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Abstract

A distribution on a Heisenberg type group of homogeneous dimei@isra biradial kernel of type if

it coincides with a biradial function, homogeneous of degreeQ, and smooth away from the identity.

We prove that a distribution is a biradial kernel of type® < @ < Q, if and only if its Gelfand transform,
defined on the Heisenberg fan, extends to a smooth even function on the upper half plane, homogeneou
of degree—«/2. A similar result holds for radial kernels on the Heisenberg group.

2000Mathematics subject classificatioprimary 43A80; secondary 22E30.
Keywords and phrases$ieisenberg type groups, homogeneous distributions.

1. Introduction

Homogeneous distributions play a fundamendéé in harmonic analysis. It is well-
known that a distribution orR" is homogeneous of degree and smooth away
from the origin if and only if its Fourier transform is a homogeneous distribution of
degree-n — «, and is smooth away from the origin. The aim of this paper is to obtain
a similar characterisation in the Heisenberg group setting.

Let N >~ R?™ x Rk be a Heisenberg type group of homogeneous dimerQiea
2m + 2k. We say that a functiorf on N is biradial if there exists a functionfy
on R? such thatf (X, Z) = fo(|X|, |Z]) for every(X, Z) in N. A distribution onN
is abiradial kernel of typex if it coincides with a biradial homogeneous function of
degreex — Q, and smooth away from the identity bf.

In this paper we characterise the image under the Gelfand transform of biradial
kernels of typex, 0 < o < Q. Such kernels are involved in many analytic problems.
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Indeed, if 0< o« < Q and ¥Vp — 1/q = «/Q, then they ard_P-L9 convolutors.
Moreover, they appear in the functional calculus of many operators, such as the
Heisenberg sublaplaciai]] or the Hodge Laplacianlf)]. Other results concerning
homogeneous distributions on the Heisenberg group can be fouBdiirv|[ 6, 8, 12].

To describe the results, we introduce some notation. Rfet= R \ {0}, RT =
(0, +00), R2 = {(1, &) e R?: £ > 0},andN ={0,1,2,.. .}.

The convolution algebra of integrable biradial functionsNris a commutative
Banach algebra and its Gelfand spectrum can be be parametrised by(a,phir
where is in RT andd is in N, and by a nonnegative real numbgr Since the
subsetfé > 0} of the Gelfand spectrum has zero Plancherel measure, it will be usually
disregarded.

Itis easy to see that K is a biradial kernel of type, then its Gelfand transforr{
satisfies

K, d) =22K(1,d) forall (x,d)eR" x N.

Geller [8, Theorem 2.7, Theorem 3.7] characterised the image under the Gelfand
transform of biradial kernels of type on the Heisenberg group in terms of the
behaviour at infinity of the sequencés— K (1, d). He actually proved this kind of
result for general (not necessarily biradial) kernels on the Heisenberg group. In this
paper we continue this investigation.

If K is a biradial kernel of type;, we can extend (1, d) to negative values of
by

K, d)=K(=x,d) forall (A, d)eR*x N,

and we can considé€ as a function defined on the so-called Heisenberg fan, that is,
the subset oR? given by

(U{(A,E) eR?: & =|Al(2d +m), A 7&0}> U{(0,&) e R*: & > 0}.

deN
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We prove that a functior : R* x N — C is the Gelfand transform of a biradial
kernel of typex if and only if it is the restriction to the Heisenberg fan of a smooth
function onR2, homogeneous of degreex/2, and even in the first variable.

Whenao = 0, we construct the extensidn as follows. Inspired by the work
of Mller, Ricci, and Stein11], we exploit the Poisson summation formula: gif
is a Schwartz function on the real line whose Fourier transfofip has compact
support in the intervel-3/4, 3/4] and such tha} >, , 7 ¢(x+ j) = 1 for any reak,
thenp(0) = 1 ande(j) = 0 for j in Z\ {0}. If K is a biradial kernel of type 0O,
we extend in a suitable way the sequen@@iil, d))deN to Z, and we define the
function F on the upper half plane by the formula

>0 Ko e (% (;7 - m) - j) forall (i, &) € R* x R¥;

F(A.§8) =
: {K(g) forall (1,&) € {0} x R™.

It easy to see thaf is smooth orR* x R* and thatF (i, |A|(2d + m)) = K(x, d),
wheni isin R* andd is in N. The most elaborate part is the proof of the smoothness of
the functionF on the&-axis; for this it is necessary to know the asymptotic expansion
at infinity of the sequence(st?(il, d))deN (see B, Theorem 2.7, Theorem 3.7] for the
case where\ is the Heisenberg group). The case of biradial kernels of &ypehere

0 < o < Q, may be deduced from the case where: 0.

We also consider the case of radial (not necessarily biradial) kernels on the Heisen-
berg group. We first prove our main result in this case (Theo8el)y and with
minor modifications deduce the result for biradial kernels on Heisenberg type groups
(Theorem3.2).

Our paper is organised as follows. Secti®rtontains preliminary material on
Heisenberg type groups, in particular on the Gelfand transform of biradial functions.
In Section3 we describe our result for biradial kernels on Heisenberg type groups.
Section4 is self-contained and deals with the problem of extending a sequence in
a smooth way and preserving its asymptotic expansion at infinity. The proof of our
results is contained in SectioBsnd6.

It is a pleasure to thank Giancarlo Mauceri and Fulvio Ricci for many helpful
conversations on the subject of this paper.

2. Heisenberg type groups and the Gelfand transform

2.1. Heisenberg type groups Letn be atwo-step real nilpotent Lie algebra endowed
with an inner product, ),. Write n as an orthogonal sum = v @ 3, wherej is the
center ofn.

For eachZ in 3, define the mag; : v — v by the formula

(X, Y)Y =([X,Y],Z2), forall X,Y €v.
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According to Kaplan 9], the Lie algebran is said to beH-type if, for everyZ in 3,
2 =—1ZP1,,

wherel, is the identity orn. A connected and simply connected Lie grddpwhose
Lie algebra is arH-type algebra, is said to beHeisenberg type groymr H-type
group for short.

Sincen is a nilpotent Lie algebra, the exponential map is surjective. We can then
parametrise the elements Nf = expn by (X, Z), for X in v andZ in 3. By the
Baker—Campbell-Hausdorff formula it follows that the product lawiis

(X, 2)(X,Z)=(X+X,Z+Z' +[X, X1/2)

forall X, X" e v andZ, Z’ € 3. We denote byd X andd Z the Lebesgue measures
on v and onj respectively; it is easy to check thaih = d Xd Zis a Haar measure
on N. For every unit vecto in 3, the mapJ; defines a complex structure on
thereforeo has even dimension, sayn2 We denote the dimension of the cenger
by k, and byQ = 2m + 2k the homogeneous dimension Mf with respect to the
anisotropic dilations

D, (X,Z)=(rX,r?z) forall (X,Z)e N andr > 0.

We fix orthonormal basegE; 2™, of v and{U;}*_, of 3. GivenV in n, we also
write V for the associated left-invariant vector field, that is,

Vi) = %f(nexp(tV)) forall ne N and f € C*(N).

t=0
Define the sublaplaciang; and.%, on N by

2m

k
L= —ZE?, and % = —ZUJZ.
j=1

j=1

2.2. The Gelfand transform for biradial functions We say that a functiori on N
is biradial if there exists a functionf, on R? such thatf (X, Z) = fo(|X], |Z]) for
every(X, Z)in N. We recall some facts froni[2] regarding the Gelfand spectruth

of the commutative algebra of biradial integrable functions. It is knowndhistthe
set of bounded spherical functions bin These are given by the rules

Li(AX[%/2)
(57

8% 2) = [ K, (X,
So

$ra(X, Z) = e X / & dp, (2),
S
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forevery(X, Z)inN, A > 0,d € N,and¢ > 0. As usuaILﬁ denotes thd™ Laguerre
polynomial of ordeis, that is,

d .
LAu) = 2; (gtfj) (_jl;)] forall u € R.
J:

Moreover, 1, and u, are the surface measures of the unit sph&eand S, in v
andj respectively, normalized to have mass 1. Therefdrean be parametrized by
(R* x N) U [0, +00). Denote by:i> (¢) the eigenvalue of the spherical functign
with respect to,Zj, j =1,2. We recall that%l(qbA 4) = A(2d + m), .Zz(m q) = A2
.,%1(%) =&, and,%(qbg) = 0. Define a metric o by

d(@, ¢) = | Z1(d) — Zu(d)] + | Lo(¢p) — Za(@)].

Then this metric induces on the Gelfand specterine topology of uniform conver-
gence on compact sets.

We define the Gelfand transforinof a biradial integrable functiori on N by the
rule

?(¢)=/ f(n)g(nydn forall ¢ € ¥
N

For the sake of brevity, we shall often identify a spherical funciign with the

pair (A, d) in R* x N and¢; with the numbeg in [0, +00). According to this iden-

tification we shall writef (%, d) and f (&) instead off (¢, 4) and f(¢;) respectively.
Let 2, andZ_ be the operators defined by

29O, d)y=d+m) (¥, d+1) —y(x,d)),

Py, d)=d(y(, d)—y@,d-1)
forevery(i,d) in R* x Nandy : Rt x N — C. Moreover, letM, andM_ be the
operators defined bM, = 9, — 17 1Z,,andM_ = 9, — A7 19_.

3. Homogeneous distributions on Heisenberg type groups

Leta be in[0, Q). We say that a distributioK on N is abiradial kernel of typex
if (K, foDy)=r"K,f)forall f e C¥(N), and the kerneK coincides with a
smooth biradial functionfx on N \ {(0, 0)}. Then the functionfy is homogeneous
of degreex — Q and, wherw = 0, it satisfies (se€d])

f fK do = O,
S(0.1)
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whereS(0, 1) = {(X, Z) € N : |X|*/16+ |Z|?> = 1} anddo is the surface measure
induced by the Euclidean measure. Moreover, there exists a corgtanich that
K = p.v.(fx) + c« 8, where pv. denotes the principal value addhe Dirac mass at
the identity.

It is easy to check that a biradial kernel of typeis a tempered distribution.
Moreover, if K is a biradial kernel of typer, then its Gelfand transform satisfies
K, d) = 22K (1, d) for all d € N, and almost every € R*.

THEOREM 3.1. Suppose that is in [0, Q) andy : R x N — C. The following
conditions are equivalent

(&) the functiomy is the Gelfand transform of a biradial kernel of typeon N;
(b) for almost every(r, d) in R* x N, (A, d) = A~%?y (1, d), and there exists a
sequencec,;) in C such that for everp > 0

M
Y(Ld) =) c2d+m) /> 4 o(d?M?), d— +oo.
j=0
This theorem has been proved by Gellgy Theorem 2.7, Theorem 3.5] in the
case whereN is the Heisenberg group and the homogeneous distributions are not
necessarily biradial. The proof of Theoréni is given in Sectiord: (a) implies (b) is
proved in Lemm&.1, Propositiorb.2, and Corollarys.3, while (b) implies (a) follows
by TheorenB.2
We say that a functiofr : R2 — Cis even ifF(—1,&) = F(%, &), for everyx
in R and¢ > 0. We propose the following characterisation.

THEOREM 3.2. Suppose that is in [0, Q) andy : Rt x N — C. The following
conditions are equivalent

(a) the functiony is the Gelfand transform of a biradial kernel of typeon N;
(c) there exists an even smooth functibron R2, homogeneous of degreex/2
such thatF (A, »(2d + m)) = ¥ (%, d) for almost everyx, d) in R™ x N.

The proof of this theorem is postponed to Sectioif here we actually consider the
case where\ is the Heisenberg group and the homogeneous distributions are radial.
Our proof can be adapted to biradial kernels on Heisenberg type groups without
substantial changes. The critical point is the smoothness of the extehsionthe
positiveé -axis; for the proof of this fact we shall use the results contained in Settion

4. Some asymptotic expansions

In this section we explain how to interpolate a sequence in a smooth way, preserving
its asymptotic expansion at infinity. We believe that it should be possible to find in the
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literature some of the arguments treated in this section. However we could not find a
reference and, in order to make this paper self-contained, we include here most of the
proofs of the results needed in the sequel.

4.1. Discrete asymptotic expansions Leta = (a(j))jz be atwo-sided sequence of
complex numbers. Denote laythe finite difference operator acting on the sequence
by the ruleAa(j) = a(j+1)—a(j) forall j € Z, and by, the operator of translation
by the integenh, that is,tha(j) = a(j + h) forall j € Z. For anya, b sequences, the
following Leibniz rule holds

@ A(ab)(j) = a(j)Ab(j) + Aa(jb(j) forall j € Z.

For every fixech in Z \ {0}, letb, be the sequence defined by

bn(j) =

forall j € 2\ {0}.

Sl
—l P

LEMMA 4.1. Suppose that isin Z \ {0}. Thenforeverm=1,2, ...

n-1

3 (b (j) = —
2 AT EWI =T

forall jez\ {0, —-1,...,—n}.

Moreover, for every sequenee= (a(j));jez,
A (]‘[zpa> (i) =[] aci) (qua> (j) forall jez.
p=0 p=1 gq=0

PrROOF. The first identity is true when = 1. Letn > 2 and suppose that the first

identity holds true when =k — 1. If jisinZ\ {0, —1, ..., —k}, then, whem = Kk,
k-1 k—2
> (raAby)(j) = D (raAby) () + (terAby)())
d=0 d=0
= b b k- D)
TG +k-p " '
B k
R

The second property is true whan= 1, because

A(aria)(j) = a(j + D[Aa(j) + Aa(j + D).
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Letn > 2, and suppose it holds true whan= 1, ...,k — 1. Then by the discrete
Leibniz rule, whem = k,

K k-1
A (Hrpa> (H=A (1_[ Tpd - Tka> ()
p=0

p=0

k—1 k-1
— (1‘[ rpa) (HAza() + A (]'[ rpa) (h@a ()
p=0 p=0

k k—1 k—1
(1‘[ fpa> (haua() + [ Jrad) (Z Arqa) (D(@aj)
p=1 p=1 q=0
k k
(]_[ zpa> (i (Z Arqa) (.
p=1 q=0

as required. O

For everyn in N, let T,, denote the operator defined by the recurrence relation:

Toa(j) =a(j) forall j ez,

Ta(j) = 10

AT,;a(j) n>1 andforall j € Z.

THEOREM4.2. Suppose thaa = (a(j));ez Is a sequence of complex numbers. If

the limitslim;_. . Tha(j) = (—=1)"yn, N € N, exist and are finite, then, for every
in N,

a)=yo+ F o+ Do) 1l oo,

PrROOF The case where = 0 is trivial, therefore we may suppose thmat- 1.

By the discrete Leibniz rule and evaluating the sum of a telescopic series, we obtain
whenh is a fixed nonnegative integer

+00 +0oo
ath) =y —Y_Aa(j) =y— Y _ Aby()T:a(j)

j=h j=h

+00 +oo
=1— Y AMTa) () + Y b+ DATa()

i=h j=h

+o00
=1+ T+ Y b(j + DATa().
j=h
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Whenn > 1, define the sequencgby

+00

rn(h) = (=)™ “bn(j + Dbn(j +2) -+ by(j + MAT,a(j) forall h=>0.

j=h

Thenr,(h) = o(h™") whenh — +o0, because

i<y SaTami=Y "1 a0)
n = ~ hn n - ~ hn J(J +n) n+1

1 +o00 1 1
C— =C .
= hn Z J(J _|_1) hn+l

j=h

We prove by induction that
_ nyr, o h
(2) a) =yo+ L+ 5+ ().
We have just proved that this formula holds wher= 1. Suppose it holds when
n =k — 1. Remember that by Lemn#al we have

k-1

-1
Taa(j) = [Z Ardbh(j)} ATsa()),

d=0

so that

+o00

fea(h) = (=1 Y " bn(j + Dbn(j +2) -+ ba(j +n — DAT5a())
j=h
400 k—1 k—

1 k-1 -1
= (DY [T rabn(i) D Arabn(j) [Z Ardbh(n} ATi-sa(j)
d=0 d=0

j=h d=1 =

+00 k-1
= (DY A ( rdbh> (HTad)
400 — +o0o k-1
= (D) A (]'[ rdthka> () = (D> T [ rabn(i + DATa())

j=h d=0 j=h d=0
" +oo  k
= e+ DY [ Trabn(ATia()
j=h d=1
= % + re(h),
that is, equation) holds whem = k, as required. The ca$e— —oo can be treated
in a similar way. O
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4.2. From discrete to continuous asymptotic expansionsin this subsection we
make repeated use of the Poisson summation formula

(3) doft+ e =N Ff (& + et forall t,£ €R,
jez jez

wheref is an integrable function oR with Fourier transform
Ff(§) =/ f (e ?dt forall £ € R.
R

Fix a Schwartz functionp whose Fourier transform has compact support in
[—3/4,3/4], and such thad ; , Fe(t + j) = Lforallt € R. By applying the
Poisson summation formula to the functiginy we obtain

1 ifj=0,

4 j)=1 (forall & eR )=
@ D eGE+D (forall &€ ®). o) =1, if j €\ {0}

jez

Suppose thata(j));cz is a bounded sequence of complex numbers, arfu4eQ, 1.
Inspired by [L1], we define the functio, on R by the rule

An(t) =D a(je(t — (j +h/2) forall teR.
jez

Then, by the above mentioned properties, the funclipinterpolates the sequenag
thatis,An(j + h/2) = a(j) for every integerj. Being the convolution of a Schwartz
function¢ and a tempered distribution supported on the integers or the half-integers,
the functionsA, and A; are smooth (and slowly increasing), and for eveip N

AP ®) =Y a(je®(t—(j+h/2) forallteR, h=0,1
jez
Let ® denote the differential operator defined by

(5) Of (t) =t2f'(t) forall t e R and f € C*(R).

THEOREM 4.3. Let h be in {0, 1}. Suppose that the sequen@j));.; has the
asymptotic expansion at infinity
+o(ljI™"),  1jl = +oo,

. Vi
a()) = (i

IR (B
j+h/2 +h/2)"
and define the functiod, on R as above. Them, is smooth, the following limits
exist and

(6) IlI‘im (O"AN(M) = (=1)"nly, forall neN.
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Note that 6) is equivalent to the fact th&, has the asymptotic expansion at infinity
o) = o+ 2+ B+ Zto(t 7). t] > +oc.
The proof of Theorerd.3is based on the following four lemmata.

LEMMA 4.4. Suppose thad = (b(j));cz is a sequence of complex numbers, van-
ishing at infinity and® is any Schwartz function dR. Then

Jm Cbire ) =0
PROOF. Let ¢ > 0. Sinceb vanishes at infinity, there exists > 0 such that
Ib(j)| < e foranyj suchthatj| > J.. Since® is a Schwartz function, there exists a
constaniC > 0 such that®(t)| < C/(1+ |t])® for everyt in R. Hence, for every
such thatit| > 1/, we conclude that®(t)| < eC/(1+ |t])®>. Now we divide the
sum into two parts and evaluate each part separatelyjtlLet 1/¢ + J.. Note that,

if |j] < Ji, then|t — j| > |t| — |j| > 1/e. Therefore,

> bt — j)

[J1<Je

> b(het - |+

1j1= 3

C C
<¢ 2 arogr T 2 aee

[J1= e [J1<Je

> b - j)

jez

=

1
<Ce e

jez

Since the function € R — Zjel 1/(1+ |t — j)? has period 1 and is continuous, it
is uniformly bounded. This proves the lemma. O

Here and in the sequel we g, j = 1.

LEMMA 4.5. Let f be a smooth function oR. Foreveryn=1, 2, ...,

@' H)(1) =D O t" () forall teR,

=1
whered, ; = (77) [T/_;,, ¢ foreveryj =1,....n.

PROOF The formula is obviously true whem = 1. Moreoverf,; = n! and, by
our conventionsg,, = 1 for everyn = 1,2, .... Suppose that the formula holds
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whenn = k — 1. Then for every in R,

(O f)(t) = t3(©*f) (1)
k

=

=Y Orj(K— 1+ PDETTFOR) 4 Gyt I (1)
j=

=

k—

= Ot O + Y (Benjk— 14 )+ br )™ D (1)

j=2
+ O W (1),

=

So we only need to prove that fpr=2, ..., k—1,60cj = (K—1+4 )01 + 611,
Kk—
j_

(
which follows easily using the identitff 5) = (1~3) — ({-9). O

LEMMA 4.6. Suppose thap, r, s are nonnegative integers ard= 0, 1. Then for
everyx in R the sum

Y (i +h/2) (x= (i +h/2)°e® (x = (j +h/2)

jez
is equal to(—l)sp!(p[s)xs“—p if s < p <s+r andO otherwise.

PrROOF. These identities can easily be derived from the Poisson summation for-
mula @3), wheret = 0 andé = h/2, applied to the functiorf, where

— i r —2mixu i ) prg—1 i| .
f(u) = (du> [e (du> (UP(Z )W) |, uinR. O

Finally, we mention the following properties of binomial coefficients.

LEMMA 4.7. Foreveryn=1,2,...,everype Nandeverys=0,...,n— 1,

p+1
n+p+1 N+ P
7 (—1>‘1( ) = (D™ ( )
) qZ ; o1
p+1
n+p+1>(s+p+l—q) 1(n+p—s)
8 _1q :_1P+ .
®) §< )( q . Sl
PROOF This is routine. O

We can now prove the main result of this section, that is, Theagrém
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PrOOF. Consider first the case whemne= 0. By equation 4) we can write

m"ﬂoo An(t) = o +mllm (Za(J)rp (t—(+h/2) - VoZ(p (t—G+ h/2))>

jez

=y+ fim > (@) =)ot (+h/2) =

jez

sincea(j) — yo = 0o(1) whenj — oo and by Lemmat.4. Therefore in the following
we may and shall suppose thgt= 0. Letn > 1. By Lemma4.5we need to evaluate
the limit of (B"A)(t) as|t| tends to+oo, that is, of the following:

D np > a(d(t—(j+h/2+ () +h/2)" Pe®(t — (j +h/2))

p=1 jez

n n+p
-y 21 P)
p=1 q=0

x Y a()(t = (G +h/2)""(j +h/2) %P (t = (j +h/2)).

jez

Since the sequen@= (a(j));z has an asymptotic expansiai®"Ay) (t) is equal
to

i% (Hp)Z Ziy +o(/j 17
"\a S \Z G +hy

p=1 q=0 r=0
x (t—(j +h/2)"" Y +1h/2)% P (t - (j +h/2)
n n+tp g
- ZZ%QMCH_ p)
p=1 q=0 r=0 q
(t—G+h/2)""G +h/20 P (- + h/2>)>
jez

A n+p . n+p=d_(p) .
Z ( ) (Zo(l)(t —(j+h/2)" P (t — (] +h/2>)>
p=1 q=0 q jez

= Ri(t) + Rx(1).

By Lemma4.4, the remaindelR,(t) tends to zero aft| — +oo. Moreover by
Lemma4.6we can evaluate the seriesii(t). ThesumisOunlessir <n <q,
and we may writeR;(t) = Y|, »t""Ry,. Equation 6) follows, if we show that
Ry, = (—=1)"n! whenr = nandR;; = O otherwise.
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Remembering the form of the coefficiertts, in Lemma4.5, and by Lemmat.7,
we obtain

n n+p n+ p q _
Ry, = Zen,pp!Z(—lw-‘*( ! )(n _r>

p=1 g=n
n—-1 p+1
qfN+p+1L\/n—-r+q
=Y bnpu(p+ DY (-DP Q< )( )
pare s n—+q n—r
n—-1 o p+1 . .
— (n l)z(_l)q( n+p+1 )(n r+p+1 q)
pare p s n+p+1-—qg n—r
n-1 p+1
n—1 n+p+1\/n—-r+p+1-q
=n! —1)
() (TR

n-1
= VE _ 1P+t n-1 p+r>
2D ( P )(p+1
p=0
n oA n—1
- - _1p Pr, )
(r_l)!g( )( ) ) 1(p)

whereP,_;(p) is a polynomial inp of degreer — 1 and leading coefficient 1. Since

foranyn > 1andj =0,...,n— 1, we have
n-1 . .
-1\ . 0, f j=0....,.n—-2
Z(—l)p(” )p' ~ { - o "
=0 p D" (n=-1!, if j=n-1,
we conclude thaR; , = (—=1)"n!. Moreover, ifr isin{1,...,n— 1}, thenr — 1 <
n—2<n-1,andRy, =0. O

5. Proof of Theorem3.1

In[1] we proved that a functiogr : R* xN — Csuchthaiy (1, d) = A~%2y(1, d),
for almost every(x, d) in R* x N, is the Gelfand transform of a biradial kernel of
typea on theH-type groupN if and only if for everyn, j in N, the following limits

)

exist and are finite. Note that

im /2 [MIMLY ] (1, d) = (=D lim d*/2" I [MIMLy ] (L, d)

|
d—o0

j-1
(10) [MIK] (@ d) = (-1 []‘[(p+%> R} (1.d).

p=0
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LEMMA 5.1. Let K be a biradial kernel of typd. Then there exist complex
numbers;, j =0, 1, 2, ..., such that for everyl > 0

M
K@ d) =) c@d+m +od™), d— +oo.

j=0

PROOF. By Theoren.2all we need to prove is that the limits lim . T, I?(l, d)
exist and are finite. Clearlyl,K (1, d) = K(1,d), so the case where = 0 is
straightforward.

We prove that for any positive integer

(12) T.K(Ld) =) P(d)IMIK](L d+n),

=1

whereP; is a polynomial of degree at mogt From this the lemma follows.
The case whera = 1 is easy, since

T.K(1 d) =dd+ (K@ d+1) — K d) =—-dM K(,d+1).

Let us suppose equatiohl) holds whem = k — 1. By the discrete Leibniz rulel},
whenn = k we obtain thafl K (1, d) equals

dd +k _ d(d + k) < -

( k+ At R = 290N AR @MIR@ d + k)

j=1

+ Pi(d)AMIK(1,d+k—1).

Note that

1
AMIK@L d+k—1) = ﬁ9_|\/|JK(1 d+k)

= d—(—j +j+ 2 )MIK@Ld+k)
_ j+1 _L j
=31 kM K1, d+k) kM K1, d+k).

ThereforeTyK (1, d) is equal to

% ( Pi(d)MIK (L, d 4 k) + ((d + k) AP;(d) — jP;(d)))MI K (L, d + k)

&MX

k—1
- (Z Pia(d)MI ™+ d[(d + K)APj(d) — jP; (d)]Mj) K(1,d 4+ k).

j=1
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Let P;(d) = a;d’ + Q;_1(d) for some polynomialQ;_; of degreej — 1. It is easy
to check thatA P;(d) = ja;d’~*+ AQ;_1(d), therefore the degree of the polynomial
(d+Kk)AP;(d) — jPj(d) is at mostj — 1. O

In the following proposition we prove tha;., =0, j =0, 1, 2, ..., wherec; are
the coefficients defined in Lemnial

PROPOSITIONS.2. Suppose thaK is a biradial kernel of typd. Then there exist
complex numbers,j, j =0, 1, 2, ..., such that for every¥l > 0

M
K@d) =) cy@d+m 2 +od?), d— +oo.
j=0

PROOF. Using the notation of Lemm&.1we shall prove that; = (—1)ic;.
By equation 9), wheren = 0, and by {0), we obtain

i—1
(12) Jim d! [H<p+ %)K} (1,d)

p=0

j-1
= (D’ lim d []‘[(p+ 9>K} (L.d).

p=0

For everyg in N, letg, be the sequence definedgyd) = (2d+m)~%foralld € N,
and let(ay) be a sequence of complex numbers. We claim that, whenj 1< M,

-1 M M
(13) |:1_[(p+9i):| (Zang) = Z’?iqu"i_o(d_wl)’
p=0 a=1 a=j

wheren;; = —a, and, if 1 < j < g, there exist rational numbeys, 4 ;, depending
onlyonp,q, j, such that

q!
Q-

q-1
g = (=1 D%t D ED P g 8.
p=1

If this holds, we may conclude that lim ., d 2. I?(l, d) = —c;/2 and, whenj > 1,

j—1
lim d |:1_[(p - %)K} (L, d)

d—+o00
p=0

j—-1 j
o o))
p= q=
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j—1
=n 27 =27 ((—1)' jlej + Z(il)pjup,j,jcp) :

p=1

By (12), we obtainc; = —¢; and

j-1 j-1
(—D'jlc; + ZMp,j.ij =jlc; + Z/Ap,m(—l)”cp forall j > 1.
p=1 p=1

By induction onj it follows easily thatc; = (—1)Ic; for everyj in N.
We now prove the claim, that is, equatidlB]. It is easy to check that

PGn(d) = —ng(d) + D (1P "Br pGp(d).

p=n+1

Moreover, wherM > n > 1 andd — +o00, we have

M
14 2¢ (Z ang) (d) = —na,gn(d)

g=n

M q-1
+> (—qaq + Z(il)”ﬁp,qa; Gq(d) + o(d™),

g=n+1 p=n

Pra=2" [g (q_—pp> i (q —_pp+ 1)] |

We shall prove the claim by induction gn Suppose thaf = 1. By (14), we

obtain y y
7* (Z ang) (d) =) ni10y(d) +0d ™),

a=1 a=1

where

wheren;, = —a; and, wherg > 1,

q-1

ey = —0a+ > _(ED) By qap.

p=1

Suppose that the thesis holds whea: k — 1. Then whenj = k, by (14), we obtain

k—1 M M
[]‘[(p + %)} (Z ang> =(K—1+2) ( D nEcaGe+ o(d‘“ﬂ)
p=0 q=1

q=k—-1

M
Z NgxGa +0(d™™),
gq=k
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where
q-1
nr:qt,k =(k-1- q)ncj;,k—l + Z (il)q_pﬁp,qntk—l
p=k—1
a! —
=k-1-0q) (( hh 1maq+2(il)p Uhpqk- lap>
q-1 p-1 p'
+ +1)9-Pg, +1)" P pe1d + (=D t————a
2 1( ) ﬁpq(in:( ) pk-ad + (=) (p—k+D!"
= (- )k( i +Z(il>p 1 p.qk@p-
The proof is now complete. O

COROLLARY 5.3. Leta bein[0, Q) and suppose tha& is a biradial kernel of type.
Then there exist complex numbess, j =0, 1, 2, .. ., such that for everyl > 0

M
K1d) =) cd+m) 22 +od 2, d- +oo.
j=0

PROOF. Suppose thaK is a biradial kernel of type:. Then.#/’K is a biradial
kernel of type 0 and for almost eve(y, d) in R* x N

K, d) = @((A, d)[A(2d + my]~/2.

The thesis follows from Propositidh 2. O

6. Proof of Theorem3.2in the Heisenberg group case

In this section we prove the analogue of Theorémin the case where the ho-
mogeneous distributions are radial dnek 1, that is,N is the Heisenberg group of
real dimension & + 1; the proof of Theorer3.2 for biradial kernels on Heisenberg
type groups is analogous (see the remark at the end of this section). We recall that
function f on N is said to be radial if there exists a functidpon R x 3 such that
f(X, Z2) = fo(|X], 2) for every(X, Z)in N.

We denote byH™ the Heisenberg group of real dimensiam 2 1. We refer to P]
for details on spherical functions on the Heisenberg gidlithat are related to the
Gelfand pair(H™, U(m)). We only mention that in this case they are parametrized
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by a pair(i, d), wherei is in R* andd in N, and by a nonnegative real numtier

If we identify the pair(i, d) with the point(x, [x|(2d + m)) in R? and& with the
point (0, £) and use the Euclidean topology i?, then we obtain the compact open
topology on the Gelfand spectrum. What we prove for radial kernels ofdyipehe
following theorem.

THEOREM 6.1. Suppose thak is in [0, Q) andy : R* x N — C. The following
conditions are equivalent
(@) the functiony is the Gelfand transform of a radial kernel of typeon H™;
(c) there exists a smooth functi?hon R?, homogeneous of degreer/2 such that
F(A, |A(2d +m)) = ¢ (A, d) for almost everya, d) in R* x N.

We first prove that (& implies (¢) whena = 0, using Geller’s asymptotic ex-
pansion 8]: ¢ is the Gelfand transform of a radial kernel of type 0 R if and
only if

M . .
Y, d) =y @(/IALd) = Z(A/IAI)JCJ- 2d+m~ +od™), d— 4oo.

j=0

The result for kernels of type 0 will follow from Propositi@2. Then we will extend
this result to radial kernels of typein Corollary 6.3.
The proof of (¢) implies (&) is standard and outlined in Propositiérk.

PROPOSITIONG.2. Lety : R* x N — C and suppose that (1, d) = ¢ (1/|A|, d)
for almost everyx, d) in R* x N. If there exist complex numbets j =0,1,2, ...,
such that

M
YL d) =) @EDlg@d+m~ +od™), d— 4o,
j=0
then there exists a smooth functiénon R2, homogeneous of degrée such that
F(x, IAl(2d +m)) = ¥ (A, d) for almost everyr, d) € R* x N.
PROOF. First we extend the definition af (1, j) to negative integer§ by letting

Y(—A,—j—m) foral AeR", j<-m,
0

A ) =
v { forall A e RT, je{-1,-2,...,—m+1}.

We defineF : R?2 — C by the rule

Y WO e (% (% - m) - j) forall (x,&) € R* x RY,

F(.§) =
: {co forall (A,&) € {0} x R,
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whereg is as in Sectiod.2. By the properties4) of the functiong
F, JAl2d +m)) =y (x,d), forall de N, and 1 € RY.

Moreover, it is easy to see thhtis in C* (Rt x R™) and homogeneous of degree 0.
To apply the results of Sectiofy we introduce the following notation. Lét= m
(mod 2 and define the two-sided sequenagsy the rules

. . m-—~h . . m-—~h
ah+(J)=1/f<1»J_T> and ah(])=w<_1’J_T>

forall j € Z. The way we have extended the definitionfx, j) to negative
integersj implies that the sequencas have asymptotic expansions of the form

M
. 27"c, . .
+ n -M
(H=) F)'"————+0( ), — 400.
()= 2 G g+l ™, il
As in Sectiord, let AF denote the function

Ait) =Y af()e(t— (j +h/2)) forall teR.

jez
Then for eveng > 0,

ArE/2.)  if A >0,
FOLE) =1c¢ if A =0,
A (—E/2)) if A <O.

By Theoremd.3, the functionsA® areC>(R) and

(15) tEToo (O"AY) (1) = (¥D)™n!2 "¢, forall ne N,

where, as beforey denotes the differential operator defined by
of (t) =t*f'(t) forall t e R and f € C*(R).

If fis defined byf (t) = f(1/t), for everyt in R*, then(f)™(t) = (—1)™(O" f)(1/t)
for everyt in R*.

For the sake of brevity, for everyin N, denote byg, the operator acting on smooth
functionsf onR by E,f(t) = t"f™(t) for allt € R. From Lemma4.5, it follows
that for every smooth functiof onR andj > 1,

j
(E;H)t) = (-D'tI©' 1) (%) =D (=D @ F)(t) forall t e R".
s=1
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Therefore, by 15), for everynin N andj > 1,

|
(16) lim 2;(0"A5) M) = lim > (=1))"; (0" A1) = 0.

[t|—>+o00 [t|—>+o00

We now prove thatF is smooth on the positivé-axis. First of all, using 15)
wheren = 0, it is easy to prove th&k is continuous. Straightforward computations
show that
(1/6)(B:A7)(E/20)  if A >0,
F(A, &) =10 if A =0,
(1/6)(B1A,)(—£/21) if A <O,
This partial derivative is continuous, because(if, &) — (0, &) Iin [Ri, then

[t| = |£/2A] — 400 and one can uself) wheren = 0 andj = 1. As for the
derivative in thei-direction, one can easily evaluate

—(2/6)(0OA})(E/20) if A >0,

hFO,§) = .
5 (2/6)(OA;)(—&/20) if » <O.

Moreover, by 15),
k—)l o+ * ( ’ ) §I—>I+oo( h)( ) g o

ThereforeF has continuous partial derivatives.

Whenpg = (B, ..., Bos) is @ multi-index inN? of lengthr, we denote by? the
operatord/*a/* - -- 3/=*3/*. In a similar way, using5) and (L6), one can prove
by induction onr that, if Z?j)ﬁzm =nandp = r —n, then whené¢ > 0O the
derivatived? F (1, &) equals

(=" & (P : . 5\
G Z(j)(_n)...(—n—p+1+l)[aj® Aﬂ(ﬁ) if >0,

j=0

j=
on p p ] _ o i: .
P 2 (J_)(—n)...(—n— p+j+1D[E;6"A] (_Z) if A <O,
anddfF is continuous wittB#F (0, &) = n!c,(—=n) - -- (=N — p + 1) /&P, O

COROLLARY 6.3. Leta be in[0, Q) and suppose that : R* x N — C satisfies
VA, d) = [A]7%2y(A/|A|, d) for almost every, d) in R* x N. If there exist complex
numbers;, j =0, 1, 2,..., such that

M
YL d) =) (@&FDlcj2d +m) 2+ o(d M), d - +oo,

j=0



318 F. Astengo and B. Di Blasio [22]

then there exists a smooth functibron R?, homogeneous of degreer/2, such that
F (A, |A](2d + m)) = ¢ (A, d) for almost everyi, d) € R* x N.

PROOF. The functiony : R* x N — C defined by
Yok, d) = (Ix12d +m) Py (r, d) forall (r,d) e R* x N

satisfies the hypothesis of Proposita. Therefore, there exists a smooth functtén
onR?, homogeneous of degree 0 such tHa#, |1|(2d + m)) = (2, d) for almost
every(x,d) in R* x N. We defineF (%, &) = H(&, §)§ /2 forall (1, &) € R2. The
function F satisfies the required conditions. O

PROPOSITIONG.4. Leta bein[0, Q). If F : [Riz+ — Cis asmooth and homogeneous
function of degree-«/2, then there exists a radial kernkl of typea on H™ such that
F(, [Al(2d +m)) = K (&, d) for almost every(x, d) in R* x N.

PROOF. Asin [13, page 242] we fix a functio® in C*(R), with supportin1/2, 4]
and such thal Tf_oc ®(2/g) = 1forallé > 0. We define the radial functior§; :

H™ — C, j in Z, by the rules

Ko(x, d) = F(&, [A[(2d +m)) @ (|A](2d + m)),

K, (A, d) = 2192K(2' 2, d) = (2 [A[(2d + m)) F (A, [A[(2d + m))

forall (A, d) € R*x N. Asin [1, Lemma 7.1] one can prove that the sejiés™ _ K;
converges ir”’ to a biradial kerneK oftypew. Finally, F (A, |A](2d+m)) = I?()L, d)
for almost every(i, d) € R* x N, as required. O

REMARK. In the case of biradial kernel& on Heisenberg type groups, the
function ¢ = K is initially defined inR™ x N. We extend it to obtain an even
function onR* x N. Moreover, remember that in the asymptotic expansion we
havec,.; = 0, ] = 0,1,2,... by Proposition5.2 The proofs of Propositio®.2
and Corollary6.3 then show thaf is an even smooth function di?, as stated in
Theorem3.2. Analogously, Propositio.4 adapts to biradial kernels on Heisenberg
type groups by requiring that the functiénis even.
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