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Abstract

A distribution on a Heisenberg type group of homogeneous dimensionQ is a biradial kernel of typeÞ if
it coincides with a biradial function, homogeneous of degreeÞ − Q, and smooth away from the identity.
We prove that a distribution is a biradial kernel of typeÞ, 0 ≤ Þ < Q, if and only if its Gelfand transform,
defined on the Heisenberg fan, extends to a smooth even function on the upper half plane, homogeneous
of degree−Þ=2. A similar result holds for radial kernels on the Heisenberg group.

2000Mathematics subject classification: primary 43A80; secondary 22E30.
Keywords and phrases: Heisenberg type groups, homogeneous distributions.

1. Introduction

Homogeneous distributions play a fundamental rôle in harmonic analysis. It is well-
known that a distribution onRn is homogeneous of degreeÞ and smooth away
from the origin if and only if its Fourier transform is a homogeneous distribution of
degree−n−Þ, and is smooth away from the origin. The aim of this paper is to obtain
a similar characterisation in the Heisenberg group setting.

Let N ' R2m × Rk be a Heisenberg type group of homogeneous dimensionQ =
2m + 2k. We say that a functionf on N is biradial if there exists a functionf0

onR2 such thatf .X; Z/ = f0.|X|; |Z|/ for every.X; Z/ in N. A distribution onN
is abiradial kernel of typeÞ if it coincides with a biradial homogeneous function of
degreeÞ − Q, and smooth away from the identity ofN.

In this paper we characterise the image under the Gelfand transform of biradial
kernels of typeÞ, 0 ≤ Þ < Q. Such kernels are involved in many analytic problems.
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Indeed, if 0≤ Þ < Q and 1=p − 1=q = Þ=Q, then they areL p–Lq convolutors.
Moreover, they appear in the functional calculus of many operators, such as the
Heisenberg sublaplacian [11] or the Hodge Laplacian [10]. Other results concerning
homogeneous distributions on the Heisenberg group can be found in [3, 4, 7, 6, 8, 12].

To describe the results, we introduce some notation. LetR∗ = R \ {0}, R+ =
.0;+∞/,R2

+ = {.½; ¾/ ∈ R2 : ¾ > 0}, andN = {0; 1; 2; : : :}.
The convolution algebra of integrable biradial functions onN is a commutative

Banach algebra and its Gelfand spectrum can be be parametrised by a pair.½; d/,
where½ is in R+ and d is in N, and by a nonnegative real number¾ . Since the
subset{¾ ≥ 0} of the Gelfand spectrum has zero Plancherel measure, it will be usually
disregarded.

It is easy to see that ifK is a biradial kernel of typeÞ, then its Gelfand transform̂K
satisfies

K̂ .½; d/ = ½−Þ=2K̂ .1; d/ for all .½; d/ ∈ R+ ×N:
Geller [8, Theorem 2.7, Theorem 3.7] characterised the image under the Gelfand
transform of biradial kernels of typeÞ on the Heisenberg group in terms of the
behaviour at infinity of the sequencesd 7→ K̂ .1; d/. He actually proved this kind of
result for general (not necessarily biradial) kernels on the Heisenberg group. In this
paper we continue this investigation.

If K is a biradial kernel of typeÞ, we can extend̂K .½; d/ to negative values of½
by

K̂ .½; d/ = K̂ .−½; d/ for all .½; d/ ∈ R∗ ×N;
and we can consider̂K as a function defined on the so-called Heisenberg fan, that is,
the subset ofR2 given by(⋃

d∈N

{
.½; ¾/ ∈ R2 : ¾ = |½|.2d + m/; ½ 6= 0

}) ∪ {.0; ¾ / ∈ R2 : ¾ ≥ 0
}
:

½

¾
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We prove that a function : R∗ × N → C is the Gelfand transform of a biradial
kernel of typeÞ if and only if it is the restriction to the Heisenberg fan of a smooth
function onR2

+, homogeneous of degree−Þ=2, and even in the first variable.
When Þ = 0, we construct the extensionF as follows. Inspired by the work

of Müller, Ricci, and Stein [11], we exploit the Poisson summation formula: if'
is a Schwartz function on the real line whose Fourier transformF' has compact
support in the interval[−3=4; 3=4] and such that

∑
j ∈ZF'.x + j / = 1 for any realx,

then'.0/ = 1 and'. j / = 0 for j in Z \ {0}. If K is a biradial kernel of type 0,
we extend in a suitable way the sequences

(
K̂ .±1; d/

)
d∈N to Z, and we define the

function F on the upper half plane by the formula

F.½; ¾/ =
{∑

j ∈Z K̂ .½; j /'
(

1
2

(
¾

|½| − m
)

− j
)

for all .½; ¾/ ∈ R∗ ×R+;

K̂ .¾/ for all .½; ¾/ ∈ {0} ×R+:

It easy to see thatF is smooth onR∗ × R+ and thatF
(
½; |½|.2d + m/

) = K̂ .½; d/,
when½ is inR∗ andd is inN. The most elaborate part is the proof of the smoothness of
the functionF on the¾ -axis; for this it is necessary to know the asymptotic expansion
at infinity of the sequences

(
K̂ .±1; d/

)
d∈N (see [8, Theorem 2.7, Theorem 3.7] for the

case whereN is the Heisenberg group). The case of biradial kernels of typeÞ, where
0< Þ < Q, may be deduced from the case whereÞ = 0.

We also consider the case of radial (not necessarily biradial) kernels on the Heisen-
berg group. We first prove our main result in this case (Theorem6.1), and with
minor modifications deduce the result for biradial kernels on Heisenberg type groups
(Theorem3.2).

Our paper is organised as follows. Section2 contains preliminary material on
Heisenberg type groups, in particular on the Gelfand transform of biradial functions.
In Section3 we describe our result for biradial kernels on Heisenberg type groups.
Section4 is self-contained and deals with the problem of extending a sequence in
a smooth way and preserving its asymptotic expansion at infinity. The proof of our
results is contained in Sections5 and6.

It is a pleasure to thank Giancarlo Mauceri and Fulvio Ricci for many helpful
conversations on the subject of this paper.

2. Heisenberg type groups and the Gelfand transform

2.1. Heisenberg type groups Letn be a two-step real nilpotent Lie algebra endowed
with an inner product〈; 〉n. Write n as an orthogonal sumn = v ⊕ z, wherez is the
center ofn.

For eachZ in z, define the mapJZ : v → v by the formula

〈JZ X;Y〉n = 〈[X;Y]; Z〉n for all X;Y ∈ v:
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According to Kaplan [9], the Lie algebran is said to beH -type if, for everyZ in z,

J2
Z = −|Z|2Iv;

whereIv is the identity onv. A connected and simply connected Lie groupN, whose
Lie algebra is anH -type algebra, is said to be aHeisenberg type group, or H -type
group for short.

Sincen is a nilpotent Lie algebra, the exponential map is surjective. We can then
parametrise the elements ofN = expn by .X; Z/, for X in v and Z in z. By the
Baker–Campbell–Hausdorff formula it follows that the product law inN is

.X; Z/.X ′; Z ′/ = (
X + X ′; Z + Z ′ + [X; X ′]=2)

for all X; X′ ∈ v and Z; Z ′ ∈ z. We denote byd X andd Z the Lebesgue measures
on v and onz respectively; it is easy to check thatdn = d Xd Z is a Haar measure
on N. For every unit vectorZ in z, the mapJZ defines a complex structure onv;
thereforev has even dimension, say 2m. We denote the dimension of the centerz

by k, and byQ = 2m + 2k the homogeneous dimension ofN, with respect to the
anisotropic dilations

Dr .X; Z/ = .r X; r 2Z/ for all .X; Z/ ∈ N and r > 0:

We fix orthonormal bases{Ej }2m
j =1 of v and{U j }k

j =1 of z. Given V in n, we also
write V for the associated left-invariant vector field, that is,

V f .n/ = d

dt
f
(
n exp.tV/

)∣∣∣∣
t=0

for all n ∈ N and f ∈ C∞.N/:

Define the sublaplaciansL1 andL2 on N by

L1 = −
2m∑
j =1

E2
j ; and L2 = −

k∑
j =1

U 2
j :

2.2. The Gelfand transform for biradial functions We say that a functionf on N
is biradial if there exists a functionf0 onR2 such that f .X; Z/ = f0.|X|; |Z|/ for
every.X; Z/ in N. We recall some facts from [1, 2] regarding the Gelfand spectrumG
of the commutative algebra of biradial integrable functions. It is known thatG is the
set of bounded spherical functions onN. These are given by the rules

�½;d.X; Z/ = e−½|X|2=4 Lm−1
d

(
½|X|2=2)(

d+m−1
d

) ∫
Sz

ei½〈Z;Z′ 〉d¼z.Z
′/;

�¾ .X; Z/ =
∫

Sv

ei
√
¾〈X;X′ 〉d¼v.X

′/;
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for every.X; Z/ in N, ½ > 0,d ∈ N, and¾ ≥ 0. As usual,Lþ

d denotes thedth Laguerre
polynomial of orderþ, that is,

Lþ

d.u/ =
d∑

j =0

(
d + þ

d − j

)
.−u/ j

j ! for all u ∈ R:

Moreover,¼v and¼z are the surface measures of the unit spheresSv and Sz in v

andz respectively, normalized to have mass 1. ThereforeG can be parametrized by
.R+ × N/ ∪ [0;+∞/. Denote byL̂ j .�/ the eigenvalue of the spherical function�
with respect toL j , j = 1; 2. We recall that̂L1.�½;d/ = ½.2d + m/, L̂2.�½;d/ = ½2,
L̂1.�¾ / = ¾ , andL̂2.�¾/ = 0. Define a metric onG by

d.�; �′/ = |L̂1.�/− L̂1.�
′/| + |L̂2.�/− L̂2.�

′/|:

Then this metric induces on the Gelfand spectrumG the topology of uniform conver-
gence on compact sets.

We define the Gelfand transform̂f of a biradial integrable functionf on N by the
rule

f̂ .�/ =
∫

N

f .n/�.n/dn for all � ∈ G :

For the sake of brevity, we shall often identify a spherical function�½;d with the
pair .½; d/ in R+ ×N and�¾ with the number¾ in [0;+∞/. According to this iden-
tification we shall writef̂ .½; d/ and f̂ .¾/ instead of f̂ .�½;d/ and f̂ .�¾ / respectively.

LetD+ andD− be the operators defined by

D+ .½; d/ = .d + m/
(
 .½; d + 1/−  .½; d/

)
;

D− .½; d/ = d
(
 .½; d/−  .½; d − 1/

)
for every.½; d/ in R+ ×N and : R+ × N → C. Moreover, letM+ andM− be the
operators defined byM+ = @½ − ½−1D+, andM− = @½ − ½−1D−.

3. Homogeneous distributions on Heisenberg type groups

Let Þ be in[0; Q/. We say that a distributionK on N is abiradial kernel of typeÞ
if 〈K ; f ◦ Dr 〉 = r −Þ〈K ; f 〉 for all f ∈ C∞

c .N/, and the kernelK coincides with a
smooth biradial functionfK on N \ {.0; 0/}. Then the functionfK is homogeneous
of degreeÞ − Q and, whenÞ = 0, it satisfies (see [5])∫

S.0;1/

fK d¦ = 0;
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whereS.0; 1/ = {.X; Z/ ∈ N : |X|4=16+ |Z|2 = 1} andd¦ is the surface measure
induced by the Euclidean measure. Moreover, there exists a constantcK such that
K = p:v:. fK /+ cK Ž, where p:v: denotes the principal value andŽ the Dirac mass at
the identity.

It is easy to check that a biradial kernel of typeÞ is a tempered distribution.
Moreover, if K is a biradial kernel of typeÞ, then its Gelfand transform satisfies
K̂ .½; d/ = ½−Þ=2K̂ .1; d/ for all d ∈ N, and almost every½ ∈ R+.

THEOREM 3.1. Suppose thatÞ is in [0; Q/ and : R+ × N → C. The following
conditions are equivalent:

(a) the function is the Gelfand transform of a biradial kernel of typeÞ on N;
(b) for almost every.½; d/ in R+ × N,  .½; d/ = ½−Þ=2 .1; d/, and there exists a

sequence.c2 j / in C such that for everyM ≥ 0

 .1; d/ =
M∑

j =0

c2 j .2d + m/−Þ=2−2 j + o
(
d−2M−Þ=2); d → +∞:

This theorem has been proved by Geller [8, Theorem 2.7, Theorem 3.5] in the
case whereN is the Heisenberg group and the homogeneous distributions are not
necessarily biradial. The proof of Theorem3.1is given in Section5: (a) implies (b) is
proved in Lemma5.1, Proposition5.2, and Corollary5.3, while (b) implies (a) follows
by Theorem3.2.

We say that a functionF : R2
+ → C is even if F.−½; ¾/ = F.½; ¾/, for every½

in R and¾ > 0. We propose the following characterisation.

THEOREM 3.2. Suppose thatÞ is in [0; Q/ and : R+ × N → C. The following
conditions are equivalent:

(a) the function is the Gelfand transform of a biradial kernel of typeÞ on N;
(c) there exists an even smooth functionF onR2

+, homogeneous of degree−Þ=2
such thatF.½; ½.2d + m// =  .½; d/ for almost every.½; d/ in R+ ×N.

The proof of this theorem is postponed to Section6. There we actually consider the
case whereN is the Heisenberg group and the homogeneous distributions are radial.
Our proof can be adapted to biradial kernels on Heisenberg type groups without
substantial changes. The critical point is the smoothness of the extensionF on the
positive¾ -axis; for the proof of this fact we shall use the results contained in Section4.

4. Some asymptotic expansions

In this section we explain how to interpolate a sequence in a smooth way, preserving
its asymptotic expansion at infinity. We believe that it should be possible to find in the
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literature some of the arguments treated in this section. However we could not find a
reference and, in order to make this paper self-contained, we include here most of the
proofs of the results needed in the sequel.

4.1. Discrete asymptotic expansions Leta = .a. j // j ∈Z be a two-sided sequence of
complex numbers. Denote by1 the finite difference operator acting on the sequencea
by the rule1a. j / = a. j +1/−a. j / for all j ∈ Z, and by−h the operator of translation
by the integerh, that is,−ha. j / = a. j + h/ for all j ∈ Z. For anya; b sequences, the
following Leibniz rule holds

1.ab/. j / = −1a. j /1b. j /+1a. j /b. j / for all j ∈ Z:(1)

For every fixedh in Z \ {0}, let bh be the sequence defined by

bh. j / = 1

h
− 1

j
for all j ∈ Z \ {0}:

LEMMA 4.1. Suppose thath is in Z \ {0}. Then for everyn = 1; 2; : : :

n−1∑
d=0

.−d1bh/. j / = n

j . j + n/
for all j ∈ Z \ {0;−1; : : : ;−n}:

Moreover, for every sequencea = .a. j // j ∈Z,

1

(
n∏

p=0

−pa

)
. j / =

n∏
p=1

−pa. j /

(
n∑

q=0

1−qa

)
. j / for all j ∈ Z:

PROOF. The first identity is true whenn = 1. Letn ≥ 2 and suppose that the first
identity holds true whenn = k − 1. If j is in Z \ {0;−1; : : : ;−k}, then, whenn = k,

k−1∑
d=0

.−d1bh/. j / =
k−2∑
d=0

.−d1bh/. j /+ .−k−11bh/. j /

= k − 1

j . j + k − 1/
+ bh. j + k/− bh. j + k − 1/

= k

j . j + k/
:

The second property is true whenn = 1, because

1.a−1a/. j / = a. j + 1/
[
1a. j /+1a. j + 1/

]
:
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Let n ≥ 2, and suppose it holds true whenn = 1; : : : ; k − 1. Then by the discrete
Leibniz rule, whenn = k,

1

(
k∏

p=0

−pa

)
. j / = 1

(
k−1∏
p=0

−pa · −ka

)
. j /

= −1

(
k−1∏
p=0

−pa

)
. j /1−ka. j /+1

(
k−1∏
p=0

−pa

)
. j /.−ka/. j /

=
(

k∏
p=1

−pa

)
. j /1−ka. j /+

k−1∏
p=1

−pa. j /

(
k−1∑
q=0

1−qa

)
. j /.−ka/. j /

=
(

k∏
p=1

−pa

)
. j /

(
k∑

q=0

1−qa

)
. j /;

as required.

For everyn in N, let Tn denote the operator defined by the recurrence relation:

T0a. j / = a. j / for all j ∈ Z;
Tna. j / = j . j + n/

n
1Tn−1a. j / n ≥ 1 and for all j ∈ Z:

THEOREM 4.2. Suppose thata = .a. j // j ∈Z is a sequence of complex numbers. If
the limits lim j →∞ Tna. j / = .−1/n
n, n ∈ N, exist and are finite, then, for everyn
in N,

a. j / = 
0 + 
1

j
+ · · · + 
n

j n
+ o

(| j |−n
) | j | → +∞:

PROOF. The case wheren = 0 is trivial, therefore we may suppose thatn ≥ 1.
By the discrete Leibniz rule and evaluating the sum of a telescopic series, we obtain
whenh is a fixed nonnegative integer

a.h/ = 
0 −
+∞∑
j =h

1a. j / = 
0 −
+∞∑
j =h

1bh. j /T1a. j /

= 
0 −
+∞∑
j =h

1.bhT1a/ . j /+
+∞∑
j =h

bh. j + 1/1T1a. j /

= 
0 + 
1

h
+

+∞∑
j =h

bh. j + 1/1T1a. j /:
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Whenn ≥ 1, define the sequencern by

rn.h/ = .−1/n+1
+∞∑
j =h

bh. j + 1/bh. j + 2/ · · · bh. j + n/1Tna. j / for all h ≥ 0:

Thenrn.h/ = o
(
h−n

)
whenh → +∞, because

|rn.h/| ≤
+∞∑
j =h

1

hn
|1Tna. j /| =

+∞∑
j =h

1

hn

n

j . j + n/
|Tn+1a. j /|

≤ C
1

hn

+∞∑
j =h

1

j . j + 1/
= C

1

hn+1
:

We prove by induction that

a.h/ = 
0 + 
1

h
+ 
2

h2
+ · · · + 
n

hn
+ rn.h/:(2)

We have just proved that this formula holds whenn = 1. Suppose it holds when
n = k − 1. Remember that by Lemma4.1we have

Tka. j / =
[

k−1∑
d=0

1−dbh. j /

]−1

1Tk−1a. j /;

so that

rk−1.h/ = .−1/k
+∞∑
j =h

bh. j + 1/bh. j + 2/ · · · bh. j + n − 1/1Tk−1a. j /

= .−1/k
+∞∑
j =h

k−1∏
d=1

−dbh. j /
k−1∑
d=0

1−dbh. j /

[
k−1∑
d=0

1−dbh. j /

]−1

1Tk−1a. j /

= .−1/k
+∞∑
j =k

1

(
k−1∏
d=0

−dbh

)
. j /Tka. j /

= .−1/k
+∞∑
j =h

1

(
k−1∏
d=0

−dbhTka

)
. j /− .−1/k

+∞∑
j =h

k−1∏
d=0

−dbh. j + 1/1Tka. j /

= 
k

hk
+ .−1/k+1

+∞∑
j =h

k∏
d=1

−dbh. j /1Tka. j /

= 
k

hk
+ rk.h/;

that is, equation (2) holds whenn = k, as required. The caseh → −∞ can be treated
in a similar way.
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4.2. From discrete to continuous asymptotic expansionsIn this subsection we
make repeated use of the Poisson summation formula∑

j ∈Z
f .t + j /e−2³ i ¾.t+ j / =

∑
j ∈Z
F f .¾ + j /e2³ i j t for all t; ¾ ∈ R;(3)

where f is an integrable function onR with Fourier transform

F f .¾/ =
∫
R

f .t/e−2³ i t ¾dt for all ¾ ∈ R:

Fix a Schwartz function' whose Fourier transform has compact support in
[−3=4; 3=4], and such that

∑
j ∈ZF'.t + j / = 1 for all t ∈ R. By applying the

Poisson summation formula to the functionF' we obtain

∑
j ∈Z
'.¾ + j / = 1 .for all ¾ ∈ R/; '. j / =

{
1 if j = 0;

0 if j ∈ Z \ {0}:(4)

Suppose that.a. j // j ∈Z is a bounded sequence of complex numbers, and leth = 0; 1.
Inspired by [11], we define the functionAh onR by the rule

Ah.t/ =
∑
j ∈Z

a. j /'
(
t − . j + h=2/

)
for all t ∈ R:

Then, by the above mentioned properties, the functionAh interpolates the sequencea,
that is,Ah. j + h=2/ = a. j / for every integerj . Being the convolution of a Schwartz
function' and a tempered distribution supported on the integers or the half-integers,
the functionsA0 andA1 are smooth (and slowly increasing), and for everyn in N

A.n/
h .t/ =

∑
j ∈Z

a. j /'.n/
(
t − . j + h=2/

)
for all t ∈ R; h = 0; 1:

Let2 denote the differential operator defined by

2 f .t/ = t2 f ′.t/ for all t ∈ R and f ∈ C∞.R/:(5)

THEOREM 4.3. Let h be in {0; 1}. Suppose that the sequence.a. j // j ∈Z has the
asymptotic expansion at infinity

a. j / = 
0 + 
1

j + h=2
+ · · · + 
n

. j + h=2/n
+ o

(| j |−n
)
; | j | → +∞;

and define the functionAh onR as above. ThenAh is smooth, the following limits
exist and

lim
|t |→∞

.2n Ah/.t/ = .−1/nn!
n for all n ∈ N:(6)
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Note that (6) is equivalent to the fact thatAh has the asymptotic expansion at infinity

Ah.t/ = 
0 + 
1

t
+ 
2

t2
+ · · · + 
n

tn
+ o

(|t |−n
)
; |t | → +∞:

The proof of Theorem4.3 is based on the following four lemmata.

LEMMA 4.4. Suppose thatb = .b. j // j ∈Z is a sequence of complex numbers, van-
ishing at infinity and8 is any Schwartz function onR. Then

lim
|t |→+∞

∑
j ∈Z

b. j /8.t − j / = 0:

PROOF. Let " > 0. Sinceb vanishes at infinity, there exists aJ" > 0 such that
|b. j /| < " for any j such that| j | ≥ J". Since8 is a Schwartz function, there exists a
constantC > 0 such that|8.t/| ≤ C=.1 + |t |/3 for everyt in R. Hence, for everyt
such that|t | > 1=", we conclude that|8.t/| < "C=.1 + |t |/2. Now we divide the
sum into two parts and evaluate each part separately. Let|t | > 1=" + J". Note that,
if | j | < J", then|t − j | ≥ |t | − | j | > 1=". Therefore,∣∣∣∣∣∑

j ∈Z
b. j /8.t − j /

∣∣∣∣∣ ≤
∣∣∣∣∣∑| j |≥J"

b. j /8.t − j /

∣∣∣∣∣+
∣∣∣∣∣∑| j |<J"

b. j /8.t − j /

∣∣∣∣∣
< "

∑
| j |≥J"

C

.1 + |t − j |/3 + "‖b‖∞
∑
| j |<J"

C

.1 + |t − j |/2

< C"
∑
j ∈Z

1

.1 + |t − j |/2 :

Since the functiont ∈ R 7→ ∑
j ∈Z 1=.1 + |t − j |/2 has period 1 and is continuous, it

is uniformly bounded. This proves the lemma.

Here and in the sequel we set
∏

j ∈∅ j = 1.

LEMMA 4.5. Let f be a smooth function onR. For everyn = 1; 2; : : :,

.2n f /.t/ =
n∑

j =1

�n; j t
n+ j f . j /.t/ for all t ∈ R;

where�n; j = (n−1
j −1

)∏n
`= j +1 `, for every j = 1; : : : ; n.

PROOF. The formula is obviously true whenn = 1. Moreover,�n;1 = n! and, by
our conventions,�n;n = 1 for everyn = 1; 2; : : :. Suppose that the formula holds
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whenn = k − 1. Then for everyt in R,(
2k f

)
.t/ = t2

(
2k−1 f

)′
.t/

=
k−1∑
j =1

�k−1; j .k − 1 + j /t k+ j f . j /.t/+ �k−1; j t
k+ j +1 f . j +1/.t/

= �k;1tk+1 f ′.t/+
k−1∑
j =2

(
�k−1; j .k − 1 + j /+ �k−1; j −1

)
tn+ j f . j /.t/

+ �k;kt2k f .k/.t/:

So we only need to prove that forj = 2; : : : ; k−1,�k; j = .k−1+ j /�k−1; j +�k−1; j −1;

which follows easily using the identity
(

k−2
j −2

) = (
k−1
j −1

)− (
k−2
j −1

)
.

LEMMA 4.6. Suppose thatp; r; s are nonnegative integers andh = 0; 1. Then for
everyx in R the sum∑

j ∈Z
. j + h=2/r

(
x − . j + h=2/

)s
'.p/

(
x − . j + h=2/

)
is equal to.−1/s p!( r

p−s

)
xs+r −p if s ≤ p ≤ s + r and0 otherwise.

PROOF. These identities can easily be derived from the Poisson summation for-
mula (3), wheret = 0 and¾ = h=2, applied to the functionf , where

f .u/ =
(

d

du

)r [
e−2³ i xu

(
d

du

)s (
up.F−1'/.u/

)]
; u in R:

Finally, we mention the following properties of binomial coefficients.

LEMMA 4.7. For everyn = 1; 2; : : :, everyp ∈ N and everys = 0; : : : ; n − 1,

p+1∑
q=0

.−1/q
(

n + p + 1

q

)
= .−1/p+1

(
n + p

p + 1

)
;(7)

p+1∑
q=0

.−1/q
(

n + p + 1

q

)(
s + p + 1 − q

s

)
= .−1/p+1

(
n + p − s

p + 1

)
:(8)

PROOF. This is routine.

We can now prove the main result of this section, that is, Theorem4.3.
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PROOF. Consider first the case wheren = 0. By equation (4) we can write

lim
|t |→+∞

Ah.t/ = 
0 + lim
|t |→+∞

(∑
j ∈Z

a. j /'
(
t − . j + h=2/

)− 
0

∑
j ∈Z
'
(
t − . j + h=2/

))
= 
0 + lim

|t |→+∞

∑
j ∈Z

(
a. j /− 
0

)
'
(
t − . j + h=2/

) = 
0

sincea. j /− 
0 = o.1/ when j → ∞ and by Lemma4.4. Therefore in the following
we may and shall suppose that
0 = 0. Letn ≥ 1. By Lemma4.5we need to evaluate
the limit of .2n Ah/.t/ as|t | tends to+∞, that is, of the following:

n∑
p=1

�n;p

∑
j ∈Z

a. j /
(
t − . j + h=2/+ . j + h=2/

)n+p
'.p/

(
t − . j + h=2/

)
=

n∑
p=1

n+p∑
q=0

�n;p

(
n + p

q

)
×
∑
j ∈Z

a. j /
(
t − . j + h=2/

)n+p−q(
j + h=2

)q
'.p/

(
t − . j + h=2/

)
:

Since the sequencea = .a. j // j ∈Z has an asymptotic expansion,.2n Ah/ .t/ is equal
to

n∑
p=1

n+p∑
q=0

�n;p

(
n + p

q

)∑
j ∈Z

(
q∑

r =0


r

. j + h=2/r
+ o.| j |−q/

)
× (

t − . j + h=2/
)n+p−q(

j + h=2
)q
'.p/

(
t − . j + h=2/

)
=

n∑
p=1

n+p∑
q=0

q∑
r =0


r �n;p

(
n + p

q

)

×
(∑

j ∈Z

(
t − . j + h=2/

)n+p−q
. j + h=2/q−r'.p/

(
t − . j + h=2/

))

+
n∑

p=1

n+p∑
q=0

�n;p

(
n + p

q

)(∑
j ∈Z

o.1/
(
t − . j + h=2/

)n+p−q
'.p/

(
t − . j + h=2/

))
= R1.t/+ R2.t/:

By Lemma4.4, the remainderR2.t/ tends to zero as|t | → +∞. Moreover by
Lemma4.6we can evaluate the series inR1.t/. The sum is 0 unless 1≤ r ≤ n ≤ q,
and we may writeR1.t/ = ∑n

r =1 
r tn−r R1;r . Equation (6) follows, if we show that
R1;r = .−1/nn! whenr = n andR1;r = 0 otherwise.
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Remembering the form of the coefficients�n;p in Lemma4.5, and by Lemma4.7,
we obtain

R1;r =
n∑

p=1

�n;p p!
n+p∑
q=n

.−1/n+p−q

(
n + p

q

)(
q − r

n − r

)

=
n−1∑
p=0

�n;p+1.p + 1/!
p+1∑
q=0

.−1/p+1−q

(
n + p + 1

n + q

)(
n − r + q

n − r

)

= n!
n−1∑
p=0

(
n − 1

p

) p+1∑
q=0

.−1/q
(

n + p + 1

n + p + 1 − q

)(
n − r + p + 1 − q

n − r

)

= n!
n−1∑
p=0

(
n − 1

p

) p+1∑
q=0

.−1/q
(

n + p + 1

q

)(
n − r + p + 1 − q

n − r

)
:

= n!
n−1∑
p=0

.−1/p+1

(
n − 1

p

)(
p + r

p + 1

)

= − n!
.r − 1/!

n−1∑
p=0

.−1/p

(
n − 1

p

)
Pr −1.p/;

wherePr −1.p/ is a polynomial inp of degreer − 1 and leading coefficient 1. Since
for anyn ≥ 1 and j = 0; : : : ; n − 1, we have

n−1∑
p=0

.−1/p

(
n − 1

p

)
pj =

{
0; if j = 0; : : : ; n − 2

.−1/n−1.n − 1/!; if j = n − 1;

we conclude thatR1;n = .−1/nn!. Moreover, ifr is in {1; : : : ; n − 1}, thenr − 1 ≤
n − 2< n − 1, andR1;r = 0.

5. Proof of Theorem3.1

In [1] we proved that a function : R+×N → Csuch that .½; d/ = ½−Þ=2 .1; d/,
for almost every.½; d/ in R+ × N, is the Gelfand transform of a biradial kernel of
typeÞ on theH -type groupN if and only if for everyn; j in N, the following limits

lim
d→∞

dÞ=2+n+ j
[
Mn

+M j
− 
]
.1; d/ = .−1/ j +n lim

d→∞
dÞ=2+n+ j

[
Mn

− M j
+ 
]
.1; d/(9)

exist and are finite. Note that

[
M j

± K̂
]
.1; d/ = .−1/ j

[
j −1∏
p=0

.p +D±/ K̂

]
.1; d/:(10)
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LEMMA 5.1. Let K be a biradial kernel of type0. Then there exist complex
numberscj , j = 0; 1; 2; : : :, such that for everyM ≥ 0

K̂ .1; d/ =
M∑

j =0

cj .2d + m/− j + o.d−M/; d → +∞:

PROOF. By Theorem4.2all we need to prove is that the limits limd→+∞ TnK̂ .1; d/
exist and are finite. ClearlyT0K̂ .1; d/ = K̂ .1; d/, so the case wheren = 0 is
straightforward.

We prove that for any positive integern

TnK̂ .1; d/ =
n∑

j =1

Pj .d/[M j
− K̂ ].1; d + n/;(11)

wherePj is a polynomial of degree at mostj . From this the lemma follows.
The case wheren = 1 is easy, since

T1K̂ .1; d/ = d.d + 1/
(
K̂ .1; d + 1/− K̂ .1; d/

) = −d M−K̂ .1; d + 1/:

Let us suppose equation (11) holds whenn = k − 1. By the discrete Leibniz rule (1),
whenn = k we obtain thatTkK̂ .1; d/ equals

d.d + k/

k
1Tk−1K̂ .1; d/ = d.d + k/

k

k−1∑
j =1

1Pj .d/M
j
− K̂ .1; d + k/

+ Pj .d/1M j
−K̂ .1; d + k − 1/:

Note that

1M j
− K̂ .1; d + k − 1/ = 1

d + k
D− M j

− K̂ .1; d + k/

= 1

d + k
.− j + j +D−/M j

− K̂ .1; d + k/

= − 1

d + k
M j +1

− K̂ .1; d + k/− j

d + k
M j

− K̂ .1; d + k/:

ThereforeTk K̂ .1; d/ is equal to

d

k

k−1∑
j =1

(−Pj .d/M
j +1
− K̂ .1; d + k/+ (

.d + k/1Pj .d/− j Pj .d/
))

M j
− K̂ .1; d + k/

=
(

k−1∑
j =1

Pj +1.d/M
j +1
− + d

[
.d + k/1Pj .d/− j Pj .d/

]
M j

−

)
K̂ .1; d + k/:
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Let Pj .d/ = aj d j + Q j −1.d/ for some polynomialQ j −1 of degreej − 1. It is easy
to check that1Pj .d/ = ja j d j −1 +1Q j −1.d/, therefore the degree of the polynomial
.d + k/1Pj .d/− j Pj .d/ is at mostj − 1.

In the following proposition we prove thatc2 j +1 = 0, j = 0; 1; 2; : : :, wherecj are
the coefficients defined in Lemma5.1.

PROPOSITION5.2. Suppose thatK is a biradial kernel of type0. Then there exist
complex numbersc2 j , j = 0; 1; 2; : : :, such that for everyM ≥ 0

K̂ .1; d/ =
M∑

j =0

c2 j .2d + m/−2 j + o.d−2M/; d → +∞:

PROOF. Using the notation of Lemma5.1we shall prove thatcj = .−1/ j cj .
By equation (9), wheren = 0, and by (10), we obtain

lim
d→+∞

d j

[
j −1∏
p=0

.p +D+/K̂

]
.1; d/(12)

= .−1/ j lim
d→+∞

d j

[
j −1∏
p=0

.p +D−/K̂

]
.1; d/:

For everyq inN, let gq be the sequence defined bygq.d/ = .2d + m/−q for all d ∈ N,
and let.aq/ be a sequence of complex numbers. We claim that, when 1≤ j ≤ M ,[

j −1∏
p=0

.p +D±/

](
M∑

q=1

aqgq

)
=

M∑
q= j

�±
q; j gq + o

(
d−M

)
;(13)

where�±
1;1 = −a1 and, if 1≤ j ≤ q, there exist rational numbers¼p;q; j , depending

only on p;q; j , such that

�±
q; j = .−1/ j q!

.q − j /!aq +
q−1∑
p=1

.±1/p−q¼p;q; j ap:

If this holds, we may conclude that limd→+∞ dD± K̂ .1; d/ = −c1=2 and, whenj > 1,

lim
d→+∞

d j

[
j −1∏
p=0

.p +D±/K̂

]
.1; d/

= lim
d→+∞

d j

{[
j −1∏
p=0

.p +D±/

(
j∑

q=1

cqgq

)]
.d/+ o.d− j /

}
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= �±
j; j 2

− j = 2− j

(
.−1/ j j !cj +

j −1∑
p=1

.±1/p− j¼p; j; j cp

)
:

By (12), we obtainc1 = −c1 and

.−1/ j j !cj +
j −1∑
p=1

¼p; j; j cp = j !cj +
j −1∑
p=1

¼p; j; j .−1/pcp for all j > 1:

By induction on j it follows easily thatcj = .−1/ j cj for every j in N.
We now prove the claim, that is, equation (13). It is easy to check that

D±gn.d/ = −ngn.d/+
∞∑

p=n+1

.±1/p−nþn;pgp.d/:

Moreover, whenM > n ≥ 1 andd → +∞, we have

D
±
(

M∑
q=n

aqgq

)
.d/ = −nangn.d/(14)

+
M∑

q=n+1

(
−qaq +

q−1∑
p=n

.±1/q−pþp;qap

)
gq.d/+ o.d−M/;

where

þp;q = 2q−p

[
m

2

( −p

q − p

)
+
( −p

q − p + 1

)]
:

We shall prove the claim by induction onj . Suppose thatj = 1. By (14), we
obtain

D
±
(

M∑
q=1

aqgq

)
.d/ =

M∑
q=1

�±
q;1gq.d/+ o.d−M/;

where�±
1;1 = −a1 and, whenq > 1,

�±
q;1 = −qaq +

q−1∑
p=1

.±1/q−pþp;qap:

Suppose that the thesis holds whenj = k − 1. Then whenj = k, by (14), we obtain[
k−1∏
p=0

.p +D±/

](
M∑

q=1

aqgq

)
= .k − 1 +D±/

(
M∑

q=k−1

�±
q;k−1gq + o.d−M/

)

=
M∑

q=k

�±
q;kgq + o.d−M/;
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where

�±
q;k = .k − 1 − q/�±

q;k−1 +
q−1∑

p=k−1

.±1/q−pþp;q�
±
p;k−1

= .k − 1 − q/

(
.−1/k−1 q!

.q − k + 1/!aq +
q−1∑
p=1

.±1/p−q¼p;q;k−1ap

)

+
q−1∑

p=k−1

.±1/q−pþp;q

(
p−1∑
i =1

.±1/i −p¼i;p;k−1ai + .−1/k−1 p!
.p − k + 1/!ap

)

= .−1/k q!
.q − k/!aq +

q−1∑
p=1

.±1/p−q¼p;q;kap:

The proof is now complete.

COROLLARY 5.3. LetÞ be in[0; Q/and suppose thatK is a biradial kernel of typeÞ.
Then there exist complex numbersc2 j , j = 0; 1; 2; : : :, such that for everyM ≥ 0

K̂ .1; d/ =
M∑

j =0

c2 j .2d + m/−2 j −Þ=2 + o.d−2M−Þ=2/; d → +∞:

PROOF. Suppose thatK is a biradial kernel of typeÞ. ThenL Þ=2
1 K is a biradial

kernel of type 0 and for almost every.½; d/ in R+ ×N

K̂ .½; d/ =\L Þ=2
1 K .½; d/[½.2d + m/]−Þ=2:

The thesis follows from Proposition5.2.

6. Proof of Theorem3.2 in the Heisenberg group case

In this section we prove the analogue of Theorem3.2 in the case where the ho-
mogeneous distributions are radial andk = 1, that is,N is the Heisenberg group of
real dimension 2m + 1; the proof of Theorem3.2 for biradial kernels on Heisenberg
type groups is analogous (see the remark at the end of this section). We recall that a
function f on N is said to be radial if there exists a functionf0 onR × z such that
f .X; Z/ = f0.|X|; Z/ for every.X; Z/ in N.

We denote byHm the Heisenberg group of real dimension 2m + 1. We refer to [2]
for details on spherical functions on the Heisenberg groupHm that are related to the
Gelfand pair.Hm;U.m//. We only mention that in this case they are parametrized
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by a pair.½; d/, where½ is in R∗ andd in N, and by a nonnegative real number¾ .
If we identify the pair.½; d/ with the point.½; |½|.2d + m// in R2 and¾ with the
point .0; ¾ / and use the Euclidean topology inR2, then we obtain the compact open
topology on the Gelfand spectrum. What we prove for radial kernels of typeÞ is the
following theorem.

THEOREM 6.1. Suppose thatÞ is in [0; Q/ and : R∗ × N → C. The following
conditions are equivalent:

(a′) the function is the Gelfand transform of a radial kernel of typeÞ onHm;
(c′) there exists a smooth functionF onR2

+, homogeneous of degree−Þ=2 such that
F.½; |½|.2d + m// =  .½; d/ for almost every.½; d/ in R∗ ×N.

We first prove that (a′) implies (c′) whenÞ = 0, using Geller’s asymptotic ex-
pansion [8]:  is the Gelfand transform of a radial kernel of type 0 onHm if and
only if

 .½; d/ =  .½=|½|; d/ =
M∑

j =0

.½=|½|/ j cj .2d + m/− j + o.d−M/; d → +∞:

The result for kernels of type 0 will follow from Proposition6.2. Then we will extend
this result to radial kernels of typeÞ in Corollary6.3.

The proof of (c′) implies (a′) is standard and outlined in Proposition6.4.

PROPOSITION6.2. Let : R∗ × N → C and suppose that .½; d/ =  .½=|½|; d/
for almost every.½; d/ in R∗ ×N. If there exist complex numberscj , j = 0; 1; 2; : : :,
such that

 .±1; d/ =
M∑

j =0

.±1/ j cj .2d + m/− j + o.d−M/; d → +∞;

then there exists a smooth functionF on R2
+, homogeneous of degree0, such that

F.½; |½|.2d + m// =  .½; d/ for almost every.½; d/ ∈ R∗ ×N.

PROOF. First we extend the definition of .½; j / to negative integersj by letting

 .½; j / =
{
 .−½;− j − m/ for all ½ ∈ R+; j ≤ −m;

0 for all ½ ∈ R+; j ∈ {−1;−2; : : : ;−m + 1}:
We defineF : R2

+ → C by the rule

F.½; ¾/ =
{∑

j ∈Z  .½; j /'
(

1
2

(
¾

|½| − m
)

− j
)

for all .½; ¾/ ∈ R∗ × R+;

c0 for all .½; ¾/ ∈ {0} × R+;
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where' is as in Section4.2. By the properties (4) of the function'

F.½; |½|.2d + m// =  .½; d/; for all d ∈ N; and ½ ∈ R+:

Moreover, it is easy to see thatF is in C∞.R+ × R+/ and homogeneous of degree 0.
To apply the results of Section4, we introduce the following notation. Leth = m
.mod 2/ and define the two-sided sequencesa±

h by the rules

a+
h . j / =  

(
1; j − m − h

2

)
and a−

h . j / =  

(
−1; j − m − h

2

)
for all j ∈ Z. The way we have extended the definition of .½; j / to negative
integersj implies that the sequencesa±

h have asymptotic expansions of the form

a±
h . j / =

M∑
n=0

.±1/n 2−ncn

. j + h=2/n
+ o. j −M/; | j | → +∞:

As in Section4, let A±
h denote the function

A±
h .t/ =

∑
j ∈Z

a±
h . j /'

(
t − . j + h=2/

)
for all t ∈ R:

Then for every¾ > 0,

F.½; ¾/ =


A+

h .¾=2½/ if ½ > 0;

c0 if ½ = 0;

A−
h .−¾=2½/ if ½ < 0:

By Theorem4.3, the functionsA±
h areC∞.R/ and

lim
t→+∞

(
2n A±

h

)
.t/ = .∓1/nn!2−ncn for all n ∈ N;(15)

where, as before,2 denotes the differential operator defined by

2 f .t/ = t2 f ′.t/ for all t ∈ R and f ∈ C∞.R/:

If f̌ is defined byf̌ .t/ = f .1=t/, for everyt inR∗, then. f̌ /.n/.t/ = .−1/n.2n f /.1=t/
for everyt in R∗.

For the sake of brevity, for everyn inN, denote by4n the operator acting on smooth
functions f onR by4n f .t/ = tn f .n/.t/ for all t ∈ R. From Lemma4.5, it follows
that for every smooth functionf onR and j ≥ 1,

.4 j f /.t/ = .−1/ j t j .2 j f̌ /

(
1

t

)
=

j∑
s=1

.−1/ j +s� j;st
−s.2s f /.t/ for all t ∈ R∗:
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Therefore, by (15), for everyn in N and j ≥ 1,

lim
|t |→+∞

4 j

(
2n A±

h

)
.t/ = lim

|t |→+∞

j∑
s=1

.−1/ j +s� j;st
−s
(
2n+sA±

h

)
.t/ = 0:(16)

We now prove thatF is smooth on the positive¾ -axis. First of all, using (15)
wheren = 0, it is easy to prove thatF is continuous. Straightforward computations
show that

@¾ F.½; ¾/ =


.1=¾/

(
41 A+

h

)
.¾=2½/ if ½ > 0;

0 if ½ = 0;

.1=¾/
(
41 A−

h

)
.−¾=2½/ if ½ < 0:

This partial derivative is continuous, because if.½; ¾/ → .0; ¾0/ in R2
+, then

|t | = |¾=2½| → +∞ and one can use (16) wheren = 0 and j = 1. As for the
derivative in the½-direction, one can easily evaluate

@½F.½; ¾/ =
{

−.2=¾/(2A+
h

)
.¾=2½/ if ½ > 0;

.2=¾/
(
2A−

h

)
.−¾=2½/ if ½ < 0:

Moreover, by (15),

lim
½→0±

@½F.½; ¾/ = ∓2

¾
lim

t→+∞
(
2A±

h

)
.t/ = −1

¾
c1:

ThereforeF has continuous partial derivatives.
Whenþ = .þ1; : : : ; þ2s/ is a multi-index inN2s of lengthr , we denote by@þ the

operator@þ1

½ @
þ2

¾ · · · @þ2s−1

½ @
þ2s

¾ . In a similar way, using (15) and (16), one can prove
by induction onr that, if

∑s−1
j =0 þ2 j +1 = n and p = r − n, then when¾ > 0 the

derivative@þF.½; ¾/ equals
.−2/n

¾ n+p

p∑
j =0

(
p

j

)
.−n/ · · · .−n − p + j + 1/

[
4 j2

n A+
h

] ( ¾
2½

)
if ½ > 0;

2n

¾ n+p

p∑
j =0

(
p

j

)
.−n/ · · · .−n − p + j + 1/

[
4 j2

n A−
h

] (− ¾

2½

)
if ½ < 0;

and@þF is continuous with@þF.0; ¾ / = n!cn.−n/ · · · .−n − p + 1/=¾ n+p.

COROLLARY 6.3. Let Þ be in [0; Q/ and suppose that : R∗ × N → C satisfies
 .½; d/ = |½|−Þ=2 .½=|½|; d/ for almost every.½; d/ inR∗×N. If there exist complex
numberscj , j = 0; 1; 2; : : :, such that

 .±1; d/ =
M∑

j =0

.±1/ j cj .2d + m/− j −Þ=2 + o
(
d−M−Þ=2); d → +∞;
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then there exists a smooth functionF onR2
+, homogeneous of degree−Þ=2, such that

F.½; |½|.2d + m// =  .½; d/ for almost every.½; d/ ∈ R∗ ×N.

PROOF. The function 0 : R∗ ×N → C defined by

 0.½; d/ = (|½|.2d + m/
)Þ=2

 .½; d/ for all .½; d/ ∈ R∗ ×N

satisfies the hypothesis of Proposition6.2. Therefore, there exists a smooth functionH
onR2

+, homogeneous of degree 0 such thatH.½; |½|.2d + m// =  0.½; d/ for almost
every.½; d/ in R∗ ×N. We defineF.½; ¾/ = H.½; ¾/¾−Þ=2 for all .½; ¾/ ∈ R2

+. The
function F satisfies the required conditions.

PROPOSITION6.4. LetÞ be in[0; Q/. If F : R2
+ → C is a smooth and homogeneous

function of degree−Þ=2, then there exists a radial kernelK of typeÞ onHm such that
F.½; |½|.2d + m// = K̂ .½; d/ for almost every.½; d/ in R∗ ×N.

PROOF. As in [13, page 242] we fix a function8 in C∞
c .R/, with support in[1=2; 4]

and such that
∑+∞

j =−∞8.2
j ¾/ = 1 for all ¾ > 0. We define the radial functionsK j :

Hm → C, j in Z, by the rules

K̂0.½; d/ = F.½; |½|.2d + m//8.|½|.2d + m//;

K̂ j .½; d/ = 2 jÞ=2K̂0.2 j½; d/ = 8.2 j |½|.2d + m//F.½; |½|.2d + m//

for all .½; d/ ∈ R∗ ×N. As in [1, Lemma 7.1] one can prove that the series
∑+∞

j =−∞ K j

converges inS ′ to a biradial kernelK of typeÞ. Finally, F.½; |½|.2d+m// = K̂ .½; d/
for almost every.½; d/ ∈ R∗ ×N, as required.

REMARK. In the case of biradial kernelsK on Heisenberg type groupsN, the
function  = K̂ is initially defined inR+ × N. We extend it to obtain an even
function onR∗ × N. Moreover, remember that in the asymptotic expansion we
havec2 j +1 = 0, j = 0; 1; 2; : : : by Proposition5.2. The proofs of Proposition6.2
and Corollary6.3 then show thatF is an even smooth function onR2

+, as stated in
Theorem3.2. Analogously, Proposition6.4adapts to biradial kernels on Heisenberg
type groups by requiring that the functionF is even.
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