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Abstract

The paper introduces and studies the weighted g-Drazin inverse for bounded linear operators between
Banach spaces, extending the concept of the weighted Drazin inverse of Rakočević and Wei (Linear
Algebra Appl. 350 (2002), 25–39) and of Cline and Greville (Linear Algebra Appl. 29 (1980), 53–62).
We use the Mbekhta decomposition to study the structure of an operator possessing the weighted g-Drazin
inverse, give an operator matrix representation for the inverse, and study its continuity. An open problem
of Rakočević and Wei is solved.
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1. Introduction

In recent papers [13, 14], Rakočević and Wei defined and investigated the weighted
Drazin inverse for bounded linear operators between Banach and Hilbert spaces,
extending the concept of a weighted Drazin inverse for rectangular matrices introduced
by Cline and Greville [5]. The weighted Drazin inverse for operators was previously
introduced and studied by Qiao in [12], and further investigated by Wang in [16, 17].
The main purpose of this paper is to introduce and study the weighted g-Drazin inverse
for bounded linear operators between Banach spaces X and Y , thus further extending
the above mentioned works.

Let B.X; Y / denote the set of all bounded linear operators between X and Y , and
let W be a nonzero operator in B.Y; X/. The W-weighted g-Drazin inverse (the
Wg-Drazin inverse for short) can be studied in the framework of Banach algebras
when we introduce on the space B.X; Y / the W-product A ? B = AW B, and the
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W-norm ‖A‖W = ‖A‖‖W‖. This elegant approach which turns B.X; Y / into a
Banach algebra was suggested to the authors of [13, 14] by an anonymous referee.
Unless W is invertible (and this would require the spaces X and Y to be isomorphic
and homeomorphic), the resulting algebra is without unit.

In our work we remove the restriction of finite polarity of the operator W A (and AW )
adopted by Rakočević and Wei [13]. In addition, we solve an open problem posed
in [13], and complete and extend the results of Buoni and Faires [3] on the ascent and
descent of AB and B A.

In Section 2 we gather relevant results on the g-Drazin inverse in Banach algebras
without unit in order to study the Wg-Drazin inverse within the space B.X; Y /, without
having to adjoin a unit. Section 3 introduces and studies the weighted g-Drazin inverse
between two different Banach spaces. In Section 4 we explore some properties of
the weighted g-Drazin inverse, including the core decomposition and an integral
representation for the weighted inverse. The ascent and descent for W A and AW is
studied in Section 5, and a solution to an open problem posed by Rakočević and Wei
in [13] is given there. In Section 6 we compare the Mbekhta decomposition for the
operators W A and AW and recover and sharpen a result of Yukhno [19] on rectangular
matrices. In the remaining sections we give an operator matrix representation for the
Wg-Drazin inverse, compare it with the Moore–Penrose inverse in Hilbert spaces, and
give necessary and sufficient conditions for its continuity.

2. The g-Drazin inverse in Banach algebras without unit

Let A be a Banach algebra. We write Aqnil for the set of all quasinilpotent elements
in A, that is, elements a satisfying limn→∞ ‖an‖1=n = 0; the set of all nilpotent
elements is denoted by Anil. If A is unital, we denote by Ainv the group of all
invertible elements in A. An element a ∈ A is quasipolar if 0 is not an accumulation
point of the spectrum of a. In an algebra without unit, this is equivalent to 0 being an
isolated spectral point of a. The set of all quasipolar elements of A will be denoted
by Aqpol. An element a ∈ A is polar if it is quasipolar and 0 is at most a pole of the
resolvent of a. The set of all polar elements is denoted by Apol.

The following holds [7, Theorems 4.2 and 5.1]:

LEMMA 2.1. Let A be a unital Banach algebra. Then a ∈ A is quasipolar (polar)
in A if and only there exists p ∈ A such that

p2 = p; ap = pa ∈ Aqnil .ap = pa ∈ Anil/; a + p ∈ Ainv:(2.1)

The resolvent R.½; a/ = .½1 − a/−1 has a Laurent expansion in some punctured
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neighbourhood 0 < |½| < r of 0 given by

R.½; a/ =
∞∑

n=0

½−n−1an p −
∞∑

n=1

½n−1bn;(2.2)

where b = .a + p/−1.1 − p/.

The element p is uniquely determined by the conditions of the theorem; it is called
the spectral idempotent of a, and it double commutes with a. The element q = 1 − p
is the support idempotent of a. The support idempotent of a quasipolar element
exists in an algebra without a unit, but not the spectral idempotent. The element
b = .a + p/−1.1 − p/ defines the g-Drazin inverse of a in the case of a unital algebra;
b also double commutes with a. We write a³ and a¦ for the spectral idempotent and
the support idempotent of a quasipolar element a, respectively.

From now on we assume that A is a complex Banach algebra without unit.
The unitisation of A is the unital Banach algebra A1 = A ⊕ C containing A as a

two sided ideal of codimension 1 [2, page 15]. Given a ∈ A, we define the spectrum
Sp.a/ of a in A as the spectrum of a considered as an element of the unital Banach
algebra A1, that is, the set of all ½ ∈ C such that ½1 − a =∈ Ainv

1 . Observe that 0 is
always in the spectrum of any element of a Banach algebra without unit.

PROPOSITION 2.2. Let A be a Banach algebra without unit. Then a ∈ Aqpol

(a ∈ Apol) if and only if there exists b ∈ A such that

ab = ba; bab = b; a − aba ∈ Aqnil .a − aba ∈ Anil/:(2.3)

The element b, if it exists, is unique.

PROOF. We embed A into its unitisation A1.
If a is quasipolar in A, then it is also quasipolar in A1. Let p be the spectral

idempotent of a in A1, and b = .a + p/−1.1 − p/ the Drazin inverse of a in A1. Since
1 − p is in A, so is b (A is an ideal). The equations (2.3) are then easily verified.

Conversely, let equations (2.3) hold. Then p = 1 − ab is the spectral idempotent
of a in A1 [7, Theorem 4.2], and a is quasipolar, both in A1 and A. From

.a + p/b = .a + 1 − ab/b = ab + b − bab = ab = 1 − p

and the invertibility of a + p in A1, we get b = .a + p/−1.1 − p/ in A1 (and in A).
This proves the uniqueness of b satisfying (2.3).

DEFINITION 2.3. Let A be a Banach algebra without unit and let a ∈ Aqpol. We
define the g-Drazin inverse aD of a to be the unique element b satisfying (2.3). The
Drazin index of a quasipolar element a is defined by

i.a/ = inf
{
k ∈ N : .a − a2aD/k = 0

}
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(inf ∅ = ∞). The g-Drazin inverse of a polar element is called the Drazin inverse.

We observe that a ∈ A is polar if and only if it is quasipolar and has a finite Drazin
index.

As in the unital case, any g-Drazin invertible element a of A has the ‘core’ decom-
position.

PROPOSITION 2.4. Let A be a Banach algebra without unit. Then a ∈ Aqpol if and
only if a = c + u, where c is simply polar, u quasinilpotent, and cu = 0 = uc. Such
a decomposition is unique. In addition,

aD = cD; a¦ = c¦ ; Sp.c/ = Sp.a/:(2.4)

We can show that ua¦ = 0 and that the element c, called the core of a, satisfies

c = aa¦ = .aD/D = a2aD:

PROPOSITION 2.5. Let A be a Banach algebra without unit and let a ∈ Aqpol. Then
aD = a if and only if a3 = a.

PROOF. Suppose that a3 = a and let a = c + u be the core decomposition of a. We
observe that a3 = c3 + u3 is the core decomposition for a3 = a. From the uniqueness,
c3 = c and u3 = u. Since u3 = u ∈ Aqnil, we conclude that u = 0:

lim
n→∞

‖u‖1=3n = lim
n→∞

‖u3n‖1=3n = r.u/ = 0:

Thus a = c = aa¦ is simply polar, and

aD = .aD/2a = .aD/2a3 = .aDa2/.aDa/ = aa¦ = a:

Conversely, if aD = a, then a = .aD/2a = a3.

As an example of further properties of the g-Drazin inverse in Banach algebras with-
out unit we prove the following result, which for matrices reduces to Theorem 7.8.4
of Campbell and Meyer [4].

PROPOSITION 2.6. Let A be a Banach algebra without unit, and let a; b ∈ A be
such that .ba/2 ∈ Aqpol. Then both ab and ba are g-Drazin invertible, and

.ab/D = a..ba/2/Db:(2.5)
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PROOF. If .ba/2 ∈ Aqpol, then also .ab/2, ab and ba are quasipolar, and w =
..ba/2/D = ..ba/D/2 commutes with ba. Set c = a..ba/2/Db = awb. It is not
difficult to show that .ab/c = c.ab/ and .ab/c2 = c. The element ab − .ab/2c =
.a − a.ba/2w/b is quasinilpotent if and only if x = b.a − a.ba/2w/ = ba − .ba/3w

is quasinilpotent. Imbedding A into its unitisation A1, we recall that p = 1 − .ba/2w

is idempotent; hence x = .ba/p ∈ Aqnil if and only if x2 = .ba/2 p ∈ Aqnil if and only
if .ba/2 − .ba/4w ∈ Aqnil. This completes the proof.

3. The weighted g-Drazin inverse for operators

Throughout this section we assume that X; Y are nonzero complex Banach spaces
and W is a fixed nonzero operator in B.Y; X/, the set of all bounded linear operators on
Y to X . First we turn B.X; Y / into a Banach algebra BW .X; Y / (in general without a
unit) by introducing a multiplication of elements ofB.X; Y / facilitated by the operator
W , and imposing a suitable norm on B.X; Y /.

LEMMA 3.1. Let BW .X; Y / be the space B.X; Y / equipped with the multiplication

A ? B = AW B;(3.1)

and norm ‖A‖W = ‖A‖‖W‖. Then BW .X; Y / becomes a complex Banach algebra;
BW .X; Y / has a unit if and only if W is invertible, in which case W −1 is that unit.

PROOF. The verification of most Banach algebra axioms is straightforward. The
positive definiteness of the norm is ensured by the fact that W 	= 0. We check the
submultiplicativity of the norm. If A; B ∈ B.X; Y /, then

‖A ? B‖W = ‖AW B‖‖W‖ ≤ ‖A‖‖W‖‖B‖‖W‖ = ‖A‖W ‖B‖W :(3.2)

If W is invertible, then W −1 ∈ B.X; Y / is the unit in BW .X; Y /. Conversely,
assume that P ∈ B.X; Y / is the unit for BW .X; Y /. Then

AW P = A = PW A for all A ∈ B.X; Y /:(3.3)

For each y ∈ Y and f ∈ X ∗ define f ⊗y : X → Y by . f ⊗y/x = f .x/y for all x ∈ X ;
then f ⊗ y ∈ B.X; Y /. From PW . f ⊗ y/x = . f ⊗ y/x we get f .x/PW y = f .x/y.
Selecting x and f so that f .x/ 	= 0, we obtain PW y = y for any y ∈ Y . From
. f ⊗ y/W Px = . f ⊗ y/x we get f .W Px/y = f .x/y. Selecting y 	= 0, yields
f .W Px/ = f .x/ for all f ∈ X ∗, which implies W Px = x for any x ∈ X . Then W
is invertible; setting A = W −1 in (3.3), we get W −1 = PW W −1 = P .
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We observe that if BW .X; Y / has the unit W −1, the spaces X and Y are isomorphic
and homeomorphic; in particular, X and Y are of the same dimension. Moreover, the
norm of the unit in BW .X; Y / is equal to ‖W −1‖W = ‖W −1‖‖W‖ = �.W /, known as
the condition number of W .

For any n ∈ N we write A?n = A ? · · · ? A (n factors). Observe that

A?n = .AW /n−1 A = A.W A/n−1:(3.4)

We write rW .·/ for the spectral radius of elements of BW .X; Y /. We show that

rW .A/ = r.AW / = r.W A/;(3.5)

where r.·/ is the spectral radius in B.Y / or B.X/. Indeed,

r.AW / = lim
n→∞

‖.AW /n‖1=n ≤ lim
n→∞

.‖.AW /n−1 A‖‖W‖/1=n

= lim
n→∞

‖A?n‖1=n
W = rW .A/:

Conversely,

rW .A/ = lim
n→∞

‖A?n‖1=n
W = lim

n→∞
‖A?n‖1=n‖W‖1=n

= lim
n→∞

‖.AW /n−1 A‖1=n‖W‖1=n

≤ lim
n→∞

‖.AW /n−1‖1=n lim
n→∞

.‖A‖‖W‖/1=n

= lim
n→∞

‖.AW /n−1‖1=n = r.AW /

as limn→∞ ‖.AW /n−1‖1=n = limn→∞ ‖.AW /n‖1=n. The second equality in (3.5) follows
by symmetry.

DEFINITION 3.2. Let W be a fixed nonzero operator in B.Y; X/. An operator
A ∈ B.X; Y / is called Wg-Drazin invertible if A is quasipolar in the Banach algebra
BW .X; Y /. The Wg-Drazin inverse AD;W of A (or W-weighted g-Drazin inverse) is
then defined as the g-Drazin inverse B of A in the Banach algebra BW .X; Y /; iW .A/ is
the Drazin index of A in BW .X; Y /. A polar element of BW .X; Y / is called W-Drazin
invertible, with the W-Drazin inverse AD;W = B.

The Wg-Drazin inverse is unique if it exists (Proposition 2.2), and is characterised
by the following theorem.

THEOREM 3.3. Let W be a fixed nonzero operator in B.Y; X/. Then A ∈ B.X; Y /
is Wg-Drazin invertible with the Wg-Drazin inverse AD;W = B ∈ B.X; Y / if and only
if one of the following equivalent conditions holds:

(i) AW is quasipolar in B.Y / with .AW /D = BW ;
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(ii) W A is quasipolar in B.X/ with .W A/D = W B;
(iii) There exists B ∈ B.X; Y / satisfying

.AW /B = .BW /A; .BW /2 A = B; .AW /2 BW − AW ∈ B.Y /qnil;

(iv) There exists B ∈ B.X; Y / satisfying

A.W B/ = B.W A/; A.W B/2 = B; W B.W A/2 − W A ∈ B.X/qnil:

The Wg-Drazin inverse AD;W of A then satisfies

AD;W = ..AW /D/2 A = A..W A/D/2:(3.6)

PROOF. Suppose that A has the Wg-Drazin inverse B.
The conditions

A ? B = B ? A; B ? A ? B = B; A ? B ? A − A ∈ BW .X; Y /qnil;

translate to

AW B = BW A; .BW /2 A = B; T = .AW /2 B − A ∈ BW .X; Y /qnil:(3.7)

Let C = BW . Then .AW /C = C.AW / and C 2.AW / = C by (3.7). Finally, by
(3.5), r.T W / = rW .T / = 0. Hence .AW /2C − AW = T W is quasinilpotent in B.Y /,
and (i) is proved.

Condition (ii) follows from a symmetrical argument. Conditions (i) and (iii)
(respectively (ii) and (iv)) are equivalent by the characterisation of the g-Drazin
inverse given in Proposition 2.2.

Conversely, suppose that AW ∈ B.Y / has the g-Drazin inverse C . Let B = C 2 A.
The equations .AW /C = C.AW / and C 2.AW / = C imply

A ? B = AWC2 A = C2 AW A = B ? A; and

B ? A ? B = .C 2 AW /.AWC2/A = C2 A = B:

Write A ? B ? A − A = .AWC2/AW A − A = C AW A − A = S. Since SW =
C.AW /2 − AW is quasinilpotent in B.Y /, rW .S/ = r.SW / = 0, and S is quasinilpo-
tent in BW .X; Y /. This proves that condition (i) implies that A is Wg-Drazin invertible
with AD;W = C2 A. The rest follows from Proposition 2.2 by symmetry.

From (3.6) we find an expression for the support idempotent A¦;W of A inBW .X; Y /:
A¦;W = A ? AD;W = AW ..AW /D/2 A = .AW /D A. By symmetry,

A¦;W = .AW /D A = A.W A/D:(3.8)
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PROPOSITION 3.4. If A ∈ B.X; Y / is Wg-Drazin invertible, then the Drazin indices
iW .A/, i.W A/, and i.AW / are all finite or all infinite, and satisfy the inequalities

max {i.AW /; i.W A/} ≤ iW .A/ ≤ min {i.AW /; i.W A/} + 1:(3.9)

PROOF. Let AD;W = B be the Wg-Drazin inverse of A and let T = .AW /2 B − A. If
iW .A/ = k < ∞, then T ?k = 0. Consequently .T W /k = .T W /k−1T W = T ?kW = 0
and hence i.AW / ≤ iW .A/.

Let AW have the g-Drazin inverse C and let S = C AW A− A. If i.AW / = k < ∞,
then .SW /k = 0, and S?.k+1/ = .SW /k S = 0, that is, iW .A/ ≤ k + 1. This proves the
inequality for i.AW / in (3.9).

It is known that for any A ∈ B.X; Y / and W ∈ B.Y; X/,

Sp.AW / \ {0} = Sp.W A/ \ {0}:(3.10)

Hence AW is g-Drazin invertible in B.Y / if and only if W A is g-Drazin invertible in
B.X/. The inequality for i.W A/ in (3.9) is obtained by symmetry.

EXAMPLE 3.5. The inequality i.AW / ≤ iW .A/ (respectively i.W A/ ≤ iW .A/) in
(3.9) can be strict. Let

W =
⎡
⎣0 0

1 1
0 0

⎤
⎦ ;

and let BW be the space M2;3.C/ of all complex 2×3 matrices with the multiplication
(3.1). By the preceding theorem, every element A ∈ M2;3.C/ has a g-Drazin inverse
of finite Drazin index in BW since the matrix AW has the conventional Drazin inverse
.AW /D in M2;2.C/. Let

A =
[

1 0 0
0 0 1

]
:

Then AW = 0 = B, where B is the g-Drazin inverse of A in BW , and T = .AW /2 B −
A = −A. Since T 	= 0 and T ? T = AW A = 0, we have iW .A/ = 2. On the
other hand, i.AW / = i.0/ = 1. An example of a strict inequality between i.W A/
and iW .A/ can be obtained from the present example and the following proposition
involving the dual spaces X ∗ and Y ∗ of X and Y .

PROPOSITION 3.6. A ∈ B.X; Y / is Wg-Drazin invertible if and only if the adjoint
A∗ ∈ B.Y ∗; X ∗/ of A is W ∗g-Drazin invertible. In this case

.A∗/D;W
∗ = .AD;W /∗:(3.11)
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PROOF. Since Sp..AW /∗/ = Sp.AW /, .AW /∗ is quasipolar if and only if AW is
quasipolar. Hence W ∗ A∗ = .AW /∗ is g-Drazin invertible if and only if AW is. By
Theorem 3.3, A∗ is W ∗g-Drazin invertible if and only if A is Wg-Drazin invertible.
Equation (3.11) follows on application of Proposition 2.2.

EXAMPLE 3.7 (Rakočević and Wei [13]). If A ∈ B.X; Y / is a finite rank operator,
then A has a finite index Wg-Drazin inverse for any nonzero W ∈ B.Y; X/. If
W ∈ B.Y; X/ is a nonzero operator of finite rank, then any A ∈ B.X; Y / has a finite
index Wg-Drazin inverse.

4. Further properties of the Wg-Drazin inverse

First we briefly explore a duality between AD;W and W D;A provided A ∈ B.X; Y /
and W ∈ B.Y; X/. From Theorem 3.3 we see that the weighted g-Drazin inverse W D;A

exists if and only if AD;W exists. Equation (3.6) gives rise to the following relations:

W D;A A = .W A/D = W AD;W ;

AW D;A = .AW /D = AD;W W:

We can then express W D;A in terms of AD;W and vice versa:

W D;A = W AD;W W AD;W W;

AD;W = AW D;A AW D;A A:(4.1)

We observe that in (4.1), the operators AW D;A and W D;A A are simply polar (that is, of
index 1 or 0): for example, AW D;A = AW ..AW /D/2 = .AW /D. The simple polarity
of the g-Drazin inverse of AW is well known (see [7]). Specialised to matrices, this
proves the necessary part of Theorem 3 in [5].

PROPOSITION 4.1. Let A ∈ B.X; Y / be Wg-Drazin invertible. Then the following
are true:

(i) A = AD;W if and only if A = A?3 = AW AW A.
(ii) .AD;W /D;W = .AW /¦ A = A.W A/¦ .

(iii) .AD;W /¦;W = A¦;W .
(iv) For any n ∈ N, .AD;W /?n = ..AW /D/n+1 A = A..W A/D/n+1 = .A?n/D;W .

PROOF. (i) This follows from Proposition 2.5 applied to BW .X; Y /.
(ii) Applying the results of [7] while working in the Banach algebra BW .X; Y /, we

have .AD;W /D;W = A ? A¦;W = AW .AW /D A = .AW /¦ A.
(iii) In the proof of [7, Theorem 5.2] it is shown that a quasipolar element and its

g-Drazin inverse have the same support idempotent.
(iv) This is shown via induction on n.
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Part (ii) of the preceding theorem implies that .AD;W /D;W = A if and only if
.AW /¦ A = A (A.W A/¦ = A). This is equivalent to A being simply polar in
BW .X; Y /.

From [7, Theorem 5.5] we can deduce the following result.

PROPOSITION 4.2. Let A; B ∈ B.X; Y /be Wg-Drazin invertible. If AW B = BW A,
then AW B is Wg-Drazin invertible with .AW B/D;W = AD;W W BD;W .

We now turn our attention to an analogue of the core decomposition for the weighted
g-Drazin inverse.

THEOREM 4.3. An operator A ∈ B.X; Y / is Wg-Drazin invertible if and only if
there exist operators C;U ∈ B.X; Y / such that

A = C + U; CWU = 0; U WC = 0;(4.2)

.CW /¦C = C; U W ∈ B.Y /qnil:(4.3)

Such operators are uniquely determined, and C = .AD;W /D;W = .AW /¦ A. Further,

.AW /D = .CW /D; .AW /¦ = .CW /¦ ; Sp.AW / ∪ {0} = Sp.CW /:(4.4)

PROOF. We apply Theorem 2.4 to BW .X; Y /. A is Wg-Drazin invertible if and
only if there exist C;U ∈ B.X; Y / such that A = C + U , C ? U = CWU = 0,
U ? C = U WC = 0, C is simply polar in BW .X; Y /, and U is quasinilpotent in
BW .X; Y /. The element C ∈ BW .X; Y / is simply polar if and only if C ? C¦;W = C .
From the equation

C ? C¦;W = CW .CW /DC = .CW /¦C

we conclude that the simple polarity of C ∈ BW .X; Y / is equivalent to .CW /¦C = C .
Finally, rW .U / = r.U W /, and U W is quasinilpotent in B.X; Y / if and only if U
is quasinilpotent in BW .X; Y /. This proves the equivalence of (4.2) and (4.3) to the
Wg-Drazin invertibility of A. Explicitly, C = A ? A¦;W = .AW /¦ A.

Towards (4.4) in view of Theorem 2.4,

.AW /D = ..AW /D/2 AW = AD;W W = CD;W W = ..CW /D/2CW = .CW /D:

Therefore

.CW /¦ = .CW /DC = .AW /DC = .AW /D.AW /¦ A = .AW /D A = .AW /¦ :

If SpW .A/ denotes the spectrum of A as an element of the Banach algebra BW .X; Y /
without unit, then it can be shown that SpW .A/ = Sp.AW / ∪ {0}. Hence

Sp.AW / ∪ {0} = SpW .A/ = SpW .C/ = Sp.CW / .as 0 ∈ Sp.CW //:

This completes the proof.
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The statement of the theorem remains true when (4.3) is replaced by C.WC/¦ = C ,
WU ∈ B.X/qnil, and AW , CW in (4.4) are replaced by W A, WC , respectively.

We close the section with an integral representation of the Wg-Drazin inverse. The
representation of the g-Drazin inverse given by Castro et al. [6, Theorem 2.2] is valid
also for Banach algebras without unit. Applying this result to BW .X; Y /, we get the
integral representation

AD;W = −
∫ ∞

0

exp.t A/ ? A¦;W dt

provided A is Wg-Drazin invertible and the nonzero spectrum SpW .A/ \ {0} lies in the
open left half-plane. We express exp.t A/ ? A¦;W in terms of the usual multiplication
of operators:

A?n ? A¦;W = .AW /n−1 AW A¦;W = .AW /n A¦;W :

Hence

exp.t A/ ? A¦;W =
∞∑

n=0

tn

n! .AW /n A¦;W = exp.t AW /A¦;W :

Note that in general exp.t AW / belongs to the unitisation of BW .X; Y / but not to
BW .X; Y /, while exp.t AW /A¦;W is in BW .X; Y /. We summarise our findings.

PROPOSITION 4.4. Let A ∈ B.X; Y /be Wg-Drazin invertible such that Sp.W A/\{0}
lies in the left open half-plane. Then

AD;W = −
∫ ∞

0

exp.t AW /A¦;W dt:(4.5)

If the Drazin index i.AW / is finite and the set Sp..AW /m+1/ \ {0} lies in the left open
half-plane for some m ≥ min {i.AW /; i.W A/} + 1, then

AD;W = −
∫ ∞

0

exp.t .AW /m+1/.AW /m−1 A dt:(4.6)

PROOF. Equation (4.5) follows from our calculations preceding the theorem. For
(4.6) we find

.A?.m+1//?n ? A?m = A?.m+1/n+m = .AW /.m+1/n.AW /m−1 A;

and
exp.t A?.m+1// ? A?m = exp.t .AW /m+1/.AW /m−1 A:

Equation (4.6) then follows from [6, Theorem 2.4].



416 A. Dajić and J. J. Koliha [12]

As expected from symmetry, there is also a W A version of the preceding theorem. If
we specialise Equation (4.6) to matrices, we recover [18, Theorem 1]. The inequality
m ≥ min {i.AW /; i.W A/}+1 in the preceding theorem can be relaxed to m ≥ iW .A/.

Using the core decomposition of a Wg-Drazin invertible operator A ∈ B.X; Y /, we
obtain yet another integral representation for AD;W .

COROLLARY 4.5. Let A∈B.X; Y / be Wg-Drazin invertible such that Sp..WA/2/\{0}
lies in the open left half-plane, and let A = C + U be the core decomposition of A.
Then

AD;W = CD;W = −
∫ ∞

0

exp.t .CW /2/C dt:

PROOF. This follows from (4.6) when we note that iW .C/ = 1.

5. Ascent and descent

We recall that the ascent and descent of an operator T ∈ B.X/ are defined by

asc.T / = inf
{
k ∈ N ∪ {0} : N .T k+1/ = N .T k/

}
;

des.T / = inf
{
k ∈ N ∪ {0} : R.T k+1/ = R.T k/

}
(inf ∅ = ∞). Rakočević and Wei [13] ask whether the finiteness of asc.AW / and
des.W A/ is sufficient for A to have the W-weighted Drazin inverse. An equivalent
question is whether asc.AW / and asc.W A/ are always both finite or both infinite.

In this connection it is interesting to recall that Buoni and Faires [3] studied the
ascent and descent for the operators ½I − B A and ½I − AB, where A; B ∈ B.X/, and
proved, inter alia, that for any ½ 	= 0,

asc.AB − ½I / = asc.B A − ½I /; des.AB − ½I / = des.B A − ½I /;(5.1)

however, the case ½ = 0 was left open. Later, Barnes [1] proved by different methods
that the ascents of I − RS and I − SR are equal for R ∈ B.X; Y / and S ∈ B.Y; X/.
It can be shown that the arguments in [3] concerning descent are valid also when
A ∈ B.X; Y / and B ∈ B.Y; X/. Thus (5.1) is valid for operators between different
spaces. The following theorem, dealing with the ascent and descent in general,
completes the results of Buoni and Faires in the case ½ = 0.

THEOREM 5.1. Let A ∈ B.X; Y / and B ∈ B.Y; X/. Then the ascents (descents)
of AB and B A are both finite or both infinite, and satisfy the inequalities

asc.AB/− 1 ≤ asc.B A/ ≤ asc.AB/+ 1;

des.AB/− 1 ≤ des.B A/ ≤ des.AB/+ 1:
(5.2)
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PROOF. Suppose that asc.AB/ = p < ∞. If there existed

x ∈ N ..B A/p+2/ \ N ..B A/p+1/;

we would have .AB/p+2 Ax = A.B A/p+2x = 0, and B.AB/p Ax = .B A/p+1x 	= 0,
that is, .AB/p Ax 	= 0. Then Ax would belong to N ..AB/p+2/ \ N ..AB/p/, which
is empty by assumption. This contradiction proves N ..B A/p+1/ = N ..B A/p+2/,
which shows that asc.B A/ ≤ p + 1 = asc.AB/+ 1. A symmetrical argument gives
asc.AB/ ≤ asc.B A/+ 1. This proves the first inequality in (5.2).

Let des.AB/ = p < ∞. Suppose

x ∈ R..B A/p+1/ \ R..B A/p+2/:(5.3)

Then there exists x ′ ∈ X such that

x = .B A/p+1x ′ = B.AB/p Ax ′ = By;

where y = .AB/p Ax ′ ∈ R..AB/p/ = R..AB/p+2/. Hence y = .AB/p+2 y′ for some
y′ ∈ Y , and .B A/p+2 By′ = B.AB/p+2y′ = By = x contrary to (5.3). This proves
that R..B A/p+1/ = R..B A/p+2/, so that des.B A/ ≤ p + 1.

The inequalities in (5.2) can be strict; this follows from Example 3.5 since for
matrices i.AB/ = asc.AB/ = des.AB/.

The following theorem gives a solution to the open problem of Rakočević and Wei
[13, page 28].

THEOREM 5.2. Let A ∈ B.X; Y / and W ∈ B.Y; X/ \ {0}. Then A is W-Drazin
invertible if and only if one of the following equivalent conditions hold:

(i) AW is polar in B.Y /;
(ii) W A is polar in B.X/;

(iii) asc.AW / and des.W A/ are both finite;
(iv) asc.W A/ and des.AW / are both finite.

PROOF. Suppose that A is W-Drazin invertible. By Theorem 3.3, AW is quasipolar,
and by (3.9) we have i.AW / ≤ iW .A/, which proves that AW is polar. Conversely, if
AW is polar, then iW .A/ ≤ i.AW /+ 1, and A is W-Drazin invertible.

(i) implies (ii): Since AW is quasipolar, so is W A by (3.10). By (3.9) again,
i.W A/ ≤ i.AW /+ 1, and W A is polar.

(ii) implies (iii): It is well known that if W A is polar, then asc.W A/ and des.W A/
are both finite. However, asc.AW / ≤ asc.W A/+ 1 by Theorem 5.1 and (iii) follows.

(iii) implies (iv): This follows from Theorem 5.1 as asc.W A/ ≤ asc.AW /+ 1 and
des.AW / ≤ des.W A/+ 1.

(iv) implies (i): Since asc.AW / ≤ asc.W A/+ 1, both asc.AW / and des.AW / are
finite; this implies that AW is polar.
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6. The Mbekhta decomposition for WA and AW

As before, X; Y are Banach spaces and W a nonzero operator in B.Y; X/. In order
to obtain an operator matrix representation for the weighted g-Drazin inverse of an
operator A ∈ B.X; Y /, we first recall the Mbekhta decomposition for a quasipolar
operator. For any operator T ∈ B.X/ we define spaces H0.T / and K .T / as follows:

H0.T / =
{

x ∈ X : lim
n→∞

‖T n x‖1=n = 0
}
;

K .T / =
{

x ∈ X : ∃ xn ∈ X; xn = T xn+1; x0 = x; sup
n∈N

‖xn‖1=n < ∞
}
:

Both spaces are hyperinvariant under T , H0.T / ⊃ N .T n/, and K .T / ⊂ R.T n/ for all
n ∈ N. Further, T K .T / = K .T / and T −1 H0.T / = H0.T /.

PROPOSITION 6.1 (See [8, 11]). The following conditions on T ∈ B.X/ are equiv-
alent:

(i) T is quasipolar;
(ii) X is the topological direct sum X = K .T /⊕ H0.T /;

(iii) T = T1 ⊕ T2, where T1 is invertible and T2 quasinilpotent.

Condition (ii) can be weakened to X = K .T / ⊕ H0.T / being only an algebraic
sum with at least one of the spaces closed (see [10] and [15]).

THEOREM 6.2. Let A ∈ B.X; Y / and W ∈ B.Y; X/. If W A is quasipolar, then so
is AW ,

A.K .W A// = K .AW /; A−1.H0.AW // = H0.W A/;

W .K .AW // = K .W A/; W −1.H0.W A// = H0.AW /;
(6.1)

and the spaces K .W A/, K .AW / are isomorphic and homeomorphic.

PROOF. The result on quasipolarity follows from (3.10). We introduce the following
notation

X1 = K .W A/; X2 = H0.W A/; Y1 = K .AW /; Y2 = H0.AW /:(6.2)

Then X and Y are decomposed into the topological direct sums X = X1 ⊕ X2 and
Y = Y1 ⊕ Y2. The operator matrices

T =
[

W A 0
0 AW

]
; S =

[
0 0
A 0

]
(6.3)
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represent commuting operators inB.X ⊕Y /with T quasipolar. The support projection
T ¦ of T double commutes with T , that is, the matrix

T ¦ =
[
.W A/¦ 0

0 .AW /¦

]

commutes with the matrix S. This gives A.W A/¦ = .AW /¦ A. Since .W A/¦ is the
projection of X onto X1 along X2, and .AW /¦ is the projection of Y onto Y1 along Y2,
we have A.Xi/ ⊂ Yi (i = 1; 2). The inclusions W .Yi/ ⊂ Xi (i = 1; 2) are obtained
by symmetry.

Note that A.X2/ ⊂ Y2 is equivalent to X2 ⊂ A−1.Y2/. In order to prove
A−1.Y2/ ⊂ X2, assume that Ax ∈ Y2. Then x = k + h with k ∈ X1 and h ∈ X2, and
Ax = Ak + Ah ∈ Y2 implies that Ak = 0. From k ∈ N .A/ ⊂ N .W A/ ⊂ X2, we
obtain k ∈ X1 ∩ X2 = {0}. Hence x = h ∈ X2.

Let A0 : X1 → Y1 be the restriction of A. If x ∈ X1 and Ax = 0, then x = 0 by
the argument of the preceding paragraph. Hence A0 is injective. Suppose that y ∈ Y1.
Since AW Y1 = Y1, there exists u ∈ Y1 such that y = AW u. But W Y1 ⊂ X1, and
so W u ∈ X1. This proves that A0 is surjective. Therefore A0 is a bounded linear
bijection from X1 to Y1, and (6.1) is proved.

In particular, if AW is quasipolar, then the spaces K .AW / and K .W A/ have the
same dimension being isomorphic.

If A and W are rectangular matrices of orders m × n and n × m respectively, we
recover the result of Yukhno [19, Theorem]. For this the operator T : Cm → Cm with
the matrix W A is polar, and T = T1 ⊕ T2, where T1 is invertible and T2 nilpotent;
T1 operates on X1 = K .T / = R.T p/, where p is the index of T . The eigenvalues
of T1 are the nonzero eigenvalues of W A. Let ½ be a nonzero eigenvalue of W A, and
x1; : : : ; xk a chain of generalised eigenvectors of W A corresponding to ½, that is,

W Ax1 = ½x1 + x2; : : : ; W Axk−1 = ½xk−1 + xk; W Axk = ½xk :

In view of the decomposition of T as T = T1 ⊕ T2, where T1 operates on X1, we
can take xi ∈ X1 for all i . If yi = Axi (i = 1; : : : ; k), then y1; : : : ; yk is a chain of
generalised eigenvectors of AW corresponding to ½ (this follows from the bijectivity
of the operator x �→ Ax restricted from X1 to Y1). All chains corresponding to
nonzero eigenvalues of W A are matched in this way. This leads to the following
structure theorem for W A and AW .

PROPOSITION 6.3. Let A and W be rectangular matrices of orders m ×n and n ×m,
respectively. The matrices W A and AW (of orders n × n and m × m, respectively)
have Jordan forms [

U 0
0 N1

]
and

[
U 0
0 N2

]
;
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where U is a matrix in Jordan form corresponding to the nonzero eigenvalues of W A
(and AW ), while N1 and N2 are nilpotent matrices in Jordan form, of different orders
in general.

Recall that the entries of N1 and N2 are zero except for the superdiagonals, which
consist of 0s and 1s.

7. An operator matrix representation of the Wg-Drazin inverse

From the Mbekhta decomposition theorem (Proposition 6.1), it follows that an
operator T ∈ B.X/ is quasipolar if and only if it can be expressed as the direct sum
T = T1 ⊕ T2, where T1 is invertible and T2 quasinilpotent; the g-Drazin inverse of T
is given by

T D = T −1
1 ⊕ 0:

Our aim is to derive an analogous formula for the Wg-Drazin inverse using the results
of the preceding section.

THEOREM 7.1. Let A ∈ B.X; Y / and W ∈ B.Y; X/ \ {0}. Then A is Wg-Drazin
invertible if and only if there exist topological direct sums X = X1 ⊕ X2, Y = Y1 ⊕ Y2

such that A = A1 ⊕ A2 and W = W1 ⊕ W2, where Ai ∈ B.Xi ; Yi/, Wi ∈ B.Yi ; Xi /,
with A1, W1 invertible, and W2 A2 and A2W2 quasinilpotent in B.X2/ and B.Y2/,
respectively. The Wg-Drazin inverse of A is given by AD;W = .W1 A1W1/

−1 ⊕ 0 with
.W1 A1W1/

−1 ∈ B.X1; Y1/ and 0 ∈ B.X2; Y2/.

PROOF. If W A is quasipolar, the decomposition exists with Xi and Yi given by (6.2).
By Theorem 6.2, A maps X1 into Y1, and X2 into Y2, that is, A = A1 ⊕ A2, with
Ai ∈ B.Xi ; Yi /, i = 1; 2. Similarly, since W maps Y1 into X1 and Y2 into X2,
W = W1 ⊕ W2, where Wi ∈ B.Yi ; Xi/, i = 1; 2. Hence

W A = W1 A1 ⊕ W2 A2; AW = A1W1 ⊕ A2W2

relative to X = X1 ⊕ X2 and Y = Y1 ⊕ Y2. Since W A and AW are quasipolar, W1 A1

and A1W1 are invertible, and W2 A2 and A2W2 are quasinilpotent. Hence A1 and W1

are invertible.
The Wg-Drazin inverse of A is equal to

A..W A/D/2 = .A1 ⊕ A2/..W1 A1/
−2 ⊕ 0/ = .W1 A1W1/

−1 ⊕ 0:

Conversely, if the decompositions with the specified properties exist, then AW =
.A1W1/⊕ .A2W2/ is quasipolar as A1W1 is invertible and A2W2 quasinilpotent. Then
A is Wg-Drazin invertible.



[17] Weighted g-Drazin inverse for operators 421

From the necessary part of the preceding theorem we recover [18, Theorem 2]
when we specialise the operators to finite matrices. From Theorem 6.2 applied to
finite matrices we deduce that the ranks of .AW /m and .W A/m are equal for any
m ≥ max {nd.AW /; nd.W A/}. (This is used, but not proved, in the derivation of [18,
Theorem 2]).

From the commutativity of the operator matrices given in (6.3) and the double
commutativity of the g-Drazin inverse we deduce that .AW /D A = A.W A/D, which
leads to the new equality for AD;W derived from (3.6),

AD;W = .AW /D A.W A/D:

8. Relation to the Moore–Penrose inverse

We briefly address the relation of the Wg-Drazin inverse to the Moore–Penrose
inverse in Hilbert spaces (see [13, page 28]). Let H; K be Hilbert spaces and let
A ∈ B.H; K /. It is well known that R.A/ is closed if and only if R.A∗/ is closed,
R.A∗/ is closed if and only if A∗ A is simply polar, and A∗ A is simply polar if and
only if AA∗ is simply polar. This means that A ∈ B.H; K / is A∗g-Drazin invertible
if and only if the range of A is closed. We note that

.AD;A∗
/∗ = .A∗/D;A:(8.1)

We can then prove that the operator A† = .A∗/¦;A = A∗ AD;A∗
A∗ is the Moore–Penrose

inverse characterised by the equations

A† AA† = A†; AA† A = A; .A† A/∗ = A† A; .AA†/∗ = AA†:(8.2)

We offer a sample of such proof

A† AA† = .A∗/¦;A A.A∗/¦;A = .A∗/¦;A ◦ .A∗/¦;A = .A∗/¦;A = A†;

where T ◦ S = T AS, and

AA† A = AA∗ AD;A∗
A∗ A = A ? AD;A∗

? A = A;

where T ? S = T A∗S. Other equations in (8.2) can be proved similarly.

9. Continuity of the Wg-Drazin inverse

THEOREM 9.1. Let An → A0 in B.X; Y / and Wn → W0 	= 0 in B.Y; X/, where
each An is Wng-Drazin invertible, n = 0; 1; 2; : : : Then the following conditions are
equivalent:
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(i) AD;Wn
n → AD;W0

0 ;
(ii) supn ‖AD;Wn

n ‖ < ∞;
(iii) .An Wn/

D → .A0W0/
D;

(iv) A¦;Wn
n → A¦;W0

0 .

PROOF. We rely on continuity results for the g-Drazin inverse obtained in [9].
Condition (i) clearly implies (ii). Suppose that (ii) holds. Since

.An Wn/
D = ..An Wn/

D/2.An Wn/ = AD;Wn
n Wn;

we have supn ‖.AnWn/
D‖ < ∞. By [9, Theorem 2.4], .AnWn/

D → .A0W0/
D.

If (iii) holds, then A¦;Wn
n = .An Wn/

D An → .A0W0/
D A0 = A¦;W0

0 .
Let (iv) hold. From the equation

.An Wn/
¦ = .AnWn/

D An Wn = A¦;Wn
n Wn;

we deduce that .An Wn/
¦ → .A0W0/

¦ . Using [9, Theorem 2.4] again, we obtain
.AnWn/

D → .A0W0/
D. Hence AD;Wn

n = ..AnWn/
D/2 An → ..A0W0/

D/2 A0 = AD;W0
0

and the theorem is proved.

From the preceding theorem we recover [13, Theorem 5.1] when we specialise the
result to a finite index weighted Drazin inverse.
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