subseVofFor a vertex) € V, we have
v € Cifandonly if E| € Zc by Lemma3.3 For an idealZ of O¢, we haveE| € 7
if and only if v/ € C; by definition ofC;. Hence we conclude the assertions. [J
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DEFINITION. A A-graph systemt satisfiescondition (Il) if for every saturated
hereditary subsef C V, thei-graph systent\¢ satisfies condition (1).

Let A be ann x n square matrix with entries if0, 1}. ThenA satisfies condition
(1) in the sense of CuntAj] if and only if the naturah-graph systent*# constructed
from A satisfies condition (Il) in the above sense (compare Sebjion

THEOREM 3.6. Suppose that a-graph systent satisfies conditior{ll). For an
idealZ of Og, the quotienC*-algebraO¢ /7 is isomorphic to the&*-algebraOgc:
associated with the-graph systent\°z obtained fromg€ by removing the saturated
hereditary subset; for 7.

PROOF. We denote byg,, E! the quotientimages &,, E/ in the quotienC*-algebra
O¢/T respectively. Les,, € be the canonical generating partial isometriesfer ©
and the projections corresponding to the vertigesf V\°Z in Ogc;. Since we have
E # 0ifand only ifv! € V\°z, the relations

m(+1)

§;E:§] = Z A|,|+l(i’ o, k)EL+1, fora € &
k=1

hold. By the uniqueness of the algeb@ and Og«:, subject to the operator

relations, the correspondenge <> s,, E| <> € fora € =, vl € V\°z extends to an

isomorphism betwee®. /7 andOg¢c; . O

COROLLARY 3.7. In the A-graph sytems satisfying conditi¢h), the class of the
C*-algebras associated witkrgraph systems is closed under quotients by its ideals.

We say a closed idedl of Ag to besaturatedf 1. (E}) € J impliesE! € 7. We
are assuming thatjagraph systent satisfies condition (l).

LEMMA 3.8. For an idealZ of Og¢, setJ = Z N As. ThenJ is a nonzero
Ag-invariant saturated ideal ofd ..

PROOF. It suffices to show that7 is saturated. Suppose thet(E)) € 7. We
seeS E!S, belongs ta7 for eacha € . HenceE! =) ;. S, SE'S S belongs
toJ. d

LEmMMA 3.9. There exists a bijective correspondence between the setiof/ariant
closed saturated ideals of¢ and the set of saturated hereditary subset¥ of

PROOF. Let J be aig-invariant saturated ideal olg. PutC; = {vl € V | E! ¢
J}. As J is de-invariant, we have_, ;. S E!'S, belongs ta7 for v/ € C;. Hence

(1)) i
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A (i, «, ) = 1implies E'J-+l € J. This means thaC ; is A-hereditary. Suppose
that A 1(i, o, j) = 1 implies v'j+l € Cy. It follows thatie(E)) € J and hence
v € Cy, becauseT is saturated. By the second equality &f3), we know thatC ;
is i-hereditary and-saturated.

For a saturated hereditary sub§ebf V, let Z¢ be the ideal o0 generated by
El for v € C. PutJc = Zc N Ae. By Proposition3.5, a vertexv] belongs toC if
and only if E| belongs to7c. It is easy to see thafc is A¢-invariant becaus€ is
A-hereditary, and/c is saturated becauskis A-saturated. O

We remark thatC is irreducible if and only if there is no nontrivialg-invariant
ideal of A¢. The latter property is also equivalent to the condition that there is no
proper hereditary andsaturated subset . Thus we see the following theorem.

THEOREM3.10. Consider the following six conditions.
(i) Ogissimple.
(i) There is no nontriviah c-invariant saturated ideal afd .
(i) There is no proper saturated hereditary subse¥ of
(iv) Lisirreducible.
(v) There is no nontriviah c-invariant ideal of A..
(vi) There is no proper hereditary anesaturated subset of .

Conditions(i)—iii) are equivalent to each other, and also conditiqihg—(vi) are
equivalent to each other. The latter conditions imply the former conditions.

PrROOF. As nontrivial ideals ofO¢ bijectively correspond to saturated hereditary
subsets ol/, the first three conditions are equivalent each other. It suffices to show
that (iv) is equivalent to (vi). Assume thatis irreducible. LetC be a nonempty
hereditary and-saturated subset &f. Take a vertex! € C. LetUy(v!) be the set of
-orbitsu = (Uy)nez, € Q¢ such that there existsiapath of lengthN from v! to the
vertexu,y. Sincef is irreducible, we hav&e = [ J3_,Un(v)). Hence there exist
N, N, ..., N, such thatQe = U?ZluNJ (v)), becausdJy (v)) is open inQe. We
may assume that @ N; < N, < --- < N,. We putN,, = L. For a vertexw € V.,
find anc-orbit X = (Xy)nez, € Qe such thatq, | = w. TakeN, such thai € Uy, (v!).
SinceC is A-hereditary and-hereditary, we seg ., € C and hencev € C. This
impliesV, .y C C. Now C is (-saturated, so we conclude that= C. Therefore we
get the implication from (iv) to (vi).

Suppose that is not irreducible. There exists aforbit u = (U,)nez, € Q¢ and
a vertexv| such thatu does not belong ta/y_ Uy (v)). Let VN(v)) be the set of all
verticesw in Vi, that are terminal vertices afedges whose source vertices ai're
PutV (v)) = UX_VN(v)) and

W) ={w eV |v>w for some vertexv € V(v))} UV ().
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By the local property of the.-graph system, the s&V(v!) is A-hereditary and the
verticesu, do not belong tow(v)) for all n € Z,. It is by definition thatW(v!)
is i-hereditary. LetC be the saturation o#V(v}) with respect to>. As W(v}) is
A-hereditary,C is so from the local property df-graph system. It is obvious that
is i-hereditary. We obtain a proper hereditary arséturated subsét of V. O

4. Structure of ideals

In this section, we prove that an ideal 6f. is stably isomorphic to th&*-
subalgebra o®. associated with the corresponding saturated hereditary subget of
As a result, we can present the K-theory formulae for ideal® gfin terms of the
corresponding saturated hereditary subset¥ ofThe notation is as in the previous
sections. For a saturated hereditary sultset V, put forv! € C

AC) = {ue A

there exists a-path 7 such thati(r) = pu,
s(r) € C, t(m) = v! ’

wheres(;r) andt (;r) are the source vertex and the terminal vertex gespectively.
We denote byO.(C) the C*-subalgebra of0. generated by elements of the form
S.E'S, for u,v e A®(v)), v} € C.

LEMMA 4.1. The set of all finite linear combinations of elements of the f§rf S,
for u, v € A(v)), v} € C, is a dense:--subalgebra of). (C).

PROOF. Foru, vk € C, u, v € A®(v)), €, 1 € A°(vf), suppose that
S.EISSE'S #0.
We may assump| > |&]. We then have = &v’ for somev’, so that
SESSES =SESESS,.

If |v'| +k <1, we have thaE] S, E?SM = E. If V| +k > |, we see thaE! Sj,E:.‘Suf

is a finite sum of projectiong&} "™ with v} € C. In both casesS, E/ S 'S EXS is
a finite linear combination o& E'S; with ¢, 8 € AS(v"), v € C. O

We prove that the idedl: of O¢ is stably isomorphic to th€*-algebraO.(C)
under some condition. PW® = >, . Ef for| € N. It belongs to the algebra
O¢(C) and satisfiesP, < P,;. We see then a sequence of natural embeddings
POe¢P C B11iOcP i C -

PrROPOSITION4.2. O¢(C) = lim|_ RO B.
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PrROOF. WEe first prove the inclusion relatiadB¢ (C) C lim;_.., RO PR. Forv € C
andu € AC(v), take ar-paths such thats(r) € C, t(x) = v!, andi(n) = u.
We puts(r) = v}, The projectionE]’ satisfies the inequalit$; Ei' S, > E| so that
E}'S.E = S.E!. As £is left-resolving, we know tha; E,! S, E = 0 fork; # j;. It
then follows thatR, S, E/ = S,E!. Symmetrically we have thd SR, = E/ S for
somel,. Hence we see thd?, SLE'S*P.2 = SLE| . Thus we have proved that for
v € Candu, v € A(v), there exist € N such thatP,,S,E! S P, = S,E! S for
allm> M. This implies the inclusion relatio®¢ (C) C lim,_,, RO R.

Forv e V, u,v € A%, andv}, v} € C, we next prove that the element
E'lgE' E|2 belongs to the algebr@¢(C). We may assume thais large enough
because of the second relation @f.3). AssumeS*E &E'QE'ZS # 0 so that

E'lg > E|. Hence there exists a-path Whose source nss']l1 and terminal is
connected tO)' by an:-path. By the local property of the-graph system, we may
find a A-pathz in E such thati(r) = u, t(xr) = v and ani-path that connects
betweers(zr) andv]. Sincev} belongs toC andC is hereditary, we see that € C
andu belongs toA®(v!). Symmetrically one sees thatelongs toA©(v)) from the
inequality S E?2S, > E!. Hence we hav&]' S,E!S'E? = S,E/S and it belongs to
the algebradq(C). Thus we have lim,,, PO PR c OQ(C). O

THEOREM4.3. The idealZ is stably isomorphic to the algebi@g¢ (C).

PrOOF. Let X, = O P forl € N. ThenX, has a Hilbert leftO s PO«-module and
a Hilbert right R O¢ B-module structure in a natural way. Its l&fte B O¢-valued
inner product and righP, O¢ P -valued inner product are given by

(aR,bR). =aRb*, (aR,bR)r=PRa'bR,

for a, b € O¢ respectively. Hence the norms o coming from their respect inner
products coincide with the norm on tl&-algebraOq.. As P, < B,;, we have a
natural embedding; < X;1. Let Xc be the closure of J2, X, in the norm of
Og¢, that is regarded as the inductive limit of the inclusiods<— X;,1, | € N.
The idealZc and the algebr&@.(C) are the inductive limits lim,,, O« P O¢ and
lim_ . P Og¢ P respectively. We then see that the subspég®f O¢ has an induced
left Zc-valued inner product and rigkd? . (C)-valued inner product such as

Emu=¢&n"ele, (& nr=E&1n¢e€0:C),

for &, n € Xc respectively. It also has a natural 1&€t-module and rightO¢(C)-
module structures respectively. It is easy to see that both the linear spé&ns uf,
for &, n € Xc, and(g, n)g, for &, n € Xc, are dense iffc andO¢(C) respectively.
HenceXc is a full Hilbert left Zc-module, and a full Hilbert righ®)« (C)-module such
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that (€, n)L& = &(n, &)r, fOr &, n, ¢ € Xc. This means thakc is anZc — O¢(C)
imprimitivity bimodule, so thaZc andO¢(C) are Morita equivalent §2]). By [4],
they are stably isomorphic to each other. O

By using the above result, we next compute the K-theory of the idgal The
subalgebra®¢(C) is invariant globally under the gauge actior on Ogs. We
still denote byage the restriction ofae to O¢(C). We denote byFq(C) the C*-
subalgebra 00 (C) generated bys,E' S, , v € AS(), || = |v], v/ € C. That
is, Fo(C) = Fe NZc. ltis direct to see that the fixed point algelifh (C)*< of
O¢(C) underay is the algebraFq (C). A similar discussion to42] (compare 24])
assures that the crossed prod@et(C) x,,., T is stably isomorphic t¢F¢ (C). We can
show the following result.

LEMMA 4.4 (compared4, Lemma 7.5], 2, Lemma 4.3)).
(i) Ko(Oc(C)) = Ko(Oe(C) Xy, T)/(id — oz, HKo(Oe(C) Xy, T).
(i) Ki(Og(C)) = Ker(id — az. ) onKo(Og(C) X4, T),

wherea s is the dual action ofg.

Let F,(C) be theC*-subalgebra ofF(C) generated by5,E!S', i, v € AC(v)),
Il = [v] =k, vl € CNV, and F°(C) the C*-subalgebra ofF¢ (C) generated by

FH(C), k <1 € N. Hence we see that
Fi(C)=F,NO(C), F(C)=F>nN0Og(C).

The embeddings of ,; : }’,'( s ]—"ﬂfl andAgy1 @ FE — F2, of the original
AF-algebraFsg, are inherited in the algebras (C), F°(C), Fe(C), so thatFe(C)
is an AF-algebra. Leinc () be the cardinal number of the vertex €20 V,. We put
CNV ={uj, U, ...,u, ). Define the following matrices:

o 1 if s(e) =ul,r(e) =a, t(e) = uj"* for somee € E;,
AC) 1l a, ) = . i 1+1
0 otherwise,

1 if l|,|+1(ulj+l) = U:

' ©hinl, D = {0 otherwise

AC) 110, j) = Z AC) 1410, o, ]),

1))

fori=21,2,...,mc(l),j=21,2,...,mc(l +1). Let

DC)js1=1(C) 11— AC)] |y : 2™V — 7™ | eZ,.
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As 1 (C)},11:2AC) .1 = AC)}, 1., (O .4, the matrixI (C){,,,,, induces a ho-
momorphism fronZ™ Y /D(C), ,1Z™® to 72M1+2 /D (C)|11,422™ Y that is de-
noted by@lmu. Thanks to Theorem.3, we can present the K-theory formulae
for ideals ofOq.

THEOREM 4.5. Let £ be ai-graph system satisfying conditi¢l). Let Z be an
ideal of O¢ andC its corresponding saturated hereditary subset of the vertex &t of
Then we have

Ko(Z) = lim {zmc““)/D(C)}Mzmd”; | (C)Lmz} :

T

Ki(Z) = lim {KerD(C)y,141in Z™V; 1(C)] 4} -
|

Although theC*-algebraO. is not necessarily defined by,agraph system, in the
case whelC has abounded upper boundt is given by ar-graph system. Let

Vi =CU{v eV | there existsl, € C such that™(us) = v for somem € Nj}.

A saturated hereditary subggtof V is said to have &ounded upper bouni the
cardinality of the seV\C is finite. It is equivalent to the condition that there exists
L € N such thatV, N V{ = V,NnCforalln > L. We will assume tha€ has a
bounded upper bound. Takee N as above. Define fdre 7,

V¢ =CnVy,
Eﬁ+1 ={ee EuvLisLal s € VE, te) e Vﬁl},

C C
)\, :)\. |EC, [’|,|+l:L|V|C

J+1 7

SinceVENVi,L = CNVi4, one seesthatu) € V/© foru € V. Itis straightforward

to see thatV,®, ES ;. A%, f iz, Yields ai-graph system, denoted . We note
thatC has a bounded upper bound if and only if there eXists N such thatP, = P,

foralll > L.

PrOPOSITIONA.6. Let £ be ar-graph system satisfying conditi¢ih) . If a saturated
hereditary subsef of V has a bounded upper bound, the algetta(C) is isomorphic
to theC*-algebraQ¢_ associated with the-graph systentc. Hence the ideal. is
stably isomorphic to th€*-algebraOsg, .

ProoOF. TakeL € N suchthatv,NV{ =V,NCforalln> L. AsP = P, forall
| > L, one hasO¢(C) = P.O¢P_ by Proposition4.2. Let £& = (VO ED,
A0 (L) be theL -shift A-graph system of defined by

(L) (L) L (L)
V| = VI+L, E|,|+1 = E|+L.|+L+la A0 = ME(U, bir1 = U4l 442
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forl € Z.. By [28, Proposition 2.3], the algebi@. coincides with the the algebra
Ogw. ltis direct to see thaP Og¢w Py is isomorphic toOg.. HenceO:(C) is
isomorphic toOg,. O

5. Examples

Let G = (V, E) be a finite directed graph with finite vertex $étand finite edge
setE. LetG = (G, 1) be a labeled graph over an alphabetdefined byG and a
labeling map, : E — X. Suppose that it is left-resolving and predecessor-separated
(see [L9]). Let Ag be the adjacency matrix @ that is defined by

1 ift(e =
Acte. f) = ift(e) . s(e),
0 otherwise,

for e, f € E. The matrix Ag defines a shift of finite type by regarding the edge
setE as its alphabet. Since the matig has entries if{0, 1}, we have the Cuntz-
Krieger algebra0,, defined byAs ([7] compare 18, 33]). By putting V¢ = V,
E‘,, = Eforl € Z,, andA9 = 1,9 = id, we have ar-graph systentg =
(V9,E9,19,9). The C*-algebraOg, is isomorphic to the Cuntz-Krieger algebra
On. ([24, Proposition 7.1]).

Let us consider the following labeled graph. The vertex\sét {vy, v,, v3}. The
edges labeled are fromu, to v3 and fromus to v, and a self-loop at;. The edges
labeledp are self-loops at; and atvs. The edge labeleg is from v; to v,. The
resulting labeled graph is denoted @y Thex-graph systent; is left-resolving and
satisfies condition (Il). InCg, let C be the vertex set corresponding {t®, vs}. It
is saturated hereditary. Thegraph subsystenﬁ‘,\gC of £5 obtained by removin@
consists of one-orbit of the vertex{v,} with two self-loops labeled andg. Hence
we have

O,{:g = |:§§(£|, OEQ/IC'.:VOX:}JC 2021 Ic®IC§O[ :|®,C

11

10
The second example is the canonitaraph system for the Dyck shil),, that is

not a sofic subshift. The subshift comes from automata theory and language theory

(compare 1, 11]). Its alphabetZ consists of two kinds of four brackets; ), and

[, 1. The forbidden words consist of words that do not obey the standard bracket rules.

Let £P2 be the canonical-graph system foD,. In[29], the K-groups of the symbolic

matrix system foiP2 have been computed. They are the K-groups for the associated

C*-algebraQ¢o,, so that we se&y(Oer,) = 7%, andK;(Ogn,) = 0, WhereZ® is

the countable infinite sum of the grodp The C*-algebraO¢o, has a proper ideal.
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Thei-graph systentPz satisfies condition (Il). Le£<"®P2 be thei-graph subsystem
of £P2, called the Cantor horizoh-graph system oD, (see [L6] for details). Then
L£ChD2) s aperiodic and a minimal irreducible componeng6f. Hence the associated
algebra0gcno, is a simple purely infinit€€*-algebra realized as a quotient®@f.», by
an ideal corresponding to a saturated hereditary subsgt:ofin [16], its K-groups
have been computed to b&(Ogcnon) = 7/27 & C(C, Z), and K (Ogenon) = 0,
whereC (¢, Z) denotes the abelian group of @valued continuous functions on a
Cantor discontinuunt. As £¢"P2) is predecessor-separated, the algeBgano, is
generated by only the four partial isometri§s o = (,), [, ] corresponding to the
brackets(, ), [,]. HenceOgcno, is finitely generated, but it ,-group is not finitely
generated. This means that the algeBkanc, is simple and purely infinite, but not
semi-projective (compared]). Full details and its generalizations are seenlifi [
and 0.
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