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Abstract

To eachfilter# onw, a certain linear subalgebfd.%) of R, the countable product of lines, is assigned.
This algebra is shown to have many interesting topological properties, depending on the properties of
the filter 7. For example, itZ is a free ultrafilter, ther\(.%) is a Baire subalgebra @® for which

the game OF introduced by Tkachenko is undetermined (this resolves a problem ah#feznRobbie

and Tkachenko); and if; and.%, are two free filters om that are not near coherent (such filters exist
under Martin’s Axiom), thenA(.%#;) and A(.%,) are twoo-bounded and OF-undetermined subalgebras

of R” whose productA(.%1) x A(.%,) is OF-determined and natbounded (this resolves a problem

of Tkachenko). It is also shown that the statement that the product ob#asunded subrings dR®

is 0-bounded is equivalent to the set-theoretic principle NCF (Near Coherence of Filters); this suggests
that Tkachenko’s question on the productivity of the clas®-bbunded topological groups may be
undecidable in ZFC.

2000Mathematics subject classificatioprimary 03E35, 03E50, 03E60, 22A05, 54A35, 54D80, 54E52,
54G15, 54H11, 54H12, 54H13, 91A44.
Keywords and phrasespen-finite gameg-bounded group, filter game, near coherence of filters.

Introduction

In this paper we present a method for constructing examples of topological subgroups
linear sublattices and linear subalgebrasRéfwhich possess various pathological
properties. The idea is to assign to a sutBaif R” and a filter.# on w a special
subspaced(B; .7) of R®. The algebraic properties of this spa®éB; .7 ) depend on

the choice of the seB, while the geometric and topological properties®fB; .%)
depend on the choice of the filtéf. In particular, ifB is the set of all sequences of
polynomial growth, then the spaeg B; .%), denoted byA(.%) in this case, is a linear
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sublattice and subalgebra &F. If .% is a non-principal ultrafilter, then the algebra
A(Z) is Baire and OF-undetermined (this example resolves Problem13)f [f .7,
and.Z, are two filters onw that are not near coherent (such filters exist under Martin’s
Axiom), then the algebra&(.%;) and A(%-) areo-bounded irR“, while their product
A(F) x A(F,) is noto-bounded iR® x R® and their sunA(.%1) + A(.%,) coincides
with R (this answers Problem 3.2 di7]). On the other hand, the near coherence of
all filters onw implies that the producX x Y of anyo-bounded subringX andY of R®

is 0-bounded inR® x R®. This suggests that Problem 3.2 RP] on the productivity

of the class ob-bounded topological groups may be equivalent to the principle NCF
(Near Coherence of Filters), and hence be independent of ZFC.

To give an idea of our subsequent considerations, we briefly explain the relation
of NCF to the productivity problem for the class @bounded subrings dR® (the
definition and basic properties of near coherence will be given later). We shall see in
Proposition2 that for eacto-bounded subring di“, there is a filterZ with respect to
which the subring has a stronger boundedness property that wezchtbundedness.
The latter property, unlike the usualboundedness, is preserved by products. The
classes 0b~- andoz -bounded subsets coincide for near coherent ultrafi#ers?’,
and this is the reason why the product of terbounded subrings & is o-bounded
under NCF.

Now let us recall the definitions of a number of types of boundedness in topo-
logical groups. Given a topological growp, denote by.4 (e) the family of open
neighborhoods of the identigyof G. A subsetB of G is defined to be

e boundedif for any neighborhoodJ € .4 (e) there is a finite subset c G
suchthaB C F - U;

e o-boundedf B = [ J,_, Bn is a countable union of bounded subsB{of G;

e No-boundedf for any neighborhood) € .4 (e) there is a subsdt of G with
[F| < ¥pandB C F - U;

e 0O-boundedf for any sequencéU,}.., C .4 (e) there is a sequendé&, },,., of
finite subsets 06 such thaB C |, Fn - Un.

Observe that the conditioB c |, F. - Un is equivalent to saying that the set
Ny = {n € w : X € F, - U,} is non-empty for eaclk € B. Trying to impose more
control on the set8l, for x € B, we arrive at the concept of ar-bounded set. First
we introduce some notation. Denote B§(w) (respectively{w]®) the collection of
all (infinite) subsets of the setof non-negative integers. Given a famiy C Z(w)
and a functiorp : w — w, let

¢[Z]1={E C w:3F € .Z with ¢(F) C E}.

Afunctiong : @ — w is calledfinite-to-onéf the pre-imagey—1(n) is finite for every
neow.
A subsetB of a topological grouf is calledoz-boundedwhere# C Z(w), if
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for any sequenc@U,}ne, C A4 (€) there is a sequendé, },.., of finite subsets oG
such thatB C g5 [neyr) Fn - Un for some finite-to-one functiop : v — w.
Here we assume conventionally tifaf,_, F, - U, = G, so that every subset @ is
0z-bounded ifd € .%.

Observe that a subsét c G is o-bounded if and only if it i ~-bounded for the
collection.# = {{n} : n € w} of singletons. Note also that amy-bounded subset
B C G is 0z -bounded for any family#" ¢ & (w) and any finite-to-one function
¢:w— owithelF']1D Z.

It is clear that eaclor-bounded subsaB of G is o-bounded. In factg-bounded
subsets ofG have a stronger property, which is called stoegboundedness in2p]
and [LO] and lI-boundedness ir2]. We define a version of this property parameterised
by a collection# c #(w), as follows. Given#, consider the following game OF
(abbreviated from Open-Finite) on a subBetf a topological grougs. Two players,
| and Il, choose at every step € w a neighborhoodJ, € .#(e) and a finite
subsetF, C G, respectively. At the end of the game, Il is declared the winner if
B C Ures MNhey(r) Fn - Un for some finite-to-one functiop : @ — w.

A subsetB of a topological groufs is defined to be

¢ |l z-boundedfthe second player has a winning strategy in the game OIB;

e | z-boundedf the first player has no winning strategy in the game;Q#n B;

o OFz-determinedf one of the players has a winning strategy in the game-OF
on B;

e OFz-undeterminedif G is not OF:-determined (equivalently, ifG is
| z-bounded but not l}-bounded).

A topological groupG is defined to bebounded (respectively o-bounded
Ro-bounded Il z-bounded | »-bounded 0~-boundeqd OFz-determined OF4-un-
determinedlif G has the respective property as a subs&.off .# is the collection of
all the singletons ofy, then we shall omit the subscrigt and shall speak about the
game OF and IlI-, I-p-bounded, OF-determined and OF-undetermined sets in place of
the game OF: and llz-, | z-, 0z-bounded, OF-determined and Of-undetermined
sets, respectively. It should be mentioned thatlinl0, 11, 22, 23], ll-bounded
groups are called ‘strictlp-bounded’, but we prefer the term ‘ll-bounded’, accepted
also in P].

We note that the definitions of all the boundedness conditions above are in fact
with respect to the left uniformity of the growp. Similar definitions can of course be
given with respect to the right uniformity and with respect to the two-sided uniformity.
Since however our focus in this paper is almost exclusively on abelian groups, in which
these distinctions are irrelevant, we shall work with definitions in the one-sided form
given.

Although we have defined the properties 0f1] | z-, andoz-boundedness for
arbitrary families# c & (w), they behave especially nicely for the familiéscalled
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semi-filters.

By a semi-filter we understand a family” of infinite subsets ofv closed under
taking supersets and such that\ K € .# for any F € .# and any finite subse
of w. A semi-filter % is called dilterif FNF’ € % foranyF, F' € .%. Itis easy to
see that a family of sets is a semi-filter if and only if it is a union of filters. Note that all
our filters.# arefreein the sense that.# = (. Note also that ifZ is a (semi-)filter
andy : @ — w is a finite-to-one function, thep[.7] is again a (semi-)filter. A
filter % is called anultrafilter if .7 = %’ for any filter %’ > %. Ultrafilters are
maximal elements of the naturally ordered set of all filters. This set has a unique
minimal element—the FEchet filterg,, consisting of all cofinite subsets @f The
filter §, is also the smallest element of the set of all semi-filters, which, unlike the
set of all filters, has a unique maximal element—the semi-filtgf consisting of all
infinite subsets ob.

Identifying each subset of with its characteristic function, we identify the power-
setZ(w) of w with the Cantor cub¢0, 1}, and thus introduce a metrizable compact
topology onZ(w). Referring to this topology, we can speakoetompact, meager,
analytic or projective subspaces.&f(w) or [w]®.

The interplay between the properties of4l | z-, andoz-boundedness depends
to a large extent on the properties of the fami#y We illustrate this thesis by the
following diagram, which holds for subsets Rf’, the countable product of lines (see
Theorems and7). (In fact, this diagram holds more generally for subsets of Lididel
Cech-complete groupg][) In the diagram,Z is a filter onw, while §, and[w]” are
the smallest and the largest semi-filters described above, respectively.

o-boundeds Il 3 -bounded< I3 -bounded< o3, -bounded

¢ 4 4
Il z-bounded= | z-bounded< o0z-bounded

¢ U U
Il},.-bounded= |,.-bounded= o,;.-bounded

¢ N2 ¢
ll-bounded = I-bounded = o-bounded = RXy-bounded

In general, the non-equivalence implications from this diagram cannot be reversed:
the countable product of lind” is 8y-bounded but nad-bounded 10, Example 2.6];
R® contains a dens€;-subset®([w]®) which is o-bounded but not I-bounded; this
G;-set provides also an example of ap,.-bounded subset which is neither
l,;--bounded noroz-bounded for a filter.# (see Propositionl); for any non-
meager filter# the spaceR® contains a Baire linear subspad€.7) which is
OFz-undetermined, that is,z-bounded but not }-bounded; this spac@(.%) is
also I-bounded but not ll-bounded (see TheoBnmunder the negation of NCF there
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are two linear subspaces;, A, of R” whose unionA; U A; is |,.-bounded but
not | z-bounded for a filtet#; these spaces,, A, are I-bounded iR but their
product A; x A, is not o-bounded inR® x R® and their sumA; + A, coincides
with R (see Corollary3). Finally, R® contains an I-bounded subspace which is not
l,1--bounded P]. Besides these examples (which are all subsetR“Qf there is
also an example of a non-metrizable II-bounded group which isrAobunded 10,
Example 3.1].

The non-metrizability of the last counterexample is not merely incidental, in view
of the following theorem, whose proof can be foundind] or [20, Section 7].

THEOREM 1. Let G be a metrizable topological group.

(1) Each ll-bounded subsé& of G is o-bounded.
(2) Each analytic I-bounded subsBtof G is o-bounded.
(3) If Gisano-bounded SIN-group, then each analytic sulizef G is o-bounded.

We recall that a topological grou is called aSIN-groupif G has a neighborhood
base# at the origin such thag~*Ug = U for anyg € G andU < 4.

A topological spaceX is analyticif it is a metrizable continuous image of a Polish
(separable completely metrizable) space. In fact, the &lasxf analytic spaces is the
first member in the hierarchy of projective clas&sandIl}, n € N. These classes
are defined by induction. The claBk, consists of all separable metrizable spakes
whose complemenX \ X in some metrizable compactificatiok of X belongs to
the classz}, and the clasx}, ; consists of metrizable continuous images of spaces
from the classI1}, (see [L4, Section 37.A]). Spaces from the clds§,_, =} U IT}
are calledprojective It should be mentioned that under the principle of Projective
Determinacy 14, Definition 38.15] (which is one of the so-called Strong Set-Theoretic
Hypotheses and follows from the existence of a suitable large cardi®gdge 282],
[19]), the analyticity of the subsd in Theoreml can be replaced by the projectivity
of B. All of this shows that examples designed to demonstrate the difference between
the boundedness properties we are considering must of necessity have a comple
descriptive structure.

A reflection of this is the fact that the first claimed example of a metrizable
bounded non-ll-bounded groud, presented by Heémdez in L0, Example 6.1]
(and exploited in 22, page 195], I, Theorem 4] and11, Example 2.12]), turned
out to be incorrect. (By1], the groupH is analytic, and being noa-bounded, is
not o-bounded, according to Theorein(3).) The error was noted by the second
author; see alsalpl, [20, page 45]. Valid examples aF-bounded non-ll-bounded
groups have been constructed under certain additional set-theoretic assumptions. |
particular, in [L1] a (non-metrizable) OF-undetermined group was constructed under
the Diamond Principl&> (afterwards, a similar example was constructed in ZEg [
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or [20, Section 6]). In ]] a Baire OF-undetermined subgroup was constructed in each
abelian non-locally compact Polish divisible group under Martin’s Axiom. Finally,

it was shown in 2] that each abelian non-locally compact Polish group contains an
OF-undetermined subgroup (see alsp.[ All these examples of OF-undetermined
groups were constructed by transfinite induction, and this led naturally to the problem
of finding more ‘real’ and palpable ZFC-examples distinguishing various sorts of
boundedness.

In this paper, many such examples are constructed using the filter approach (aftel
writing an initial version of this paper, we learned that a similar filter approach was
used also in16] and [20]). All our examples are subsets &f, the countable product
of lines, endowed with the Tychonov product topology. The sd&tds a very
rich object and carries a wealth of algebraic structures. Besides the linear and groug
operations, the spa@ has the operation of coordinatewise multiplication (thaRis,
is a linear topological algebra with unity) as well as the operations of coordinatewise
maximum and minimum (that i®® is a linear topological lattice). We can thus speak
of algebraic subobjects @~ of many different types, including subgroups, convex
sets, linear subspaces, sublattices, linear subalgebras.

It will be convenient to think of elements &~ as functions fromw to R. For
everyn € w, consider the seminorr - ||, on R” defined by||x|, = maX-, [X(i)]|
for x € R”. Given two functionsf, g € R?, we write f < g (respectivelyf < Q)
if f(n) < g(n) (respectivelyf(n) < g(n)) for alln € w, and f <* g (respectively
f <* g) if there ism € w such thatf (n) < g(n) (respectivelyf (n) < g(n)) for all
n>m.

By the growthof a functionf € R“ we understand the function f € R defined
by + f(n) = || f|l, forn € w. Itis clear thatt f is a non-negative non-decreasing
function. A subsef of R” is defined to babsolutely symmetri€ for anya € A and
b € R” with 4+ b < 1 awe haveb € A.

The central objects of our study are the absolutely symmetric subsets of the form

®B; Z)={xecR*:3be BIFec.ZVneF x| < b},

whereB c R“ and.Z is a collection of subsets af.

If B = {b} for someb € R”, then we write®(b; .%) in place of®({b}; .%). Also,
we write ®(.%) in place of®(id;.#), where ide R” is the identity function > i
fori € w. Thus

®(F)={xeR:IFe FVieF |x|i <i}.

It is clear that ifB ¢ B’ and.# c ./, then®(B;.%) C ®(B’;.#"). If the
collection.# consists of infinite subsets @f then the se®(B; .%) can be equivalently
defined as

®(B; #) = {x € R”:3b e B IF € F with |x| < bg},
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wherebe € R is the non-decreasing step-function assigning to each the number
be(i) = min{[|bll; : j € F N [i, 00)} = [IBllmincerii.con-

For families. 74, ..., %, C &(w) and a functiorb € R®, define by induction the
sets

®(b19\11 7‘9\I+1) = ®(®(b!‘gzls 7%):%+1)

fori < n. We shall write®(.%1, ..., %,) in place of®(id; %1, ..., Z,). ltis easy to
seethatdy(b; %, ..., ) = ®(b; %) whenever the familyZ is a filter.

The sets of the forn®(b; .%) play a fundamental role in the classm#-bounded
subsets oRR®.

THEOREM2. (1) AsubseB C R“isoz-bounded, where” is a semi-filter orw,
if and only if B ¢ ®(b; ¢[.#]) for some increasing functiob : @ — » and some
finite-to-one map : v — w.

(2) A subsetB c R is o-bounded if and only iB is o,.-bounded if and only if
B C ®(b; [w]?) for someb € R<.

Our interest in subsets of the fora(B;.%#) can be explained by the following
theorem, which describes some algebraic and geometric properties of such sets, an
follows easily from the corresponding definitions.

THEOREM3. Let B ¢ R® and let.# be a filter onw.

(1) Ifsup g neo IXlln = 0o, then®(B;.7) is a dense subset &“.

(2) Ifforall x,y € Bandt € [0, 1] there existz € Bwitht 4 X+ (1—t) 1y <* 1 z,
then®(B;.%#) is a convex subset d&®.

(3) Ifforall x,y € B there existz € B with max{1 x, 1 y} <* 1 z, then®(B; %)
is a sublattice ofR“.

(4) Ifforall x,y € Bthere existz € Bwith 1 x + 1y <* 1z, then®(B; %) is a
linear sublattice ofR®.

(5) Iffor all x,y € B there existz € B with (X - y) + 1 X + 1y <* 1z, then
®(B; ) is a linear subalgebra oRR®.

Next, we investigate the dependence of the topological and boundedness propertie
of the set®(B;.%) on the properties of the s and the semi-filter%.

THEOREMA4. Let B Cc R® and let.# be a semi-filter om.

(1) If the setB is o-bounded inR” (and.# is a filter), then the se®(B; .%) is
0z-boundedand | z-bounded in R®.

(2) If ®(B;.%) # R*, thenB is o-bounded inR®.

(3) If the spaceB is analytic and.# is a non-meager filter, the®(B; %) is
0z-bounded if and only i®(B; .#) # R¢ if and only if B is o-bounded.
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(4) The set®(B;.%) is o-bounded inR” if and only if eithersup,_,, ||bll, < oo for
eachb € B or B is o-bounded and” is meager inw].

Next, we study the topological and descriptive structure of the@éls .#). We
recall that a topological space is Baire if the intersection of any countable family
of open dense subsets ¥fis dense inX; we say thatX is hereditarily Baireif each
closed subspace of is Baire. It is known that each Polish space is hereditarily Baire
and that a coanalytic space (that is, a space of the projectivellass hereditarily
Baire if and only if it is Polish (se€l4, Corollary 21.21]).

THEOREMS. Let B C R” and let.# be a semi-filter om.
(1) The set®(B;.%) is a continuous image @& x .7 x (—1, 1)°.
(2) If B, .#Z € x1 for somen € N, then®(B; .%) € ..
(3) If # is a non-meager filter omw, then the space (%) is Baire moreover, the
closureA of any subsef C ®(F,) in ®(.%) is a Baire space.
(4) If # is a non-meageP-filter, then the space(.%) is hereditarily Baire.
(5) The space®(B;.%#) is not hereditarily Baire ifB contains a function sequence
(bn)new With 4 b, <* 1 b, for everyn € w and such that for everlg € B there is
n € w such thatt b <* 4 b,.

It is well-known that each ultrafilter om is non-meager (sed 4, Exercise 8.50]
or [26]). Moreover, there are models of ZFC containing non-meager filters of projec-
tive classxz? (see B] or [13]). Repeating the argument of Talagrartd][(see also
[24, page 32]), we can prove that a semi-filtBron » is meager if and only i lies
in ao-compact subset dtv]” if and only if there is an increasing number sequence
(Mkew € w” such that eack € .7 meets all but finitely many intervalsn,, m.1).
A filter .# is called aP-filter if for any countable subcollectio#’ C .# there is
F € . such that the compleme#t \ F' is finite for anyF’ € .#’. Ultrafilters that
are P-filters are calledP-points It is well known thatP-points exist under Martin’s
Axiom, while there exist models of ZFC withol-points R6]. Let us note that the
Fréchet filter§, of all cofinite subsets ab is a meageP-filter. The problem of the
existence of a non-meag®e¥rfilter seems to still be open (se4 page 230]).
Theorems2 and 4 will allow us to prove the following two important results
describing the interplay between various boundedness properties.

THEOREM®G. For a subseB c R, the following conditions are equivalent

(1) Biso-bounded

(2) Bis ll-bounded

(3) Bisll#z-bounded for some semi-filte¥;

(4) Bisll z-bounded for any semi-filte?;

(5) Bis0z-bounded for some meager semi-filtér.
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THEOREM7. (1) If Z is a filter, then eacloz-bounded subset dR® is | »-
bounded.
(2) Foranyfilters.#, ..., %, and any functio € R, the union®(b; #;)U---U
®(b; #,) is l,.-bounded inR®.

Now we apply Theorem4 and5 to sets of the forn®(.%).

COROLLARY 1. Let.Z be a semi-filter om.

(1) ®(&)is an absolutely symmetric densg-bounded subset di®.

(2) If Z is afilter, then®(.%) is a| z-bounded convex sublattice &”.

(3) ®&(%)iso-bounded iR if and only if the semi-filter is meager.

(4) If .# is anon-meager filter ow, then the se®(.%) is OFz-undetermined and
Baire.

(5) If # is a non-meageP-filter, then the space(.%) is hereditarily Baire.

In the case whet#7 = [w]”, the set®(.%#) gives us an interesting example of an
0-bounded subset.

ProPOSITIONL. The set®([w]®) has the following properties.

(1) ®([w]®) is a dense absolutely symmetéig-subset ofR®.

(2) ®([w]®) is o-bounded anaby,.-bounded.

(3) ®([w]®) is not I-bounded.

(4) Forany filter 7, the set®([w]”) is notoz-bounded.

(5) The producB x ®([w]?) with a subseB C R* is o-bounded iMlR® x R if and
only if B is o-bounded inR®.

As observed earlier, we ha@g ®(%); %) = ®(F, F) = ®(Z) foranyfilter 7.

If % is a non-meager filter, then by Corollaly(4) the setB = ®(.%) is OFz-
undetermined, that is,z-bounded but not }t-bounded. In particularB is not
o-bounded, while®(B;.%) = ®(%) = B is |z-bounded. This shows that the
analyticity of the seB in Theorem4 (3) is essential.

Now we apply Theorem8-5 to subsets of the formrA(%) = ®{id"}nen; F),
where id is the mapi — i" fori € w. Note that whenZ = 3, the setA(.%)
coincides with the set of all functions of polynomial growth. In the particular case of
the setsA(.%), Theorems3-5 imply the following.

THEOREMS8. Let F be a filter onw.

(1) A(Z)is adense absolutely symmetric linear sublattice and subalgebRe of
(2) A(Z)is alz-bounded subset k.

(3) If & is meager, therA(.%) is ac-bounded subset dR*.

(4) If & is non-meager, theA(.%) is a Baire OFz-undetermined subset &.
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(5) If # is a non-meageP-filter, then A(%) contains the absolutely symmetric
dense convex hereditarily Baire sublattig€.7 ).

(6) The spaceA(%) is not hereditarily Baire.

(7) The spaceéA(%) is a continuous image oF x N x (—1, 1)“.

(8) If # € =} for somen € N, thenA(F#) € X.

Since each ultrafilter is non-meag@6] and there are models of ZFC containing
non-meager filters of projective class; (see B] or [13]), Theorems8 implies the
following corollary, resolving Problem 5 ofLl].

COROLLARY 2. The countable produ®® contains a Baire OF-undetermined linear
subalgebra. It is consistent to assume that this subalgebra belongs to the projective
classxj.

It is interesting to remark that under the principle of Projective Determinacy, each
projective subset of a Polish group is OF-determined (this folldw®foposition 4]
and [L4, Exercise 38.18]). Thus the existence of a projective OF-undetermined subset
of R” is undecidable in ZFC.

Next, we consider Problem 3.2 ¢, concerning products of (stricthyg-bounded
groups. Answering a part of this problem, it was showr®irtthat the producG x H
of two llI-bounded topological groups is ll-bounded. Moreover, the proGust H
of a ll-bounded grougs and ano-bounded groupd is o-bounded. For products of I-
or o-bounded groups the situation is different. Assuming the existence of two filters
that are not near coherent, we shall construct two I-bounded subalgelrasvbbse
product is nob-bounded inR® x R and whose sum iR® coincides withR®.

Families %4, ..., .%, C %(w) are callednear coherentf there is an increasing
number sequenceny )y, € »® such that for any elements, € %, ..., F, € %,

there isk € w such thatim,_, m,1) NF # @ for alli < n. Near coherence of
filters was introduced and studied in detail by Blassting]. The statement that any
two filters onw are near coherent is known in set theory as NCF; NCF is false under
Martin’s Axiom [5], but there are models of ZFC in which NCF is trde§]. Note that

the Talagrand characterizatiohl] of meagerness quoted earlier implies that meager
(semi-)filters.%4, . .., .%, are near coherent.

THEOREM 9. For (semiffilters .71, ..., .%,, the following conditions are equiva-
lent.

(1) The(semifilters.Z,, ..., %, are near coherent.

(2) Forany functiorb € R” the product®(b; .%#1) x - - - x ®(b; .%#,) is0z-bounded
in (R*)" for some(semifilter .%.

(3) The productA(%#1) x --- x A(%,) is o-bounded in(R*)".

(4) The product®(.%1) x --- x ®(F,) is 0-bounded in(R*)".
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(5) The sum®(%1) + - - - + ®(F,) is o-bounded iNR*.

(6) &(F)+ -+ ®(F) #R”.

Moreover, if 71, . .., 7, are filters, then the conditiond)—(6) are equivalent to the
following.

(7) Thereis a permutation of {1, ..., n} such that for any functiob € R“ the set
®b; Zsqys - - - » Fom) IS 0z-bounded for some filtez .

(8) There is a permutation of {1, ..., n} such that® (%, ), . .., Zom) # R”.
(9) The union®(Z#) U --- U ®(%,) is 0z-bounded for some filtef”.

Theorems® and7 imply the following.

COROLLARY 3. Under the negation of NCF, there are two I-bounded subalgebras
A, A, of R® such that

(1) the productA; x A, is noto-bounded inR® x R*;

(2) the sumA; + A, coincides withR?;

(3) theunionAy U A;is Ij,.-bounded inR®;

(4) the unionA; U A; fails to beoz-bounded for all filters#.

After writing this paper, we learned that a result similar to Corolladyad been
obtained in 6] and [20, Section 5]. Specifically, under CH twabounded linear
subspace$ ;, L, ¢ R“ were constructed whose sum + L, equalsR®. In fact,
the spaces ;, L, have the Menger property, which is stronger tlwaldoundedness.
Another result of this sort can be also found 5]

It turns out that additional set-theoretic assumptions of some kind, such as those
in [16] and Corollary3, are essential: under NCF the product of terdvounded
subrings ofR” is o-bounded. Indeed, this result is true for what we call mixable
subsets oR”.

We shall say that a subsét of R” is mixableif there exists a non-decreasing
function f : [0, c0) — [0, co) such that for any, y € X there isz € X such that
f otz >* max{1 x, 1 y}. Many examples of mixable subsetsRif are supplied by
subsets ofR” closed with respect to certain algebraic operations. For example, any
subring ofR” is mixable, becausg'x? + y? > max|x|, |y|} for anyx, y € R”. An
additive subgroups of R is mixable if it is| - |-closed that is, if|x| € G for each
x € G. Inits turn, sincex| = max{x, —x}, each sublatticd. of R” is | - |-closed
provided it iscentrally symmetrién the sense thatx € L for eachx € L. We do
not know however if every additive subgroup®f is mixable. Mixableo-bounded
subsets oR” have the following remarkable property.

PROPOSITIONZ2. A mixable subseX C R is o-bounded inR® if and only if it is
0z-bounded inR® for some filter# onw.
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This proposition will help us to characterize NCF in terms of preservation of
boundedness by products. It is interesting to compare our characterization (resulting
from Theoremg, 7, 9) with the characterizations of NCF presentedéh [

THEOREM 10. The following conditions are equivalent.

(1) NCFistrue(that is, any two filters o are near coherent

(2) The productX x Y of o-bounded mixable subseXs Y ¢ R” is | z-bounded in
R® x R for some filter% .

(3) The productX x Y of o-bounded centrally symmetric sublatticksY c R is
| z-bounded inR® x R for some filter.%.

(4) The produciX x Y of o-bounded-|-closed sublatticeX, Y c R”is|z-bounded
in R” x R® for some filter.7.

(5) The productX x Y of o-bounded - |-closed additive subgroups, Y C R? is
| z-bounded inR® x R for some filter.%.

(6) The produciX x Y of o-bounded subringX, Y c R“is | z-bounded irR® x R®
for some filter%.

(7) The productX x Y of o-bounded linear subalgebras, Y ¢ R is | »-bounded
in R” x R® for some filter.7.

(8) For any filters.#1, %, on w, the productA(%#;) x A(%,) of the I-bounded
subalgebrasA(%,), A(.%,) of R” is o-bounded inR” x R®.

(9) Forany filters.Z;, %, onw, the SUMA(Z,) + A(F») # R”.

Finally, let us ask a question suggested by the above results. We have explorec
subrings ofR®, but we know nothing about subrings of the countable pro@uabf
the complex plan€.

QUESTION 1. Is everyo-bounded subgroufsubring of C* mixable? I-bounded?
0z-bounded for some filte# ?

Filter games and properties of the set®(B; .%)

Now let us pass to proofs of our results. We start from the proofs of certain
statements concerning the interplay between the game @Fsubsets oR” and the
filter games considered in ] and [18].

First we make precise the notions of a game and of a strategy in a game. From
the most general point of view, the games we consider in this paper can be describec
as follows. Suppose that we are supplied with 96tsY and a subse® of the
product X® x Y* (& can be thought of as some property of pairs of sequences
(Xn), (Yn)) € X® x Y?®). Two players, | and Il, choose at every stepe w a
point x, of the setX and a pointy, of the setY, respectively. At the end of the
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game, player Il is declared the winner if the constructed sequé&rggs, and(Yn)neo
have the propertyp (equivalently, the paif(Xn)new, (Yn)new) belOngs to the sed);
otherwise, player | is declared the winner. The 9¢tandY are called the sets of
admissible movesf | and I, respectively. Thus thgamecan be identified with the
subsetd C X“ x Y®.

A strategy of Il in the game® C X“ x Y“ can be thought as a function
$i: X=¢ — Y, whereX=* = J,_, X" stands for the family of all finite sequences of
elements oiX (including the empty sequence). Playeplihys according t@ strategy
B X< = Yif y = B (Xo, . .., X) for eachk € w and eachxo, ... x) € X1 A
strategy $: X=¢ — Y of Il is winningin a game® c X“ x Y if for any infinite
sequenceXn)ne, € X“ the pair (Xn)news (Yn)new) belongs tod® whenever Il plays
according to the strategy, $

Dually, a strategy of | in a gam@& c X x Y¢ is a function $: Y=* — X, and
player | plays according to a strategyihxc = $ (Yo, - - -, Yk_1) for eachk € » and
(Yo, - --» Yke1) € YK A strategy $: Y=¢ — X of | is winning if for any infinite
sequenceVYike. € Y the pair((Xn)new, (Yn)neo) fails to belong to® whenever |
plays according to the strategy. $

Let X be a set. For a finite sequenge= (o, ..., X,) € X=? and a poinx € X,
let |o| denote the length + 1 of o and writeo"xX = (Xo, ..., Xn, X). By [X]” we
denote the family of all infinite subsets ¥fand by[ X]= = 22(X) \ [ X]” the family
of all finite subsets oK.

We shall reduce our game @Ro the game® (2, [w]=*, &) considered in17]
and [L8]. Given subsets?’, & c #(w), the gameb (2, [w]=*, %) is defined as
follows. At every stefk € w, two players, | and Il, choose an elemeite 2" and a
finite subses, C Xy, respectively. At the end of the game, Il is declared the winner
if Ukew & € Z.

We shall exploit the following two results proven ih7, Theorems 2.11 and 2.15].
(We recall thafy, stands for the Fachet filter of all cofinite subsets af)

LEMMA 1 (Laflamme 17]). Let.# be afilter onw.

(1) 1has awinning strategy in the gan®§,, [w]~*, %) if and only if the filter.%#
is meager.

(2) I has no winning strategy in the gan®&(.%, [w]~?, %) if and only if & is a
non-meageP-filter.

To reduce the game QFon ®&(b;.%#) to the gamed (3, [w]~*, #), we shall
consider two intermediate games: @Cabbreviated from Open-Compact) and &H
(abbreviated from Length-Height) on subsetRsf

Forafamily.# c #(w), the game OG on a subseB of a topological grous is
defined as follows. Two players, | and Il, at every step w choose a neighborhood
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U, € .4 (e) and a compact subskt, of G, respectively. At the end of the game, Il
is declared the winner B C (. (e, k) Kn - Un for some finite-to-one function
¢ : v — o (recall that.4 (e) is the family of all neighborhoods of the identigof
the groupG). We denote by# (G) the collection of all compact subsets®f

LEMMA 2. For a family % c £ (w), the player | has a winning strategy in the
game OF: on a subseB of a topological groupG if and only if | has a winning
strategy in the game O£on B.

PrROOF. The ‘if’ part is trivial and follows from the compactness of finite subsets
of G. To prove the ‘only if’ part, assume that ${G]=*)=® — _#'(e) is a winning
strategy of | in the game OF on B. Fix a functiong: .#(e) — _4'(e) such
thatg(U) - g(U) c U for anyU e .#'(e) and, using compactness, fix a function
f: 7 (G) x 4 — [G]™ suchthatk c f(K,U)U forany(K,U) € .2 (G) x
A (e).

We define a strateg_?: H(G)=? — A (e) of | in the game OG by induction, by
setting$(¥) = g($(%)) and

$(Ko, ..., Kn) = go $( (Ko, $1)), T(K1, $(Ko)), ..., f(Kn, $(Ko, ..., Kn-1)))

for (Ko, ..., Ky € #(G)=“. Let us show tha® is a winning strategy. Fix any
infinite sequenceK,)n., € 7 (G)” of compact subsets d6. We need to show
that for any finite-to-one functiop € «®, we haveB ¢ gz Nneyr) Kn - Un,

whereU,, = $(Ko, ..., K,_1) for n € w. For everyn € w consider the finite subset
Fn = f(K,, Uy of G. Since $ is a winning strateg¥ ¢ | Jq.» ﬂnew(F) F, - V,,
whereV, = $(F. ..., F,_1) for n € . Observe that

g(Vn) =go$(Fo, ..., Fio)) = 9o $(f (Ko, Up), ..., F(Kn1, Un_1))
=$(Ko, ..., Kn_1) = U,
Then for eachF € %, we have
[ Ka-UnC [ (f(Ka.Un)-Un) - Uy

neg(F) nep(F)

=) Fo-9Va) -9V C [ Fa- Vi

nep(F) nep(F)
and sinceB ¢ (e 5[ ney ) Fn- Vo, we conclude thaB ¢ ez neyr) Kn-Un. O

Next, given a family# c & (w) we consider the game LiHon a subseB c R?,
defined as follows. Two players, | and Il, choose at every ktep» two numbers
andmy, respectively. At the end of the game, Il is declared the winner if there is a
finite-to-one functiony : @ — w such that for everx € B there isF € .% such that
1XIln, < my forallk € p(F).
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LEMMA 3. Let.# C Z(w). If player | has a winning strategy in the game @C
on a subseB of R?, then | has a winning strategy in the game ktén B.

PrROOF. Fix a winning strategy $.# (R*)=* — _4/(0) of | in the game OG on
a subseB of R”. Letl: .#(0) — w be a function assigning to each neighborhood
U e .#(0) a numbel (U) € o such thatBy,(0) ¢ U, whereB,(e) = {x € R“ :
Xlln < &} B

Define a strateg$: v~ — w of | in the game LHz on B by setting

é(mo, oM = | o $([—mo, mo]w, e, =My, mk]‘”)

for (Mo, ..., M) € w=*. We claim tha is a winning strategy for | in the game L,H

To show this, take an arbitrary infinite sequelio®)y.., € »* and lethy = $¥) and

ng = ﬂ_S(mo, ..., m_,) for k > 0. Given a finite-to-one map : ® — » we have to

find a functionf € B such that for anyr € .7 there is & € ¢(F) with || f ||, > M.
For eachF € % andk € ¢(F), let Cx = [-m, m]® C R? and U, =

$(Co, ..., Ci1). Observe that(Uy) = | o $(Cy, ..., C 1) = ng, and thusCy +

Biuy(0) = {x € R : Xl < my}. Since $ is a winning strategy for | in the game

OCgz, there isf € B such thatf ¢ ﬂkw(F) C« + Uy for any F € .. Hence there is

k € o(F) with f ¢ C + U, D C + By, (0), and it follows that| f ||, > m,. O

LEMMA 4. For any non-meager filtet” on w and any functiorb € »®, the first
player has no winning strategy in the game %idn the subse®(b; .%) of R“.

PrROOF. Assume that $ w=® — w is a strategy of | in the game LiHon & (b; %)
for some non-meager filte# onw. To show that $ is not winning we have to find
an infinite number sequenge )k, € w® and a finite-to-one map : w — w such
that for every functionf € ®(b; %) there iskF € .# such that| f ||,, < my for all
k € ¢(F), wheren, = $(my, ..., m_1). To construct such a sequen@sy), we
shall use the absence of a winning strategy for | in the géig, [w]=“, %) (see
Lemmal(1)). Define astrateg_‘y: ([w]™)=* — F, forlinthegameb (3, [w]=*, %)

by letting
$(So. -, ) = {N € ®:n > MaxS(bllmaxss - - - » IDllmaxs,)s MAXS}}

for each sequenae, . . ., o) of finite subsets of. Since$ is not a winning strategy
forlinthe gameb (3, [w]=*, %), there is an infinite sequen¢® )., of finite subsets
of w such thatJ,_, & € Z ands, C $(p, ..., S 1) forallk € w.

For everyk € w, let mg = ||b||maxs, @NAd N = $(My, ..., M_3). Then from the
fact thats, C i(so, ..., S1), we have mirs, > maxn,, maxs._,} for all k € w.
Therefore, the family{s ke, IS disjoint and we can find a finite-to-one function
¢ : w — w such thas, c ¢~1(k) for everyk € w.
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Fix any functionf € ®(b;.%), and choosd- € .# such that| f||; < |/b||; for
alli € F. Since% is a filter andJ,_, s« € .#, we can assume th&t C |, S-
Then for anyk € ¢(F) we can findi € scN F and conclude thatf |, < | fl <
Iblli < IIbllmaxse = Mk. This means that the strategy $ of | is not winning in the
game LH;. O

We say that a space mowhere locally compadt none of its points has a compact
neighborhood. For the proof of Theoreh{3) we shall need the following.

LEMMA 5. If the setB is a closed nowhere locally compact subsetRsf, then
®(B; %) = R” for every non-meager filte# on w.

PrROOF. Assume that# is a non-meager filter anB is a closed nowhere locally
compact subset dR”. To show that®(B;.%#) = R®, fix any functionx € R and
find a functionf € w such that|x|, < || f|, foralln € w. For a subseA C R”
andn € o, let diam,(A) = sup, ., [IX — Ylla and|| Alln = SR, lalln.

Repeating the standard inductive argument (4de$ection 7.C]), assign to each
finite number sequence € »=“ an open subsél, C B and a numbek(c) € w so
that for everyo € w=* andi € w the following conditions hold:

(1) Uori C Uy
(2) diame)(U,i) <277 and||Ugilli) > 1 +1;
(3) (") > (o) and diam, i) (Uy+) = oo.

Next, define a strategy:K[w]=*)=® — 3§, for | in the game® (§,, [w]=*, F) by

letting
(S0, .- %) = {n €w:n=1(| fllmaxss - - - » ”f”maxsk)}

for each sequenceés, ..., ) of finite subsets ofv. By Lemmal (1), $ is not a
winning strategy. This means that there exists a sequege, of finite subsets ob

such that J,_, s« € . ands. C $(s, ..., S1) for all k € w. For everyk € o, let

Mk = || f Imaxs, @Ndox = (Mo, ..., My). SinceB is closed in the complete spaie,

the intersectiorf ), U, contains a poinb € B. We claim that|| f|, < ||b]|, for

alln € U, s Indeed, givem € (., S, findk € w such thain € s.. Since
S C $(s, ..., S1) = [l (ok_1), 00), we findn > | (6y_1) and

Bl = 1Bl = Ul ) — didaM g, 1 (Ug,)
>me+1-— 2ol >m=|f llmaxs, = I fln.

Thus| f|l, < [Ib], for alln € Y, & as claimed. Finally, since we hay&|, <
| flin forall n € w, it follows thatx € ®(B; .%), as required. O

We now prove another difficult lemma, which will be used in the proof of statements
(3) and (4) of Theorerb.
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LEMMA 6. Assume that#? C .#’ are two filters orw such that | has no winning
strategy in the gam&(.%, [w]=*, .%’). Then for any subseh C ®(.%), the closure
Aof Ain ®(%') is a Baire space.

PrROOF. We have to verify that the intersectign, ., Ux of any decreasing sequence
(Uken Of dense open subsets Afis dense inA. It suffices to verify that for any
non-empty open subse, C A, the intersectiof), ., Uk is non-empty.

Fix any functionh, € Uy N A. SinceU, is a neighborhood ok, in A, there
arel(¥) € w ande(@) > 0 such thatx € U, for any functionx e A satisfying
X — hylligy < e(@). Sincehy; € A C ®(.%), we can find a subsdt(¥) € .# such
thatF (@) C [1(?) + 1, oo) and| hy|l, < nforall n € F(%).

By induction over the tre@=, assign to every finite sequenees = a function
h, € A asetF(o) € %, anumbet (o) € w, and real positive numbetgo), §(o)
such that the following conditions hold for everye w=* andi € w:

(1) 8(o"i) < 8(0) ands(o”i) < 2 Minjcroynoil (i — 1ol

(2) h,.i € ANUq and|h, s —h, |l < 27 min{e (o), §(o"i)};
() e(0hi) < e(o);

(4) forallx € A, [|X — honillini) < &(a”i) impliesx € Ui

(5) IIhesillj < jforall j € F(o"i);

(6) maxi,l(c”i)} <minF(a"i).

Define a strategy $([w]=?)~* — % for | in the game® (7, [w]=*, F") letting
$(s, ..., %) = F(maxsy, ..., maxs) for (s, ..., %) € ([w]**)=*. According to
our hypothesis, $ is not a winning strategy of I. Hence there is a sequ&hge of
finite subsets o such that J,_, sc € .7’ ands C $(so, ..., S1) forallk € w.

For everyk € w, let my = maxs, andoy, = (Mo, ..., my). Consider the function
sequencéh, ke, C A. The condition (2) implies that this sequence is Cauchyin
and thus has a limi., € R”. Let us show thafh|li <i foralli € J,_, s. Given
arbitraryi € F' = ., S findk € o withi € s. Sincei € 5. C $(s, ..., S1) =
F(ov_1) andi < maxs, = my, we have

[hoclli < oo lli 4 1hee = oy lli < TThe i + Z Ihey = Doy llm,

p=k
<ol D 5580p) < gl + ) 556000
p=k p=k
1. 1. .
< Mol 4800 < Mol + 56 = o) = 50+ 1o <,

and thush,, € ®(%"). Sinceh,, is the limit of the sequencén,, )k, C A, we have
ha € A.
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Now it remains to verify thah,, € Uy = U, _, for all k € w. By (4), it
suffices to show thath., — h,,_, lie) < €(ok-1). But using the fact thdt(oy_;) <
min F (ox_1) < mins, < my, we find

o0 o0
1Moo = Mo Ny < Z 1he, = oy oy < Z e, — Ny, llm,

< Z T ‘S(O‘p ) < Z ﬁswk D) < e0),

and the proof is complete. O

In our subsequent considerations, we shall often need the following simple but
useful result.

LEMMA 7. For any o-bounded subseB c R“, there is an increasing function
b € w® such that®(B; %) C ®(b;.%) for every semi-filterZ.

PrOOF. Write B = | ,.,, Bn, Where(B,).,, is an increasing sequence of bounded
subsets ofR“. Letb(—1) = 0, and for everyn € w fix by induction anyb(n) >
b(n — 1) with b(n) > suf||x|l, : X € B,}. Clearly,b is validly defined. To prove
that ®(B;.%) C ®(b;.%) for any semi-filter.#, fix any functionx € ®(B;.%)
and, by the definition of®»(B;.%#), find a functiony € B and a subseF ¢ %
such that||x|l; < |lyl; foralli € F. Next, findn € N such thaty € B, and let
F'=FnN[n,o0) € Z. Then|x|; < |lylli < b(i) = |b|; foralli € F’, and thus
X € ®(b; 7). O

In the sequel we shall need a characterization of meager semi-filters which gener-
alizes the Talagrand characterization of meager filteisdnd can be proved by the
same argument (se24, page 32]).

ProOPOSITION3. For a semi-filter#, the following conditions are equivalent
(1) .7 is meager inZ(w);
(2) .7 lies in ac-compact subset ¢é];
(3) there is an increasing number sequeriog) such that eaclk € .# meets all
but finitely many intervalgm;, m1).

Proofs of main results

PROOF OFTHEOREM?Z2. (1) First, assume that the sBtis 0z-bounded inR®. For
everyn € w consider the open neighborhood = {x € R“ : || x|, < 1} of the origin
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of R®. Since the seB isoz-bounded iR® there is a sequence€,) ., Of finite subsets
of R and a finite-to-one functiop € o such thaB C (Jr 5 (Nneyr) Fn + Un. We
claim thatB c ®(b; p[.#]), whereb(n) = 1 + max{||x|l,: X € F,}, n € w.

Take anyx € B, andfindF € .# suchthatforevery € ¢(F)we havex € F,+U,.
Then||x]|l, < b(n), and hence € ®(b; p[.Z]).

Next, assuming thaB c ®(b, ¢[.%#]) for some functiorb € R and some finite-
to-one functionp € w®, we shall show that the s& is oz-bounded inR®. Let
(Ukkeo be a sequence of neighborhoods of the origifRof For everyk € w, find
Nk € w andeg, > 0 such thatB,, (gx) C Uy, whereB,(e) = {x € R” : ||X||, < &}. We
can assume that, ; > ny for all k € w. Now for everyk € w find a finite subset
F« € R® such thatf— 1 b(ng,1), 1 b(N1)]” € Fe + By (ex). Lety € o be the
finite-to-one function defined by ~1(k) = [Ny, N.1) fork € w.

We claim thatB C e, 5 Nkeyopr Fx + Uk- Take anyx € B C ®(b; 9[#]) and
find F € . such thatt x(i) < 1 b(i) for alli € ¢(F). Since.Z is a semi-filter
andg is finite-to-one, we can assume that mitF) > ny. In this case, for every
k € ¥ o ¢(F) we can find a numbere [ng, n,.1) Ne(F). Then

X € [—1b(i), 1 b()]” + B (0) C [~ 1 b(Nky1), 1 B(Nki1)]° + By, (0)
C Fy + Bn (80) + By (0) = Fy + By, (s1) C Fi + Uy

HenceB C Urcz Nkey (e Fx + Uk, and soB is 0z -bounded.

(2) In light of the previous item, to prove the second statement of The@rem
it suffices to verify that eacl-bounded subseB c R“ is o..-bounded. Fix a
sequenceU,)n.., of neighborhoods of the origin &“. Since the seB is o-bounded
in R, for everyk € o there is a sequenceX),.« of finite subsets ofR® such
that B C [, F<+ U,. Foreveryk € o, let F, = Ukn FX, and note that
B C U, F¥+ U, € U, Fo +U,. Then for every € B there is an infinite subset
S C w such thax € F, + U, for eachn € S. HenceB C sy Mhes Fn -+ Un,
which means that the sé&tis oy,;.-bounded. O

PROOF OF THEOREM 4. Let B ¢ R“ and.# be a semi-filter onw. It will be
convenient to start with the last assertion of the theorem.

(4) We must show thab(B; .%) iso-bounded if and only if either syp, b, < oo
forallb € B or B is o-bounded and” is meager.

If sup,., IIblln < oo for all b € B, then the set®(b, .#) consists of bounded
functions and hence is-bounded irR“. Next, assume that the €is o -bounded and
the semi-filter.# is meager. By Lemm@, ®(B;.%) C ®(b; .%#) for some increasing
functionb : w — w. Using Propositior8, find an increasing number sequeriog)
such that each elemeft € .% meets almost all half-intervalsn;, m;;;). Consider
the increasing functiof : «w — w defined byf (i) = b(m;,,) fori € w. The
o-boundedness of the set(b;.%) will follow as soon as we show thdtx <* f
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for everyx € ®(b; %). Indeed, given anx € ®(b; %), find F € . such that
IX]li < b(@) foralli € F. Next, findig € w such thatF N [m;, m;;) # ¥ for all

i > ip. Then for anyk > m;, there is a numbeir > iy with k € [m;, m;;) and an
elementn € F N [m;1, m;»). Observing that

Xl < IX]ln < b(n) <b(Miyp) = f) < f(m) < k),

we conclude that x <* f.

Now assume that the set(B;.%#) is o-bounded and syp, ||bll, = oo for some
b € B. We have to show that the sBtis o-bounded and” is meager. Using the
o-boundedness of the set(B;.%#), find an increasing functioti : « — w such that
+x <* f foranyx € ®(B;.%). Letmy, = 0, and by recursion define an increasing
number sequence@n;) by settingm;,; = min{fk € w : ||bllx > 2f(m;)}. We claim
that each elemerf € . meets almost all half-intervalsn;, m;_;). ReplacingF by
F N [n, oo) for sufficiently largen, if necessary, we can assume thiaf; > 0 for all
i € F. Then the functiorbg /2, wherebe (i) = [[b|lminFrii.o), DElONGS toB(B; %),
and thusbe /2 <* f. Findip € w such thabg (k) < 2f (k) for all k > m;,. We claim
that for everyi > i, the setF meets the half-intervdim;, m;.;). Indeed, assuming
thatF N [m;, m ;) = @ for somei > ig we would geto(m;1) < be(m;) < 2f(m,),
which contradicts the definition ah;.;. ThereforeF meets all the half-intervals
[m;, mi,) fori > io, and by Propositio, the semi-filter.7 is meager.

It remains to show that the s&t is o-bounded. Observe that for atwe B the
function b/2 belongs to®(b, %), and thusb/2 <* f. This is equivalent to saying
thatb <* 2f for eachb € B, and we conclude tha& is o-bounded inR®.

Now we are able to prove the first item of Theorém

(1) If the setB is o-bounded inR®, then we can apply Lemma to find an
increasing functiorb € »” with ®(B;.#) C ®(b;.%). Applying Theorem2, we
conclude that the seb(b;.%), and therefore the sei(B; .%), is 0z-bounded.

Now we show that®(b; .%) is | z-bounded if.% is a filter. If the filter % is
meager, ther®(b;.%) is o-bounded according to item (4). Consequently, the set
®(B; %) c ®(b;.%) is o-bounded and hence iIsz-bounded. If the filterZ is
non-meager, then Lemmas4 imply that the first player has no winning strategy in
the games LK, OCz and OF; on®(b; .%). This implies that the seb(b; .%#), and
hence the seb(B; .%), is | z-bounded.

(2) To prove the second item of Theorérit suffices to verify that a subst ¢ R”
is 0-bounded providedd(B; §,) # R®. Fix any functionf € R®\ ®(B; ;). We
claimthatB c ®(| f|+1;[@]”). Indeed, leb € B. Then for each cofinite s& C w
there exists1 € F such that|| f ||, > ||bll,, and it follows that there exists an infinite
setF’ C w such that| f ||, > |b|l, for all n € F’. This implies immediately that
be ®(f|+ 1;[w]?), and so we hav8 C &(|f| + 1;[w]®), as claimed. It follows
from this, by Theoren2, that the seB is o-bounded.
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(3) Assume thaB is an analytic subspace & and.# is a non-meager filter. If
the setB is o-bounded, then by item (1), the setB; .%) is 0#-bounded inR®, and
thus®(B; %) # R”. If B is noto-bounded, theB contains a subsé@’ c B which
is nowhere locally compact and is closedRfi (see [L4, Corollary 21.23]). In this
situation we can apply Lemnta and conclude that

R” = ®(B'; %) C ®(B; #) = R",
and that in particula®(B; .%) is notoz-bounded. O

PROOF OFTHEOREMS. Let B ¢ R and.# be a semi-filter omw.

(1) Recallthatfob € R?andF € [w]”, we denote by the function inR” defined
by be(i) = |IBllminerricon fOr alli € w. It is easy to check that the mappify x
[w]® — R defined by(b, F) — bg is continuous, and it then follows immediately
that the map¥ : R® x [w]® x (—1,1)® — R* defined byW: (b, F,t) — t - bg is
also continuous, whette bg is the coordinatewise product of the functidresndbe.
Clearly, the space&(B;.%) is the image of the produ@ x . x (—1, 1)* underVy.

(2) If B,.Z € X} for somen € N, thenB x . x (—1,1)” € X} (see [I4,
Proposition 37.1]), and®(B; .%), being a continuous image & x .# x (-1, 1),
also belongs to the clags}.

(3) If 7 is anon-meager filter, then by Lemrh#1) the first player has no winning
strategy in the gam& (3., [w]=", .%). Applying Lemmas, we conclude that the
closureA of any subseA ¢ ®(F,) in ®(.%) is a Baire space. In particular, the space
®(F), being the closure ab(3,), is Baire.

(4) If # is a non-meageP-filter, then by Lemmal (2), the first player has no
winning strategy in the gamé& (%, [w]=*, %). Applying Lemmas6, we conclude
that the closure of any subsatc ®(%) in ®(%) is a Baire space. The spag¥.%)
is thus hereditarily Baire.

(5) Suppose thatby)ve, € B is a sequence of unbounded functions such that
rbe <* 1 b,y for all k € w and such that for everly € B there isk € w such that
+b <* 1be. Letly = 0. By induction, construct an increasing number sequence
(IWkew € @® such that for everk € w and everyi > I, we havet b_1(1) < 1 by(i)
(which is equivalent tdlb,_1]li < |Ibll;). It follows that for everyk < n and every
i > 1, we have|lbyli < [[byl;.

Given a subseA of w, consider the functioriy € R” defined fori € w by fa(i) =
llbklli, wherek € wis chosen to satisfy the condition m@@, i [N (AU{0})) € [Ix, lxs1).
We claim thatf, € ®(B; %) if and only if the setA is finite.

Assuming thatA is finite, findk € w such that magA U {0}) € [ly, lks1), and
observe thatfa(i)| = |Ibglli < ||bksalli foralli > I 1. Thisyieldsf, € ®(B; 7).

Next, assume that the sétis infinite. To show thatf, ¢ ®(B;.%) it suffices
for everyb € B to find m €  such that| fall; > ||b|; for all i > m. Given
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arbitraryb € B, find p € » such thatt b <* 1 b,. Next, findgq > p such that
ANy, lgs1) # Y andtb(i) < tby(i) foralli > 1,. Given arbitraryi > |44, find
k € w such that mag0,i] N (AU {0}) € [l\, lx;1), and observe th& > q > p and
I falli = [ a0 = lIbclli = lIbplli > [[bl;.

Now consider the ma: #(w) — R assigning to each subsét c o the
function fa. Itis easy to see that the mapis continuous. We have already proved
that U (Z(w)) N ®(B;.%) = ¥ ([w]™), and thus¥ ([w]=*) is a countable closed
subset of®(B; %) because the seb (#(w)) is compact. It remains to observe
that the spac&l ([w]=“) has no isolated points and thét([w]=“) is thus a closed
meager subspace @f(B;.%#). This implies that the space(B; .%) is not hereditarily
Baire. O

PROOF OFTHEOREM 6. The implications (1) implies (5), (1) implies (4), (4) im-
plies (3), and (3) implies (2) are trivial.

Though the implication (2) implies (1) follows from Theoreinfl) we give a short
proof to make the paper self-contained. So, supposeBhata Il-bounded subset
of R” and let $: .4 (0)=* — [R”]=” be a winning strategy of the second player in
the game OF on the s& For everyn € w, letU, = {x € R” : |IX|l, < 1}.

Our crucial observation is that

be |J [)$WUn, ... Us, Un) +Un

N1,...,NK E®=Y MEwW

for everyb € B. Indeed, assuming that this is false, we can construct by induction an
infinite sequenceény )y, € »* such thab ¢ $U,,, ..., U, ) + U, foreveryk € w.
Thenb ¢ U,., $(Un,, . ... Uy) + Uy, which shows that the strategy $ is not winning,

a contradiction. HencB is contained in the set

U [)$WUn.....Us, Up) + Un,

N1,...,NK E®=®Y MEW

which is the countable union of the bounded subggfs, $(U,,, ..., Un, Un) +Un
of R® for (N, ..., Ny) € w=*.

(5) implies (1): Assume that a sBtC R” is 0#-bounded for some meager semi-
filter #. By Theorem2, B c ®(b; ¢[.#]) for someb € »” and some finite-to-one
function¢ € w”. Theo-boundedness of the set(b; ¢[.#]) will therefore follow
from Theoren¥ (4) as soon as we prove that the semi-filtgr7 | is meager.

By Proposition3, the semi-filter.#, being meager, lies in a-compact subset
A C [w]”. Considerthe map?(¢) : Y (w) - P (w) defined byZ (p)(A) = ¢(A)
for A € Z(w). Sincey is finite-to-one,Z (p) ((w]®) C [w]”. The continuity of% ()
implies that the se¥ = {¢(F) : F € #}iso-compactine]®. Finally, observe that

7] Ccr Y ={ECw:3L € L withL C E}
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and that the set.Z is o-compact infw]®. Applying Propositior3 to the semi-filter
¢[Z], we conclude that it is meager. O

PROOF OFTHEOREM7. (1) Suppose thaB ¢ R is0z-bounded for some filtef?.
Applying Theoren?, find a functionb € »® and a finite-to-one functiop : v - o
such thatB ¢ ®(b; ¢[.#]). Sincep[.#] is a filter, we can apply Theorer(1) to
conclude that the sab(b; ¢[.#]) is |,#-bounded and hendez-bounded, and that
the subseB C ®(b; ¢[.#)) is therefore alsd ~-bounded.

(2) Suppose that, ..., %, are filters and € »“. According to Lemmag-3,
to prove that the uniodd = ®(b; %) U --- U ®(b; .%,) is |,.-bounded, it suffices
to verify that the first player has no winning strategy in the game,Lldn U. To
show this we shall use the argument from the proof of Theorem 2.127pf$uppose
that the first player has a winning strategy $<“ — w in the game Lk, onU.
Without loss of generality, we can assume that 2, that the functior is increasing
and takes positive integer values, and that the strategy $ is monotone in the sens
that §mo, ..., my) > my for any finite sequencémy, ..., my) € »=“. To beat the
strategy $ of |, the second player will simultaneously pl@y + 1) games, and will
win in one of these games.

For everyp € {0, ..., 3n}, define a number sequengea, j);., by letting
Moo = b o $(9),
Mpi1j = bo$(Mpo,...,my;) forp<3n, and
Mg jy1 = bo $(m3n,0, ey mgn,j) for J € w.

The sequencem, ), Will be interpreted as the moves of the second player in the
pth game.
It follows from our assumption oh and $ that

m0,0<m1,0<~-~<m3n’0<m0,1<m1’1<-~-<m3n'l<m0’2<-~-

Let Mz, = U, ., [Man j, Mo j+1) @andMp = [, [Mp j, Mpya j) for 0 < p < 3n.
SinceMg U --- U Mz, = o for everyi € {1,...,n} there is a numbep(i) €
{0, ..., 3n} such thatiM,;, N F| = oo for eachF € .%;. It follows by an elemen-
tary combinatorial argument that there is a numpee {1, ..., 3n — 1} such that

[p— p(@i)] > 1foreveryi € {1,...,n}.

We claim that the move8n, ;);.. of the second player beat the strategy $ of | in
the game Lkl,;. onU. Letng, = $(Mpo, ..., myy) for k > @. To show that the
strategy $ is not winning, it suffices to find for eacke U an infinite subset? C w
such thaf|x|l, < mp forallk € .7.

Given arbitraryx € U, findi € {1, ..., n} such thatx € ®(b; .%;). Next, find an
elementF; € .%; such that|x||; < b(j) forall j € F;. It follows from the choice of
the numberp that the set? = {k € w : Fi N [Mp1k_1, Mp_1k) # ¥} is infinite.
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We claim that||x||,, < myx for eachk € .#. Indeed, given ank € ., find a

numberj € F N [Mpi1x-1, Mp_1x). Note that
N =$(Mpo, ..., Mp-1) <boS(Myo, ..., Myy_1) = My .

Then
IXNne < Xl < XI5 < B() < b(Mp_14)

<bo$(Mp_10,..., Mp_1k) = Mpy. O

PrROOF OFPrROPOSITIONL. (1) To see that®y([w]®) is a dense5;s-subset ofR®,
notice thatR” \ ®([w]?) = U,., Mn, Where the setM,, defined byM, = {x € R” :
[x(i)| > i foralli > n} forall n € w, are closed nowhere dense subsetR‘af

(2) Theoren® implies that the se®([w]®) is 0,.-bounded and henaebounded.

(3) The se®([w]”), being a dens&;-subset ofR®, is noto-bounded, because
o-bounded subsets & are meager. By Theorefn(2), I-bounded analytic subsets
of R” ares-bounded. Consequentlg([w]®), being analytic and nat-bounded, is
not I-bounded irR®.

(4) Assuming tha®([w]®) is 0z-bounded for some filtef#, and applying Theo-
rem7, we conclude tha® ([w]?) is | z-bounded and thus-bounded, which contradicts
the previous item.

(5) If Bis ao-bounded subset @®, then the producB x ®([w]®) is o-bounded
in R” x R”, by [11, Theorem 2.7] or Theorer (2) applied to the near coherent
semi-filters[w]® and§,. Next, suppose that the produstx ®([w]®) is o-bounded
for some subseB C R”. LetW¥ : R® x R® — R“ be the isomorphism mapping a
pair of sequenceg&x;), (y;)) € R” x R® onto the sequendg;) such thatz; = x, and
Ziy1 =Y fori € w. Then the imag& (B x ®([w]®)) is 0-bounded iMR®. Applying
Theorem?2, we conclude that the s&t(B x ®([w]®)) is 0y,.-bounded and lies in
®(f; [w]”) for some increasing functiof € »®. Consider the increasing functions
g,h:w— wdefined byg(i) = f(2i +2) andh(i) =g(g(i) + 1) fori € w.

The o-boundedness oB will follow as soon as we prove thgtbh <* h for any
b € B. Assuming that this is false, we would find a functiore B and an infinite
subsetN C w such that|b||, > h(n) = g(g(n) + 1) for everyn € N. Without loss
of generality we can assume thdtN [n, g(n)] = {n} for anyn € N. Let {Nk}keo
be the increasing enumeration of the Bkt Consider the functior € »* defined
by c(i) = min (g(N) Ni—1, oo)) and observe that € ®([w]®). Let us show that
max{||blli, lclli} > g() for anyi > n,. Indeed, given arbitrary > no, find a unique
numberk such thahy, < i < ng1. The choice of the sétl implies thatg(ny) < Ni,1.
Ifi <g(ny + 1, then

max{|[blli, liclli} = [Iblli = [Iblln, > g(g(Mm) + 1) = g(i),
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while if i > g(ny) + 1, then

max{[[blli, liclli} = liclli = ming(N) N[i — 1, o0)
> ming(N) N (g(Nk), 00) = g(Ni+1) = g(i).

Consider the functioma = ¥ (b, ¢), and note that
ac ¥ (B x ®(w]”) c ®&(f;[w]).

Onthe other hand, given aky> 2n,, find the smallest € w with 2i > k, and observe
thati > no and hencelalk > max{||bl};, llclli} > g@) = (2 +2) > f(k). Now

the inequalityf <* 1 a contradicts the fact that € ®(f, [@]?). This contradiction
completes the proof of the-boundedness d8. O

PROOF OFTHEOREM 9. We shall prove the implications (1) implies (2) implies (3)
implies (4) implies (5) implies (6) implies (1), (1) implies (7) implies (8) implies (1),
and (1) implies (9) implies (4). In fact, the implications (7) implies (8) and (2) implies
(3) implies (4) are trivial. To see (4) implies (5) note th@t.%1) + --- + ®(%,)
is the image of®(.#1) x --- x ®(%#,) under the continuous group homomorphism
h: (R)" - R” h:(Xg, ..., X)) — Xg + -+ - + Xy, and use a result ofLp] asserting
thato-bounded groups are preserved by homomorphic images.

(1) implies (2): Assume that the (semi-)filte?g,, . .., .%, are near coherent, and
letb € w” be an increasing function. Using the near coherence of the semi-filters
Z1, ..., Za, find an increasing sequeng®y)y.., such thaim, = 0 and such that for
anyF € .%;,forl<i <n,the set

I(Fr,....F)={kew: [m,my)NF #0 forall i <n}

is non-empty. Consider the (semi-)filter

ﬁz{Fca): U [nm, nm,) C F forsomeF, € %, ..., F, e %,
ke (F1,...,Fn)

Next, define the functiorf : w« — wby f: | — b(my,,), wherek is chosen to satisfy
the conditionj € [nm,, Nmy1).

Consider the linear isomorphisi: R — R" assigning to an-tuple of functions
(X1, ..., Xy) € R®the functiony = W (xq, ..., X,) defined byy(nq+i) = x;.1(q) for
allg e wand 0<i < n. We claim that¥ (®(b; %) x --- x ®(b; %)) C ®(f; F).
Take any function;, € ®(b;.%;) for 1 <i < n, and lety = W(Xy, ..., X,). For
everyi, find F; € .%; such that|x;||; < [b]|; forall j € F, and let

F= |J [hm.nmyye 2.

ke S (F1,...,Fn)
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We claim that|y|; < || f||; forall j € F. We have to verify thaty(p)| < || f ||; for
everyp < j. Write p=nq+1i, whereq € w and 0< i < n. Next, findk € w such
thatj € [nm,, nm,4). Sincep < j, we haveq < my. Becausk € .# (Fy, ..., Fy),
there is a point’ € F1 N [my, M,2). Theng <m < g < my,, and

Y = X2 (@] = [IXi+allg < lIbllg = b(@) < bMe2) = F()) < IIfl;.

Thusy € ®(f;.%) and (], ®(b; %)) C ®&(f;.#). By Theorem2, the
set®(f;.%) is oz-bounded inR*. SinceW is a group isomorphism, the product
®(b; 71) x - - x ®(b; %, and its subse® (B;; F1) x - - - x ®(B,; %) are therefore
0z-bounded inR®.

(6) implies (1): Assume tha(.#,)+- - -+ ®(%#,) # R*. Firstwe show that the set
®(F1)+- - +®(F,) is absolutely symmetriciR®. Fixanyx € ®(%1)+- - -+®(F,)
and anyy € R® with 1y < 1Xx. Write X = X; + -+ + X5, wherex;, € ®(%),

i <n Thenly| <1y < 1X < 141X + -+ 1 X, and we can find functions
Vi,..., ¥n € R® such thaty = y; +--- 4+ y, and|y,| < tx foralli < n. By
the absolute symmetry of the setg.%;), we havey, € ®(%) for all i, and thus
Y=Yi+- -+ Y€ B(F)+ -+ B(F).

Fixany f ¢ ®(%1) + -+ + ®(Z,). Because the s&b (%) + --- + ®(F,) Is
absolutely symmetric, we can assume tliat= 1 f and thatf is thus a positive
non-decreasing function. Let, = 0 andm,,; = f(my)+ 1 fork € w. We claim that
for any setsk; € 71, ..., Fy, € Z,, there is & € w such thafm,, m,2) N F # @
for alli < n. Without loss of generality, @ F; foralli <n.

For every 1< i < n, consider the functiorx;, = idg, —1 € ®(.%;), by which
notation we mean the functiog: j — min(F N []j, c0)) — 1. Then the function
Yy = X1+ -+ X, belongs ta®(F1) +- - -+ ®(Fn). Asf ¢ ®(F)+---+®(Fn), we
conclude thatt y(j) < 1 f(j) for somej € w. Findk € w such thatj € [my, My1).
Then for any 1< i < n, we have

min(F N [],00) —1=x(j) <ty() <1 f(j)
= f(]) = f(mk+l) =mk+2_1-

Hence mirtF N [my, 00)) < min(F, N [j, 00)) < My andF N [my, my,,) # @ for

all 1 <i < n. This means that the semi-filteg,, . . ., .%, are near coherent.
(1) implies (7): Assume that/4, ..., .%, are near coherent filters, and fix an
increasing number sequen@gy) such that for any; € %4, ..., F, € %, thereis a
k € w such thafmy, my») N F # @ for everyi < n. For every permutation of the
set{1, ..., n}and elements; € .%;, fori <n, let
Ko (Foys -« s Fomy)

={m:3p; > --- = pywith pi € [my, My 2) N Fqy for 1 <i < nj,
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and also let#, = {K,(F,@), ..., Fom) : Fi € % for 1 <i < n}. Itis easy to see
that for some permutation of {1, ..., n} the collection.%, is centered, and hence

can be completed to a filte¥. (A collection.es is centeredf N # @ for any finite
subcollections’ C 7).

We shall show that the se&i(b; %, ), . . ., #,m)) IS 0z-bounded for this permuta-
tion o and for any functio € R”. To do this, fix any increasing functioh: & — o
such thatf (my) > ||b|m,.,. We claim that®(b; Z,q). . .., Fom) C ®(f; F).

Fix any functionx € ®(b; %,q), ..., %,m). Letx, = X, and find by induction,
for everyi € {n,n—1,...,2}, a functionx,_; € ®b; %, 1), ..., %i-1) and an

elementF,, € %, suchthatf|x||; < [[xi_1; for everyj € F,q. Finally, find a set
Foy € %o such that|x,||; < ||Ibl|; for everyj € F, ).

We claim that||x||m, < f(my) for everymy € K, (Fyq), ..., Fom) € Z. Indeed,
given such amy, we can find numberg, > --- > p, suchthaty € [my, M 2) NF, )
forevery 1<i <n. Then

Xllme < Xallp, < IXn-allpy = [Xa-1llpy s

< IXn-2llp, = -+ = IXallp, < DN p, < [IblIm,, = (M),

and thusx € ®(f, #). By Theoren, the se®(b; .%, ), ..., %,m), being a subset
of ®(f; %), is0z-bounded.

(8) implies (1): Assume tha®(%,q), - .., F»m) # R® for some permutation
of {1,...,n}. We have to show that the semi-filtefB,, . ...%#, are near coherent.

Without loss of generality, assume thai ) = i for everyi.

Fix any functionf ¢ ®(%4, ..., %,). Since the se® (%1, ..., Z,) is absolutely
symmetric, we can assume thétis increasing and takes positive integer values.
Letmg = 0 andmy,; = f(my) + 2 for k > 0. The near coherence of the filters
F1, ..., Z,will follow as soon as we show that for afy € %1, ..., F, € %, there
is a numbek € w such thafm,, my,») N F # @ for everyi < n.

Consider the sequence of increasing functigfs. ., g, € R?, wherego(j) = j
andg(j) = —1/n+ minF, N [g_1(j),00) for j € w. Itis easy to see that
g € ®&(F, ..., %) for everyi < n. It follows from f ¢ ®&(F, ..., %) > On
thatg,(j) < f(j) for somej € w. For this numberj, find a uniquek such that
j € [mg, Miga).

It follows from the definition of the numbeg, (j) < f(j) that there is a number
jn € Fnsuch thatg, 1(j) < jo < f(j) + 1/n. Similarly, for the functiong,_,
there is a numbej,_, € F,_; such thatg, »(j) < jo_1 < jn+1/n < f(j) +2/n.
Proceeding in this way, for everye {n,n—1, ..., 1} we find a numbelj; € F such
thatg_1(j) < ji < f())+ (n—i+1)/n. Then

Me<j=0()<ju....n<T(H+1=< (M) +1 <M,

and thus each sé&t, for 1 <i < n, meets the half-intervdim,, my,»).
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(1) implies (9): If the filters.#y, ..., %, are near coherent, then the product
®(F1) x - -+ x ®(Fy) is 0z-bounded i(R*)" for some filter.7, by the implication
(1) implies (2). Hence the image(%#,) + -+ + ®(%,) D &(F) U--- U R(F)
of this product under the continuous homomorphism (R®)" — R defined by

h: Xy, ..., %) = X¢+ -+ X, is alsooz-bounded inR®.

(9) implies (4): Assume that the uni@(.%;) U - - - U ®(%,) is 0z-bounded from
some filter.#. Then the set® (%), ..., ®(%,) areoz-bounded inR®, and hence
their product®(.7;) x --- x ®(.%,) is o-bounded, according to the implication (1)
implies (2) of Theoren® applied ton copies of the filter7 . O

PROOF OFPROPOSITION2. Given ano-bounded mixable subs&t c R®, find a non-
decreasing functiorf : [0, co) — [0, co) such that for any, y € X thereisaz € X
such thatf o 1z >* max{1 x, 1 y}. Replacingf (t) by max f(t), t} if necessary,
we can assume thdt(t) > t for all t € [0, 00). Let f! = f, and by recursion let
frtl = f o f"forn > 1. Take any increasing functian: [0, co) — [0, co) such that
g >* f"foralln > 1. Then by induction it can be shown that for agy. .., x, € X
thereis & € X suchthago 1z >* max{t x, ..., T Xa}.

Using the o-boundedness of the s& and Theoren?, find a non-decreasing
functionb € R such thatX c ®(b;[w]®). Foreachx € X, letF, = {n € w :
1+ x(n) < gob(n)}, and consider the collectiod = {F, : x € X}. We claim that
this collection is centered. Indeed, assuming the converse to hold, we would find
pointsxy, ..., X, € X such thatF,, N --- N F, = @. The last equality implies that
max{t Xy, ..., 1 X,} > gob. Itfollows from the choice of the functiogthat thereis an
elementz € X suchthago z>* max{1 X, ..., 1 X,} > goh. Taking into account
that the map is increasing, we get z >* b, which contradictz € ®(b; [w]®).

Therefore the collectiof¥” is centered, and can be completed to a filer .
ThenX C ®(gob; %) C ®(gob; %), and by Theoren?, X isoz-bounded. [
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