THE WEIGHTED g-DRAZIN INVERSE FOR OPERATORS

A. DAJIĆ and J. J. KOLIHA™

(Received 10 August 2004; revised 14 February 2005)

Communicated by A. Pryde

Abstract

The paper introduces and studies the weighted *g*-Drazin inverse for bounded linear operators between Banach spaces, extending the concept of the weighted Drazin inverse of Rakočević and Wei (*Linear Algebra Appl.* **350** (2002), 25–39) and of Cline and Greville (*Linear Algebra Appl.* **29** (1980), 53–62). We use the Mbekhta decomposition to study the structure of an operator possessing the weighted *g*-Drazin inverse, give an operator matrix representation for the inverse, and study its continuity. An open problem of Rakočević and Wei is solved.

2000 Mathematics subject classification: primary 47A60, 46H30, 47A05, 47A10.

Keywords and phrases: Banach algebra without unit, *g*-Drazin inverse, bounded linear operator, weighted *g*-Drazin inverse, the Mbekhta decomposition, ascent and descent.

1. Introduction

In recent papers [13, 14], Rakočević and Wei defined and investigated the weighted Drazin inverse for bounded linear operators between Banach and Hilbert spaces, extending the concept of a weighted Drazin inverse for rectangular matrices introduced by Cline and Greville [5]. The weighted Drazin inverse for operators was previously introduced and studied by Qiao in [12], and further investigated by Wang in [16, 17]. The main purpose of this paper is to introduce and study the weighted *g*-Drazin inverse for bounded linear operators between Banach spaces *X* and *Y*, thus further extending the above mentioned works.

Let $\mathcal{B}(X,Y)$ denote the set of all bounded linear operators between X and Y, and let W be a nonzero operator in $\mathcal{B}(Y,X)$. The W-weighted g-Drazin inverse (the Wg-Drazin inverse for short) can be studied in the framework of Banach algebras when we introduce on the space $\mathcal{B}(X,Y)$ the W-product $A \star B = AWB$, and the

^{© 2006} Australian Mathematical Society 1446-8107/06 A2.00 + 0.00

W-norm $||A||_W = ||A|||W||$. This elegant approach which turns $\mathcal{B}(X, Y)$ into a Banach algebra was suggested to the authors of [13, 14] by an anonymous referee. Unless W is invertible (and this would require the spaces X and Y to be isomorphic and homeomorphic), the resulting algebra is without unit.

In our work we remove the restriction of finite polarity of the operator WA (and AW) adopted by Rakočević and Wei [13]. In addition, we solve an open problem posed in [13], and complete and extend the results of Buoni and Faires [3] on the ascent and descent of AB and BA.

In Section 2 we gather relevant results on the g-Drazin inverse in Banach algebras without unit in order to study the Wg-Drazin inverse within the space $\mathcal{B}(X,Y)$, without having to adjoin a unit. Section 3 introduces and studies the weighted g-Drazin inverse between two different Banach spaces. In Section 4 we explore some properties of the weighted g-Drazin inverse, including the core decomposition and an integral representation for the weighted inverse. The ascent and descent for WA and AW is studied in Section 5, and a solution to an open problem posed by Rakočević and Wei in [13] is given there. In Section 6 we compare the Mbekhta decomposition for the operators WA and AW and recover and sharpen a result of Yukhno [19] on rectangular matrices. In the remaining sections we give an operator matrix representation for the Wg-Drazin inverse, compare it with the Moore-Penrose inverse in Hilbert spaces, and give necessary and sufficient conditions for its continuity.

2. The g-Drazin inverse in Banach algebras without unit

Let \mathcal{A} be a Banach algebra. We write $\mathcal{A}^{\mathsf{qnil}}$ for the set of all quasinilpotent elements in \mathcal{A} , that is, elements a satisfying $\lim_{n\to\infty}\|a^n\|^{1/n}=0$; the set of all nilpotent elements is denoted by $\mathcal{A}^{\mathsf{nil}}$. If \mathcal{A} is unital, we denote by $\mathcal{A}^{\mathsf{inv}}$ the group of all invertible elements in \mathcal{A} . An element $a\in\mathcal{A}$ is $\mathit{quasipolar}$ if 0 is not an accumulation point of the spectrum of a. In an algebra without unit, this is equivalent to 0 being an isolated spectral point of a. The set of all quasipolar elements of \mathcal{A} will be denoted by $\mathcal{A}^{\mathsf{qpol}}$. An element $a\in\mathcal{A}$ is polar if it is quasipolar and 0 is at most a pole of the resolvent of a. The set of all polar elements is denoted by $\mathcal{A}^{\mathsf{pol}}$.

The following holds [7, Theorems 4.2 and 5.1]:

LEMMA 2.1. Let A be a unital Banach algebra. Then $a \in A$ is quasipolar (polar) in A if and only there exists $p \in A$ such that

$$(2.1) p^2 = p, ap = pa \in \mathcal{A}^{qnil} (ap = pa \in \mathcal{A}^{nil}), a + p \in \mathcal{A}^{inv}.$$

The resolvent $R(\lambda;a) = (\lambda 1 - a)^{-1}$ has a Laurent expansion in some punctured

neighbourhood $0 < |\lambda| < r$ *of* 0 *given by*

(2.2)
$$R(\lambda; a) = \sum_{n=0}^{\infty} \lambda^{-n-1} a^n p - \sum_{n=1}^{\infty} \lambda^{n-1} b^n,$$

where $b = (a + p)^{-1}(1 - p)$.

The element p is uniquely determined by the conditions of the theorem; it is called the *spectral idempotent* of a, and it double commutes with a. The element q=1-p is the *support idempotent* of a. The support idempotent of a quasipolar element exists in an algebra without a unit, but not the spectral idempotent. The element $b=(a+p)^{-1}(1-p)$ defines the g-Drazin inverse of a in the case of a unital algebra; b also double commutes with a. We write a^{π} and a^{σ} for the spectral idempotent and the support idempotent of a quasipolar element a, respectively.

From now on we assume that A is a complex Banach algebra without unit.

The *unitisation* of \mathcal{A} is the unital Banach algebra $\mathcal{A}_1 = \mathcal{A} \oplus \mathbb{C}$ containing \mathcal{A} as a two sided ideal of codimension 1 [2, page 15]. Given $a \in \mathcal{A}$, we define the *spectrum* $\operatorname{Sp}(a)$ of a in \mathcal{A} as the spectrum of a considered as an element of the unital Banach algebra \mathcal{A}_1 , that is, the set of all $\lambda \in \mathbb{C}$ such that $\lambda 1 - a \notin \mathcal{A}_1^{\operatorname{inv}}$. Observe that 0 is always in the spectrum of any element of a Banach algebra without unit.

PROPOSITION 2.2. Let A be a Banach algebra without unit. Then $a \in A^{qpol}$ $(a \in A^{pol})$ if and only if there exists $b \in A$ such that

(2.3)
$$ab = ba, \quad bab = b, \quad a - aba \in \mathcal{A}^{qnil} (a - aba \in \mathcal{A}^{nil}).$$

The element b, if it exists, is unique.

PROOF. We embed A into its unitisation A_1 .

If a is quasipolar in A, then it is also quasipolar in A_1 . Let p be the spectral idempotent of a in A_1 , and $b = (a+p)^{-1}(1-p)$ the Drazin inverse of a in A_1 . Since 1-p is in A, so is b (A is an ideal). The equations (2.3) are then easily verified.

Conversely, let equations (2.3) hold. Then p = 1 - ab is the spectral idempotent of a in \mathcal{A}_1 [7, Theorem 4.2], and a is quasipolar, both in \mathcal{A}_1 and \mathcal{A} . From

$$(a+p)b = (a+1-ab)b = ab+b-bab = ab = 1-p$$

and the invertibility of a + p in A_1 , we get $b = (a + p)^{-1}(1 - p)$ in A_1 (and in A). This proves the uniqueness of b satisfying (2.3).

DEFINITION 2.3. Let \mathcal{A} be a Banach algebra without unit and let $a \in \mathcal{A}^{qpol}$. We define the *g-Drazin inverse* a^D of a to be the unique element b satisfying (2.3). The *Drazin index* of a quasipolar element a is defined by

$$i(a) = \inf \{ k \in \mathbb{N} : (a - a^2 a^{\mathsf{D}})^k = 0 \}$$

(inf $\emptyset = \infty$). The g-Drazin inverse of a polar element is called the *Drazin inverse*.

We observe that $a \in A$ is polar if and only if it is quasipolar and has a finite Drazin index.

As in the unital case, any g-Drazin invertible element a of \mathcal{A} has the 'core' decomposition.

PROPOSITION 2.4. Let A be a Banach algebra without unit. Then $a \in A^{qpol}$ if and only if a = c + u, where c is simply polar, u quasinilpotent, and cu = 0 = uc. Such a decomposition is unique. In addition,

(2.4)
$$a^{D} = c^{D}, \quad a^{\sigma} = c^{\sigma}, \quad \operatorname{Sp}(c) = \operatorname{Sp}(a).$$

We can show that $ua^{\sigma} = 0$ and that the element c, called the *core* of a, satisfies

$$c = aa^{\sigma} = (a^{\mathsf{D}})^{\mathsf{D}} = a^2 a^{\mathsf{D}}.$$

PROPOSITION 2.5. Let A be a Banach algebra without unit and let $a \in A^{qpol}$. Then $a^D = a$ if and only if $a^3 = a$.

PROOF. Suppose that $a^3 = a$ and let a = c + u be the core decomposition of a. We observe that $a^3 = c^3 + u^3$ is the core decomposition for $a^3 = a$. From the uniqueness, $c^3 = c$ and $u^3 = u$. Since $u^3 = u \in \mathcal{A}^{qnil}$, we conclude that u = 0:

$$\lim_{n \to \infty} \|u\|^{1/3^n} = \lim_{n \to \infty} \|u^{3^n}\|^{1/3^n} = r(u) = 0.$$

Thus $a = c = aa^{\sigma}$ is simply polar, and

$$a^{\mathsf{D}} = (a^{\mathsf{D}})^2 a = (a^{\mathsf{D}})^2 a^3 = (a^{\mathsf{D}} a^2)(a^{\mathsf{D}} a) = a a^{\sigma} = a.$$

Conversely, if
$$a^{D} = a$$
, then $a = (a^{D})^{2}a = a^{3}$.

As an example of further properties of the *g*-Drazin inverse in Banach algebras without unit we prove the following result, which for matrices reduces to Theorem 7.8.4 of Campbell and Meyer [4].

PROPOSITION 2.6. Let A be a Banach algebra without unit, and let $a, b \in A$ be such that $(ba)^2 \in A^{qpol}$. Then both ab and ba are g-Drazin invertible, and

$$(2.5) (ab)^{D} = a((ba)^{2})^{D}b.$$

PROOF. If $(ba)^2 \in \mathcal{A}^{\text{qpol}}$, then also $(ab)^2$, ab and ba are quasipolar, and $w = ((ba)^2)^{\mathsf{D}} = ((ba)^{\mathsf{D}})^2$ commutes with ba. Set $c = a((ba)^2)^{\mathsf{D}}b = awb$. It is not difficult to show that (ab)c = c(ab) and $(ab)c^2 = c$. The element $ab - (ab)^2c = (a - a(ba)^2w)b$ is quasinilpotent if and only if $x = b(a - a(ba)^2w) = ba - (ba)^3w$ is quasinilpotent. Imbedding \mathcal{A} into its unitisation \mathcal{A}_1 , we recall that $p = 1 - (ba)^2w$ is idempotent; hence $x = (ba)p \in \mathcal{A}^{\mathsf{qnil}}$ if and only if $x = (ba)^2p \in \mathcal{A}^{\mathsf{qnil}}$ if and o

3. The weighted g-Drazin inverse for operators

Throughout this section we assume that X, Y are nonzero complex Banach spaces and W is a fixed nonzero operator in $\mathcal{B}(Y, X)$, the set of all bounded linear operators on Y to X. First we turn $\mathcal{B}(X, Y)$ into a Banach algebra $\mathcal{B}_W(X, Y)$ (in general without a unit) by introducing a multiplication of elements of $\mathcal{B}(X, Y)$ facilitated by the operator W, and imposing a suitable norm on $\mathcal{B}(X, Y)$.

LEMMA 3.1. Let $\mathcal{B}_W(X, Y)$ be the space $\mathcal{B}(X, Y)$ equipped with the multiplication

$$(3.1) A \star B = AWB,$$

and norm $||A||_W = ||A|| ||W||$. Then $\mathcal{B}_W(X, Y)$ becomes a complex Banach algebra; $\mathcal{B}_W(X, Y)$ has a unit if and only if W is invertible, in which case W^{-1} is that unit.

PROOF. The verification of most Banach algebra axioms is straightforward. The positive definiteness of the norm is ensured by the fact that $W \neq 0$. We check the submultiplicativity of the norm. If $A, B \in \mathcal{B}(X, Y)$, then

$$(3.2) ||A \star B||_{W} = ||AWB|||W|| \le ||A|||W|||B|||W|| = ||A||_{W}||B||_{W}.$$

If W is invertible, then $W^{-1} \in \mathcal{B}(X, Y)$ is the unit in $\mathcal{B}_W(X, Y)$. Conversely, assume that $P \in \mathcal{B}(X, Y)$ is the unit for $\mathcal{B}_W(X, Y)$. Then

(3.3)
$$AWP = A = PWA \text{ for all } A \in \mathcal{B}(X, Y).$$

For each $y \in Y$ and $f \in X^*$ define $f \otimes y : X \to Y$ by $(f \otimes y)x = f(x)y$ for all $x \in X$; then $f \otimes y \in \mathcal{B}(X,Y)$. From $PW(f \otimes y)x = (f \otimes y)x$ we get f(x)PWy = f(x)y. Selecting x and f so that $f(x) \neq 0$, we obtain PWy = y for any $y \in Y$. From $(f \otimes y)WPx = (f \otimes y)x$ we get f(WPx)y = f(x)y. Selecting $y \neq 0$, yields f(WPx) = f(x) for all $f \in X^*$, which implies WPx = x for any $x \in X$. Then W is invertible; setting $A = W^{-1}$ in (3.3), we get $W^{-1} = PWW^{-1} = P$.

We observe that if $\mathcal{B}_W(X,Y)$ has the unit W^{-1} , the spaces X and Y are isomorphic and homeomorphic; in particular, X and Y are of the same dimension. Moreover, the norm of the unit in $\mathcal{B}_W(X,Y)$ is equal to $\|W^{-1}\|_W = \|W^{-1}\| \|W\| = \kappa(W)$, known as the condition number of W.

For any $n \in \mathbb{N}$ we write $A^{*n} = A \star \cdots \star A$ (*n* factors). Observe that

$$A^{*n} = (AW)^{n-1}A = A(WA)^{n-1}.$$

We write $r_W(\cdot)$ for the spectral radius of elements of $\mathcal{B}_W(X,Y)$. We show that

(3.5)
$$r_W(A) = r(AW) = r(WA),$$

where $r(\cdot)$ is the spectral radius in $\mathcal{B}(Y)$ or $\mathcal{B}(X)$. Indeed,

$$r(AW) = \lim_{n \to \infty} \|(AW)^n\|^{1/n} \le \lim_{n \to \infty} (\|(AW)^{n-1}A\| \|W\|)^{1/n}$$
$$= \lim_{n \to \infty} \|A^{*n}\|_W^{1/n} = r_W(A).$$

Conversely,

$$r_{W}(A) = \lim_{n \to \infty} \|A^{\star n}\|_{W}^{1/n} = \lim_{n \to \infty} \|A^{\star n}\|^{1/n} \|W\|^{1/n}$$

$$= \lim_{n \to \infty} \|(AW)^{n-1}A\|^{1/n} \|W\|^{1/n}$$

$$\leq \lim_{n \to \infty} \|(AW)^{n-1}\|^{1/n} \lim_{n \to \infty} (\|A\|\|W\|)^{1/n}$$

$$= \lim_{n \to \infty} \|(AW)^{n-1}\|^{1/n} = r(AW)$$

as $\lim_{n\to\infty} \|(AW)^{n-1}\|^{1/n} = \lim_{n\to\infty} \|(AW)^n\|^{1/n}$. The second equality in (3.5) follows by symmetry.

DEFINITION 3.2. Let W be a fixed nonzero operator in $\mathcal{B}(Y, X)$. An operator $A \in \mathcal{B}(X, Y)$ is called Wg-Drazin invertible if A is quasipolar in the Banach algebra $\mathcal{B}_W(X, Y)$. The Wg-Drazin inverse $A^{D,W}$ of A (or W-weighted g-Drazin inverse) is then defined as the g-Drazin inverse B of A in the Banach algebra $\mathcal{B}_W(X, Y)$; $i_W(A)$ is the Drazin index of A in $\mathcal{B}_W(X, Y)$. A polar element of $\mathcal{B}_W(X, Y)$ is called W-Drazin invertible, with the W-Drazin inverse $A^{D,W} = B$.

The Wg-Drazin inverse is unique if it exists (Proposition 2.2), and is characterised by the following theorem.

THEOREM 3.3. Let W be a fixed nonzero operator in $\mathcal{B}(Y,X)$. Then $A \in \mathcal{B}(X,Y)$ is Wg-Drazin invertible with the Wg-Drazin inverse $A^{D,W} = B \in \mathcal{B}(X,Y)$ if and only if one of the following equivalent conditions holds:

(i) AW is quasipolar in $\mathcal{B}(Y)$ with $(AW)^D = BW$;

- (ii) WA is quasipolar in $\mathcal{B}(X)$ with $(WA)^D = WB$;
- (iii) There exists $B \in \mathcal{B}(X, Y)$ satisfying

$$(AW)B = (BW)A$$
, $(BW)^2A = B$, $(AW)^2BW - AW \in \mathcal{B}(Y)^{qnil}$;

(iv) There exists $B \in \mathcal{B}(X, Y)$ satisfying

$$A(WB) = B(WA), \quad A(WB)^2 = B, \quad WB(WA)^2 - WA \in \mathcal{B}(X)^{qnil}.$$

The Wg-Drazin inverse A^{D,W} of A then satisfies

(3.6)
$$A^{D,W} = ((AW)^{D})^{2}A = A((WA)^{D})^{2}.$$

PROOF. Suppose that A has the Wg-Drazin inverse B.

The conditions

$$A \star B = B \star A$$
, $B \star A \star B = B$, $A \star B \star A - A \in \mathcal{B}_W(X, Y)^{qnil}$,

translate to

(3.7)
$$AWB = BWA$$
, $(BW)^2A = B$, $T = (AW)^2B - A \in \mathcal{B}_W(X, Y)^{qnil}$.

Let C = BW. Then (AW)C = C(AW) and $C^2(AW) = C$ by (3.7). Finally, by (3.5), $r(TW) = r_W(T) = 0$. Hence $(AW)^2C - AW = TW$ is quasinilpotent in $\mathcal{B}(Y)$, and (i) is proved.

Condition (ii) follows from a symmetrical argument. Conditions (i) and (iii) (respectively (ii) and (iv)) are equivalent by the characterisation of the *g*-Drazin inverse given in Proposition 2.2.

Conversely, suppose that $AW \in \mathcal{B}(Y)$ has the *g*-Drazin inverse *C*. Let $B = C^2A$. The equations (AW)C = C(AW) and $C^2(AW) = C$ imply

$$A \star B = AWC^2A = C^2AWA = B \star A$$
, and $B \star A \star B = (C^2AW)(AWC^2)A = C^2A = B$.

Write $A \star B \star A - A = (AWC^2)AWA - A = CAWA - A = S$. Since $SW = C(AW)^2 - AW$ is quasinilpotent in $\mathcal{B}(Y)$, $r_W(S) = r(SW) = 0$, and S is quasinilpotent in $\mathcal{B}_W(X,Y)$. This proves that condition (i) implies that A is Wg-Drazin invertible with $A^{D,W} = C^2A$. The rest follows from Proposition 2.2 by symmetry.

From (3.6) we find an expression for the support idempotent $A^{\sigma,W}$ of A in $\mathcal{B}_W(X, Y)$: $A^{\sigma,W} = A \star A^{D,W} = AW((AW)^D)^2 A = (AW)^D A$. By symmetry,

(3.8)
$$A^{\sigma,W} = (AW)^{D}A = A(WA)^{D}$$
.

PROPOSITION 3.4. If $A \in \mathcal{B}(X, Y)$ is Wg-Drazin invertible, then the Drazin indices $i_W(A)$, i(WA), and i(AW) are all finite or all infinite, and satisfy the inequalities

(3.9)
$$\max\{i(AW), i(WA)\} \le i_W(A) \le \min\{i(AW), i(WA)\} + 1.$$

PROOF. Let $A^{D,W} = B$ be the Wg-Drazin inverse of A and let $T = (AW)^2B - A$. If $i_W(A) = k < \infty$, then $T^{\star k} = 0$. Consequently $(TW)^k = (TW)^{k-1}TW = T^{\star k}W = 0$ and hence $i(AW) < i_W(A)$.

Let AW have the g-Drazin inverse C and let S = CAWA - A. If $i(AW) = k < \infty$, then $(SW)^k = 0$, and $S^{\star(k+1)} = (SW)^k S = 0$, that is, $i_W(A) \le k + 1$. This proves the inequality for i(AW) in (3.9).

It is known that for any $A \in \mathcal{B}(X, Y)$ and $W \in \mathcal{B}(Y, X)$,

$$(3.10) Sp(AW) \setminus \{0\} = Sp(WA) \setminus \{0\}.$$

Hence AW is g-Drazin invertible in $\mathcal{B}(Y)$ if and only if WA is g-Drazin invertible in $\mathcal{B}(X)$. The inequality for i(WA) in (3.9) is obtained by symmetry. \square

EXAMPLE 3.5. The inequality $i(AW) \le i_W(A)$ (respectively $i(WA) \le i_W(A)$) in (3.9) can be strict. Let

$$W = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix},$$

and let \mathcal{B}_W be the space $\mathcal{M}_{2,3}(\mathbb{C})$ of all complex 2×3 matrices with the multiplication (3.1). By the preceding theorem, every element $A \in \mathcal{M}_{2,3}(\mathbb{C})$ has a g-Drazin inverse of finite Drazin index in \mathcal{B}_W since the matrix AW has the conventional Drazin inverse $(AW)^D$ in $\mathcal{M}_{2,2}(\mathbb{C})$. Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then AW = 0 = B, where B is the g-Drazin inverse of A in \mathcal{B}_W , and $T = (AW)^2B - A = -A$. Since $T \neq 0$ and $T \star T = AWA = 0$, we have $i_W(A) = 2$. On the other hand, i(AW) = i(0) = 1. An example of a strict inequality between i(WA) and $i_W(A)$ can be obtained from the present example and the following proposition involving the dual spaces X^* and Y^* of X and Y.

PROPOSITION 3.6. $A \in \mathcal{B}(X, Y)$ is Wg-Drazin invertible if and only if the adjoint $A^* \in \mathcal{B}(Y^*, X^*)$ of A is W^*g -Drazin invertible. In this case

$$(3.11) (A^*)^{D,W^*} = (A^{D,W})^*.$$

PROOF. Since $Sp((AW)^*) = Sp(AW)$, $(AW)^*$ is quasipolar if and only if AW is quasipolar. Hence $W^*A^* = (AW)^*$ is g-Drazin invertible if and only if AW is. By Theorem 3.3, A^* is W^*g -Drazin invertible if and only if A is Wg-Drazin invertible. Equation (3.11) follows on application of Proposition 2.2.

EXAMPLE 3.7 (Rakočević and Wei [13]). If $A \in \mathcal{B}(X, Y)$ is a finite rank operator, then A has a finite index Wg-Drazin inverse for any nonzero $W \in \mathcal{B}(Y, X)$. If $W \in \mathcal{B}(Y, X)$ is a nonzero operator of finite rank, then any $A \in \mathcal{B}(X, Y)$ has a finite index Wg-Drazin inverse.

4. Further properties of the Wg-Drazin inverse

First we briefly explore a duality between $A^{D,W}$ and $W^{D,A}$ provided $A \in \mathcal{B}(X,Y)$ and $W \in \mathcal{B}(Y,X)$. From Theorem 3.3 we see that the weighted *g*-Drazin inverse $W^{D,A}$ exists if and only if $A^{D,W}$ exists. Equation (3.6) gives rise to the following relations:

$$W^{\mathsf{D},A}A = (WA)^{\mathsf{D}} = WA^{\mathsf{D},W},$$

 $AW^{\mathsf{D},A} = (AW)^{\mathsf{D}} = A^{\mathsf{D},W}W.$

We can then express $W^{D,A}$ in terms of $A^{D,W}$ and vice versa:

$$W^{D,A} = WA^{D,W}WA^{D,W}W,$$

$$A^{D,W} = AW^{D,A}AW^{D,A}A.$$
(4.1)

We observe that in (4.1), the operators $AW^{D,A}$ and $W^{D,A}A$ are simply polar (that is, of index 1 or 0): for example, $AW^{D,A} = AW((AW)^D)^2 = (AW)^D$. The simple polarity of the *g*-Drazin inverse of AW is well known (see [7]). Specialised to matrices, this proves the necessary part of Theorem 3 in [5].

PROPOSITION 4.1. Let $A \in \mathcal{B}(X, Y)$ be Wg-Drazin invertible. Then the following are true:

- (i) $A = A^{D,W}$ if and only if $A = A^{*3} = AWAWA$.
- (ii) $(A^{D,W})^{D,W} = (AW)^{\sigma} A = A(WA)^{\sigma}$.
- (iii) $(A^{D,W})^{\sigma,W} = A^{\sigma,W}$.
- (iv) For any $n \in \mathbb{N}$, $(A^{D,W})^{*n} = ((AW)^D)^{n+1}A = A((WA)^D)^{n+1} = (A^{*n})^{D,W}$.

PROOF. (i) This follows from Proposition 2.5 applied to $\mathcal{B}_W(X, Y)$.

- (ii) Applying the results of [7] while working in the Banach algebra $\mathcal{B}_W(X, Y)$, we have $(A^{D,W})^{D,W} = A \star A^{\sigma,W} = AW(AW)^D A = (AW)^{\sigma} A$.
- (iii) In the proof of [7, Theorem 5.2] it is shown that a quasipolar element and its *g*-Drazin inverse have the same support idempotent.
 - (iv) This is shown via induction on n.

Part (ii) of the preceding theorem implies that $(A^{D,W})^{D,W} = A$ if and only if $(AW)^{\sigma}A = A$ $(A(WA)^{\sigma} = A)$. This is equivalent to A being simply polar in $\mathcal{B}_W(X,Y)$.

From [7, Theorem 5.5] we can deduce the following result.

PROPOSITION 4.2. Let $A, B \in \mathcal{B}(X, Y)$ be Wg-Drazin invertible. If AWB = BWA, then AWB is Wg-Drazin invertible with $(AWB)^{D,W} = A^{D,W}WB^{D,W}$.

We now turn our attention to an analogue of the core decomposition for the weighted *g*-Drazin inverse.

THEOREM 4.3. An operator $A \in \mathcal{B}(X,Y)$ is Wg-Drazin invertible if and only if there exist operators $C, U \in \mathcal{B}(X,Y)$ such that

$$(4.2) A = C + U, CWU = 0, UWC = 0,$$

$$(CW)^{\sigma}C = C, \quad UW \in \mathcal{B}(Y)^{\text{qnil}}.$$

Such operators are uniquely determined, and $C = (A^{D,W})^{D,W} = (AW)^{\sigma} A$. Further,

$$(4.4) (AW)^{D} = (CW)^{D}, (AW)^{\sigma} = (CW)^{\sigma}, \operatorname{Sp}(AW) \cup \{0\} = \operatorname{Sp}(CW).$$

PROOF. We apply Theorem 2.4 to $\mathcal{B}_W(X,Y)$. A is Wg-Drazin invertible if and only if there exist $C, U \in \mathcal{B}(X,Y)$ such that $A = C + U, C \star U = CWU = 0$, $U \star C = UWC = 0$, C is simply polar in $\mathcal{B}_W(X,Y)$, and U is quasinilpotent in $\mathcal{B}_W(X,Y)$. The element $C \in \mathcal{B}_W(X,Y)$ is simply polar if and only if $C \star C^{\sigma,W} = C$. From the equation

$$C \star C^{\sigma,W} = CW(CW)^{\mathsf{D}}C = (CW)^{\sigma}C$$

we conclude that the simple polarity of $C \in \mathcal{B}_W(X, Y)$ is equivalent to $(CW)^{\sigma}C = C$. Finally, $r_W(U) = r(UW)$, and UW is quasinilpotent in $\mathcal{B}(X, Y)$ if and only if U is quasinilpotent in $\mathcal{B}_W(X, Y)$. This proves the equivalence of (4.2) and (4.3) to the Wg-Drazin invertibility of A. Explicitly, $C = A \star A^{\sigma,W} = (AW)^{\sigma}A$.

Towards (4.4) in view of Theorem 2.4,

$$(AW)^{\mathsf{D}} = ((AW)^{\mathsf{D}})^2 AW = A^{\mathsf{D},W} W = C^{\mathsf{D},W} W = ((CW)^{\mathsf{D}})^2 CW = (CW)^{\mathsf{D}}.$$

Therefore

$$(CW)^{\sigma} = (CW)^{\mathsf{D}}C = (AW)^{\mathsf{D}}C = (AW)^{\mathsf{D}}(AW)^{\sigma}A = (AW)^{\mathsf{D}}A = (AW)^{\sigma}.$$

If $\operatorname{Sp}_W(A)$ denotes the spectrum of A as an element of the Banach algebra $\mathcal{B}_W(X,Y)$ without unit, then it can be shown that $\operatorname{Sp}_W(A) = \operatorname{Sp}(AW) \cup \{0\}$. Hence

$$\operatorname{Sp}(AW) \cup \{0\} = \operatorname{Sp}_W(A) = \operatorname{Sp}_W(C) = \operatorname{Sp}(CW) \quad (\text{as } 0 \in \operatorname{Sp}(CW)).$$

This completes the proof.

The statement of the theorem remains true when (4.3) is replaced by $C(WC)^{\sigma} = C$, $WU \in \mathcal{B}(X)^{\text{qnil}}$, and AW, CW in (4.4) are replaced by WA, WC, respectively.

We close the section with an integral representation of the Wg-Drazin inverse. The representation of the g-Drazin inverse given by Castro $et\ al.$ [6, Theorem 2.2] is valid also for Banach algebras without unit. Applying this result to $\mathcal{B}_W(X,Y)$, we get the integral representation

$$A^{\mathsf{D},W} = -\int_0^\infty \exp(tA) \star A^{\sigma,W} dt$$

provided A is Wg-Drazin invertible and the nonzero spectrum $Sp_W(A) \setminus \{0\}$ lies in the open left half-plane. We express $\exp(tA) \star A^{\sigma,W}$ in terms of the usual multiplication of operators:

$$A^{\star n} \star A^{\sigma,W} = (AW)^{n-1}AWA^{\sigma,W} = (AW)^n A^{\sigma,W}.$$

Hence

$$\exp(tA) \star A^{\sigma,W} = \sum_{n=0}^{\infty} \frac{t^n}{n!} (AW)^n A^{\sigma,W} = \exp(tAW) A^{\sigma,W}.$$

Note that in general $\exp(tAW)$ belongs to the unitisation of $\mathcal{B}_W(X, Y)$ but not to $\mathcal{B}_W(X, Y)$, while $\exp(tAW)A^{\sigma,W}$ is in $\mathcal{B}_W(X, Y)$. We summarise our findings.

PROPOSITION 4.4. Let $A \in \mathcal{B}(X, Y)$ be Wg-Drazin invertible such that $Sp(WA)\setminus\{0\}$ lies in the left open half-plane. Then

(4.5)
$$A^{D,W} = -\int_0^\infty \exp(tAW)A^{\sigma,W} dt.$$

If the Drazin index i(AW) is finite and the set $Sp((AW)^{m+1}) \setminus \{0\}$ lies in the left open half-plane for some $m \ge \min\{i(AW), i(WA)\} + 1$, then

(4.6)
$$A^{D,W} = -\int_0^\infty \exp(t(AW)^{m+1})(AW)^{m-1}A\,dt.$$

PROOF. Equation (4.5) follows from our calculations preceding the theorem. For (4.6) we find

$$(A^{\star (m+1)})^{\star n} \star A^{\star m} = A^{\star (m+1)n+m} = (AW)^{(m+1)n} (AW)^{m-1} A.$$

and

$$\exp(tA^{\star(m+1)}) \star A^{\star m} = \exp(t(AW)^{m+1})(AW)^{m-1}A.$$

Equation (4.6) then follows from [6, Theorem 2.4].

As expected from symmetry, there is also a WA version of the preceding theorem. If we specialise Equation (4.6) to matrices, we recover [18, Theorem 1]. The inequality $m \ge \min\{i(AW), i(WA)\} + 1$ in the preceding theorem can be relaxed to $m \ge i_W(A)$.

Using the core decomposition of a Wg-Drazin invertible operator $A \in \mathcal{B}(X, Y)$, we obtain yet another integral representation for $A^{D,W}$.

COROLLARY 4.5. Let $A \in \mathcal{B}(X, Y)$ be Wg-Drazin invertible such that $\mathsf{Sp}((WA)^2) \setminus \{0\}$ lies in the open left half-plane, and let A = C + U be the core decomposition of A. Then

$$A^{D,W} = C^{D,W} = -\int_0^\infty \exp(t(CW)^2)C dt.$$

PROOF. This follows from (4.6) when we note that $i_W(C) = 1$.

5. Ascent and descent

We recall that the ascent and descent of an operator $T \in \mathcal{B}(X)$ are defined by

$$asc(T) = \inf \{ k \in \mathbb{N} \cup \{0\} : N(T^{k+1}) = N(T^k) \}, des(T) = \inf \{ k \in \mathbb{N} \cup \{0\} : R(T^{k+1}) = R(T^k) \}$$

(inf $\emptyset = \infty$). Rakočević and Wei [13] ask whether the finiteness of $\operatorname{asc}(AW)$ and $\operatorname{des}(WA)$ is sufficient for A to have the W-weighted Drazin inverse. An equivalent question is whether $\operatorname{asc}(AW)$ and $\operatorname{asc}(WA)$ are always both finite or both infinite.

In this connection it is interesting to recall that Buoni and Faires [3] studied the ascent and descent for the operators $\lambda I - BA$ and $\lambda I - AB$, where $A, B \in \mathcal{B}(X)$, and proved, *inter alia*, that for any $\lambda \neq 0$,

(5.1)
$$\operatorname{asc}(AB - \lambda I) = \operatorname{asc}(BA - \lambda I), \quad \operatorname{des}(AB - \lambda I) = \operatorname{des}(BA - \lambda I);$$

however, the case $\lambda = 0$ was left open. Later, Barnes [1] proved by different methods that the ascents of I - RS and I - SR are equal for $R \in \mathcal{B}(X,Y)$ and $S \in \mathcal{B}(Y,X)$. It can be shown that the arguments in [3] concerning descent are valid also when $A \in \mathcal{B}(X,Y)$ and $B \in \mathcal{B}(Y,X)$. Thus (5.1) is valid for operators between different spaces. The following theorem, dealing with the ascent and descent in general, completes the results of Buoni and Faires in the case $\lambda = 0$.

THEOREM 5.1. Let $A \in \mathcal{B}(X, Y)$ and $B \in \mathcal{B}(Y, X)$. Then the ascents (descents) of AB and BA are both finite or both infinite, and satisfy the inequalities

(5.2)
$$\operatorname{asc}(AB) - 1 \le \operatorname{asc}(BA) \le \operatorname{asc}(AB) + 1, \\ \operatorname{des}(AB) - 1 \le \operatorname{des}(BA) \le \operatorname{des}(AB) + 1.$$

PROOF. Suppose that $asc(AB) = p < \infty$. If there existed

$$x \in N((BA)^{p+2}) \setminus N((BA)^{p+1}),$$

we would have $(AB)^{p+2}Ax = A(BA)^{p+2}x = 0$, and $B(AB)^pAx = (BA)^{p+1}x \neq 0$, that is, $(AB)^pAx \neq 0$. Then Ax would belong to $N((AB)^{p+2}) \setminus N((AB)^p)$, which is empty by assumption. This contradiction proves $N((BA)^{p+1}) = N((BA)^{p+2})$, which shows that $asc(BA) \leq p+1 = asc(AB) + 1$. A symmetrical argument gives $asc(AB) \leq asc(BA) + 1$. This proves the first inequality in (5.2).

Let $des(AB) = p < \infty$. Suppose

(5.3)
$$x \in R((BA)^{p+1}) \setminus R((BA)^{p+2}).$$

Then there exists $x' \in X$ such that

$$x = (BA)^{p+1}x' = B(AB)^p Ax' = By,$$

where $y = (AB)^p Ax' \in R((AB)^p) = R((AB)^{p+2})$. Hence $y = (AB)^{p+2}y'$ for some $y' \in Y$, and $(BA)^{p+2}By' = B(AB)^{p+2}y' = By = x$ contrary to (5.3). This proves that $R((BA)^{p+1}) = R((BA)^{p+2})$, so that $des(BA) \le p+1$.

The inequalities in (5.2) can be strict; this follows from Example 3.5 since for matrices i(AB) = asc(AB) = des(AB).

The following theorem gives a solution to the open problem of Rakočević and Wei [13, page 28].

THEOREM 5.2. Let $A \in \mathcal{B}(X, Y)$ and $W \in \mathcal{B}(Y, X) \setminus \{0\}$. Then A is W-Drazin invertible if and only if one of the following equivalent conditions hold:

- (i) AW is polar in $\mathcal{B}(Y)$;
- (ii) WA is polar in $\mathcal{B}(X)$;
- (iii) asc(AW) and des(WA) are both finite;
- (iv) asc(WA) and des(AW) are both finite.

PROOF. Suppose that *A* is *W*-Drazin invertible. By Theorem 3.3, *AW* is quasipolar, and by (3.9) we have $i(AW) \le i_W(A)$, which proves that *AW* is polar. Conversely, if *AW* is polar, then $i_W(A) \le i(AW) + 1$, and *A* is *W*-Drazin invertible.

- (i) implies (ii): Since AW is quasipolar, so is WA by (3.10). By (3.9) again, $i(WA) \le i(AW) + 1$, and WA is polar.
- (ii) implies (iii): It is well known that if WA is polar, then asc(WA) and des(WA) are both finite. However, $asc(AW) \le asc(WA) + 1$ by Theorem 5.1 and (iii) follows.
- (iii) implies (iv): This follows from Theorem 5.1 as $asc(WA) \le asc(AW) + 1$ and $des(AW) \le des(WA) + 1$.
- (iv) implies (i): Since $asc(AW) \le asc(WA) + 1$, both asc(AW) and des(AW) are finite; this implies that AW is polar.

6. The Mbekhta decomposition for WA and AW

As before, X, Y are Banach spaces and W a nonzero operator in $\mathcal{B}(Y, X)$. In order to obtain an operator matrix representation for the weighted g-Drazin inverse of an operator $A \in \mathcal{B}(X, Y)$, we first recall the Mbekhta decomposition for a quasipolar operator. For any operator $T \in \mathcal{B}(X)$ we define spaces $H_0(T)$ and K(T) as follows:

$$H_0(T) = \left\{ x \in X : \lim_{n \to \infty} \|T^n x\|^{1/n} = 0 \right\},$$

$$K(T) = \left\{ x \in X : \exists x_n \in X, \ x_n = T x_{n+1}, \ x_0 = x, \ \sup_{n \in \mathbb{N}} \|x_n\|^{1/n} < \infty \right\}.$$

Both spaces are hyperinvariant under T, $H_0(T) \supset N(T^n)$, and $K(T) \subset R(T^n)$ for all $n \in \mathbb{N}$. Further, TK(T) = K(T) and $T^{-1}H_0(T) = H_0(T)$.

PROPOSITION 6.1 (See [8, 11]). The following conditions on $T \in \mathcal{B}(X)$ are equivalent:

- (i) T is quasipolar;
- (ii) X is the topological direct sum $X = K(T) \oplus H_0(T)$;
- (iii) $T = T_1 \oplus T_2$, where T_1 is invertible and T_2 quasinilpotent.

Condition (ii) can be weakened to $X = K(T) \oplus H_0(T)$ being only an algebraic sum with at least one of the spaces closed (see [10] and [15]).

THEOREM 6.2. Let $A \in \mathcal{B}(X, Y)$ and $W \in \mathcal{B}(Y, X)$. If WA is quasipolar, then so is AW,

(6.1)
$$A(K(WA)) = K(AW), \qquad A^{-1}(H_0(AW)) = H_0(WA), W(K(AW)) = K(WA), \qquad W^{-1}(H_0(WA)) = H_0(AW),$$

and the spaces K(WA), K(AW) are isomorphic and homeomorphic.

PROOF. The result on quasipolarity follows from (3.10). We introduce the following notation

(6.2)
$$X_1 = K(WA), \quad X_2 = H_0(WA), \quad Y_1 = K(AW), \quad Y_2 = H_0(AW).$$

Then X and Y are decomposed into the topological direct sums $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$. The operator matrices

(6.3)
$$T = \begin{bmatrix} WA & 0 \\ 0 & AW \end{bmatrix}, \quad S = \begin{bmatrix} 0 & 0 \\ A & 0 \end{bmatrix}$$

represent commuting operators in $\mathcal{B}(X \oplus Y)$ with T quasipolar. The support projection T^{σ} of T double commutes with T, that is, the matrix

$$T^{\sigma} = \begin{bmatrix} (WA)^{\sigma} & 0\\ 0 & (AW)^{\sigma} \end{bmatrix}$$

commutes with the matrix S. This gives $A(WA)^{\sigma} = (AW)^{\sigma}A$. Since $(WA)^{\sigma}$ is the projection of X onto X_1 along X_2 , and $(AW)^{\sigma}$ is the projection of Y onto Y_1 along Y_2 , we have $A(X_i) \subset Y_i$ (i = 1, 2). The inclusions $W(Y_i) \subset X_i$ (i = 1, 2) are obtained by symmetry.

Note that $A(X_2) \subset Y_2$ is equivalent to $X_2 \subset A^{-1}(Y_2)$. In order to prove $A^{-1}(Y_2) \subset X_2$, assume that $Ax \in Y_2$. Then x = k + h with $k \in X_1$ and $h \in X_2$, and $Ax = Ak + Ah \in Y_2$ implies that Ak = 0. From $k \in N(A) \subset N(WA) \subset X_2$, we obtain $k \in X_1 \cap X_2 = \{0\}$. Hence $x = h \in X_2$.

Let $A_0: X_1 \to Y_1$ be the restriction of A. If $x \in X_1$ and Ax = 0, then x = 0 by the argument of the preceding paragraph. Hence A_0 is injective. Suppose that $y \in Y_1$. Since $AWY_1 = Y_1$, there exists $u \in Y_1$ such that y = AWu. But $WY_1 \subset X_1$, and so $Wu \in X_1$. This proves that A_0 is surjective. Therefore A_0 is a bounded linear bijection from X_1 to Y_1 , and (6.1) is proved.

In particular, if AW is quasipolar, then the spaces K(AW) and K(WA) have the same dimension being isomorphic.

If A and W are rectangular matrices of orders $m \times n$ and $n \times m$ respectively, we recover the result of Yukhno [19, Theorem]. For this the operator $T : \mathbb{C}^m \to \mathbb{C}^m$ with the matrix WA is polar, and $T = T_1 \oplus T_2$, where T_1 is invertible and T_2 nilpotent; T_1 operates on $X_1 = K(T) = R(T^p)$, where p is the index of T. The eigenvalues of T_1 are the nonzero eigenvalues of T_2 are the nonzero eigenvalues of T_2 and T_3 are the nonzero eigenvalues of T_3 and T_4 are the nonzero eigenvalues of T_3 and T_4 are the nonzero eigenvalues of T_4 are the nonzero eigenvalues of T_4 are the nonzero eigenvalues of T_4 and T_4 are the nonzero eigenvalues of T_4 are the nonzero eigenvalues of T_4 are the nonzero eigenvalues of T_4 and T_4 are the nonzero eigenvalues of T_4 are the nonzero eigenvalues of T_4 are the nonzero eigenvalues of T_4 and T_4 are the nonzero eigenvalues of T_4 are the nonzero eigenvalues of T_4 and T_4 are the nonzero eigenvalues of T_4 and T_4 are the nonzero eigenvalues of T_4 are the nonzero eigenvalues of T_4 are the nonzero eigenvalues of T_4 and T_4 are the nonzero eigenvalues of T_4 and T_4 are the nonzero eigenvalues of T_4 are the nonzero eigenvalues of T_4 and T_4 are the nonzero eigen

$$WAx_1 = \lambda x_1 + x_2, \dots, WAx_{k-1} = \lambda x_{k-1} + x_k, WAx_k = \lambda x_k.$$

In view of the decomposition of T as $T = T_1 \oplus T_2$, where T_1 operates on X_1 , we can take $x_i \in X_1$ for all i. If $y_i = Ax_i$ (i = 1, ..., k), then $y_1, ..., y_k$ is a chain of generalised eigenvectors of AW corresponding to λ (this follows from the bijectivity of the operator $x \mapsto Ax$ restricted from X_1 to Y_1). All chains corresponding to nonzero eigenvalues of WA are matched in this way. This leads to the following structure theorem for WA and AW.

PROPOSITION 6.3. Let A and W be rectangular matrices of orders $m \times n$ and $n \times m$, respectively. The matrices W A and AW (of orders $n \times n$ and $m \times m$, respectively) have Jordan forms

$$\begin{bmatrix} U & 0 \\ 0 & N_1 \end{bmatrix} \quad and \quad \begin{bmatrix} U & 0 \\ 0 & N_2 \end{bmatrix},$$

where U is a matrix in Jordan form corresponding to the nonzero eigenvalues of WA (and AW), while N_1 and N_2 are nilpotent matrices in Jordan form, of different orders in general.

Recall that the entries of N_1 and N_2 are zero except for the superdiagonals, which consist of 0s and 1s.

7. An operator matrix representation of the Wg-Drazin inverse

From the Mbekhta decomposition theorem (Proposition 6.1), it follows that an operator $T \in \mathcal{B}(X)$ is quasipolar if and only if it can be expressed as the direct sum $T = T_1 \oplus T_2$, where T_1 is invertible and T_2 quasinilpotent; the g-Drazin inverse of T is given by

$$T^{\mathsf{D}} = T_1^{-1} \oplus 0.$$

Our aim is to derive an analogous formula for the Wg-Drazin inverse using the results of the preceding section.

THEOREM 7.1. Let $A \in \mathcal{B}(X,Y)$ and $W \in \mathcal{B}(Y,X) \setminus \{0\}$. Then A is Wg-Drazin invertible if and only if there exist topological direct sums $X = X_1 \oplus X_2$, $Y = Y_1 \oplus Y_2$ such that $A = A_1 \oplus A_2$ and $W = W_1 \oplus W_2$, where $A_i \in \mathcal{B}(X_i,Y_i)$, $W_i \in \mathcal{B}(Y_i,X_i)$, with A_1 , W_1 invertible, and W_2A_2 and A_2W_2 quasinilpotent in $\mathcal{B}(X_2)$ and $\mathcal{B}(Y_2)$, respectively. The Wg-Drazin inverse of A is given by $A^{D,W} = (W_1A_1W_1)^{-1} \oplus 0$ with $(W_1A_1W_1)^{-1} \in \mathcal{B}(X_1,Y_1)$ and $0 \in \mathcal{B}(X_2,Y_2)$.

PROOF. If WA is quasipolar, the decomposition exists with X_i and Y_i given by (6.2). By Theorem 6.2, A maps X_1 into Y_1 , and X_2 into Y_2 , that is, $A = A_1 \oplus A_2$, with $A_i \in \mathcal{B}(X_i, Y_i)$, i = 1, 2. Similarly, since W maps Y_1 into X_1 and Y_2 into X_2 , $W = W_1 \oplus W_2$, where $W_i \in \mathcal{B}(Y_i, X_i)$, i = 1, 2. Hence

$$WA = W_1A_1 \oplus W_2A_2$$
, $AW = A_1W_1 \oplus A_2W_2$

relative to $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$. Since WA and AW are quasipolar, W_1A_1 and A_1W_1 are invertible, and W_2A_2 and A_2W_2 are quasinilpotent. Hence A_1 and W_1 are invertible.

The Wg-Drazin inverse of A is equal to

$$A((WA)^{\mathsf{D}})^2 = (A_1 \oplus A_2)((W_1A_1)^{-2} \oplus 0) = (W_1A_1W_1)^{-1} \oplus 0.$$

Conversely, if the decompositions with the specified properties exist, then $AW = (A_1W_1) \oplus (A_2W_2)$ is quasipolar as A_1W_1 is invertible and A_2W_2 quasinilpotent. Then A is Wg-Drazin invertible.

From the necessary part of the preceding theorem we recover [18, Theorem 2] when we specialise the operators to finite matrices. From Theorem 6.2 applied to finite matrices we deduce that the ranks of $(AW)^m$ and $(WA)^m$ are equal for any $m \ge \max \{ \operatorname{nd}(AW), \operatorname{nd}(WA) \}$. (This is used, but not proved, in the derivation of [18, Theorem 2]).

From the commutativity of the operator matrices given in (6.3) and the double commutativity of the *g*-Drazin inverse we deduce that $(AW)^{D}A = A(WA)^{D}$, which leads to the new equality for $A^{D,W}$ derived from (3.6),

$$A^{\mathsf{D},W} = (AW)^{\mathsf{D}} A (WA)^{\mathsf{D}}.$$

8. Relation to the Moore-Penrose inverse

We briefly address the relation of the Wg-Drazin inverse to the Moore–Penrose inverse in Hilbert spaces (see [13, page 28]). Let H, K be Hilbert spaces and let $A \in \mathcal{B}(H,K)$. It is well known that R(A) is closed if and only if $R(A^*)$ is closed, $R(A^*)$ is closed if and only if A^*A is simply polar, and A^*A is simply polar if and only if AA^* is simply polar. This means that $A \in \mathcal{B}(H,K)$ is A^*g -Drazin invertible if and only if the range of A is closed. We note that

$$(8.1) (A^{D,A^*})^* = (A^*)^{D,A}.$$

We can then prove that the operator $A^{\dagger} = (A^*)^{\sigma,A} = A^*A^{D,A^*}A^*$ is the Moore–Penrose inverse characterised by the equations

(8.2)
$$A^{\dagger}AA^{\dagger} = A^{\dagger}, \quad AA^{\dagger}A = A, \quad (A^{\dagger}A)^* = A^{\dagger}A, \quad (AA^{\dagger})^* = AA^{\dagger}.$$

We offer a sample of such proof

$$A^{\dagger}AA^{\dagger} = (A^*)^{\sigma,A}A(A^*)^{\sigma,A} = (A^*)^{\sigma,A} \circ (A^*)^{\sigma,A} = (A^*)^{\sigma,A} = A^{\dagger},$$

where $T \circ S = TAS$, and

$$AA^{\dagger}A = AA^*A^{\mathsf{D},A^*}A^*A = A \star A^{\mathsf{D},A^*} \star A = A,$$

where $T \star S = TA^*S$. Other equations in (8.2) can be proved similarly.

9. Continuity of the Wg-Drazin inverse

THEOREM 9.1. Let $A_n \to A_0$ in $\mathcal{B}(X,Y)$ and $W_n \to W_0 \neq 0$ in $\mathcal{B}(Y,X)$, where each A_n is W_ng -Drazin invertible, $n=0,1,2,\ldots$ Then the following conditions are equivalent:

- (i) $A_n^{\mathsf{D},W_n} \to A_0^{\mathsf{D},W_0}$;
- (ii) $\sup_n \|A_n^{\mathsf{D},W_n}\| < \infty;$
- $\begin{array}{ccc} \text{(iii)} & (A_n W_n)^{\mathsf{D}} \xrightarrow[]{} & (A_0 W_0)^{\mathsf{D}}; \\ \text{(iv)} & A_n^{\sigma,W_n} \xrightarrow[]{} & A_0^{\sigma,W_0}. \end{array}$

PROOF. We rely on continuity results for the g-Drazin inverse obtained in [9]. Condition (i) clearly implies (ii). Suppose that (ii) holds. Since

$$(A_n W_n)^{\mathsf{D}} = ((A_n W_n)^{\mathsf{D}})^2 (A_n W_n) = A_n^{\mathsf{D}, W_n} W_n,$$

we have $\sup_n \|(A_n W_n)^{\mathsf{D}}\| < \infty$. By [9, Theorem 2.4], $(A_n W_n)^{\mathsf{D}} \to (A_0 W_0)^{\mathsf{D}}$. If (iii) holds, then $A_n^{\sigma,W_n} = (A_n W_n)^{\mathsf{D}} A_n \to (A_0 W_0)^{\mathsf{D}} A_0 = A_0^{\sigma,W_0}$. Let (iv) hold. From the equation

$$(A_n W_n)^{\sigma} = (A_n W_n)^{\mathsf{D}} A_n W_n = A_n^{\sigma, W_n} W_n,$$

we deduce that $(A_n W_n)^{\sigma} \to (A_0 W_0)^{\sigma}$. Using [9, Theorem 2.4] again, we obtain $(A_n W_n)^{\mathsf{D}} \to (A_0 W_0)^{\mathsf{D}}$. Hence $A_n^{\mathsf{D}, W_n} = ((A_n W_n)^{\mathsf{D}})^2 A_n \to ((A_0 W_0)^{\mathsf{D}})^2 A_0 = A_0^{\mathsf{D}, W_0}$ and the theorem is proved.

From the preceding theorem we recover [13, Theorem 5.1] when we specialise the result to a finite index weighted Drazin inverse.

References

- [1] B. A. Barnes, 'Common operator properties of the linear operators RS and SR', Proc. Amer. Math. Soc. **126** (1998), 1055–1061.
- [2] F. F. Bonsall and J. Duncan, *Complete normed algebras* (Springer, Berlin, 1973).
- [3] J. J. Buoni and J. D. Faires, 'Ascent, descent, nullity and defect of products of operators', Indiana Univ. Math. J. 25 (1976), 703-707.
- [4] S. L. Campbell and C. D. Meyer, Generalized inverses of linear transformations (Pitman, London, 1979).
- [5] R. E. Cline and T. N. E. Greville, 'A Drazin inverse for rectangular matrices', Linear Algebra Appl. **29** (1980), 53–62.
- [6] N. Castro González, J. J. Koliha and Y. Wei, 'On integral representation of the Drazin inverse in Banach algebras', Proc. Edinburgh Math. Soc. 45 (2002), 327–331.
- [7] J. J. Koliha, 'A generalized Drazin inverse', Glasgow Math. J. 38 (1996), 367-381.
- [8] ——, 'Isolated spectral points', *Proc. Amer. Math. Soc.* **124** (1996), 3417–3424.
- [9] J. J. Koliha and V. Rakočević, 'Continuity of the Drazin inverse II', Studia Math. 131 (1998), 167 - 177.
- [10] J. J. Koliha and P. W. Poon, 'Spectral sets II', Rend. Circ. Mat. Palermo (2) 47 (1998), 293–310.
- [11] M. Mbekhta, 'Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux', Glasgow Math. J. 29 (1987), 159-175.

- [12] S. Z. Qiao, 'The weighted Drazin inverse of a linear operator on a Banach space and its approximation', *Numer. Math. J. Chinese Univ.* **3** (1981), 296–305 (Chinese).
- [13] V. Rakočević and Y. Wei, 'A weighted Drazin inverse and applications', *Linear Algebra Appl.* 350 (2002), 25–39.
- [14] ______, 'The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert spaces', *Appl. Math. Comput.* **141** (2003), 455–470.
- [15] Ch. Schmoeger, 'On isolated points of the spectrum of a bounded linear operator', *Proc. Amer. Math. Soc.* **117** (1993), 715–719.
- [16] G. R. Wang, 'Approximation methods for the *W*-weighted Drazin inverse of linear operators in Banach spaces', *Numer. Math. J. Chinese Univ.* **10** (1988), 74–81 (Chinese).
- [17] ——, 'Iterative methods for computing the Drazin inverse and the W-weighted Drazin inverse of linear operators based on functional interpolation', Numer. Math. J. Chinese Univ. 11 (1989), 269–280.
- [18] Y. Wei, 'Integral representation of the W-weighted Drazin inverse', Appl. Math. Comput. 144 (2003), 3–10.
- [19] L. F. Yukhno, 'An eigenvalue property of the product of two rectangular matrices', Comput. Math. Math. Phys. 36 (1996), 555–557.

Department of Mathematics and Statistics The University of Melbourne

VIC 3010

Australia

e-mail: a.dajic@ms.unimelb.edu.au, j.koliha@ms.unimelb.edu.au