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Abstract

To each filterF on!, a certain linear subalgebraA.F / ofR!, the countable product of lines, is assigned.
This algebra is shown to have many interesting topological properties, depending on the properties of
the filterF . For example, ifF is a free ultrafilter, thenA.F / is a Baire subalgebra ofR! for which
the game OF introduced by Tkachenko is undetermined (this resolves a problem of Hernández, Robbie
and Tkachenko); and ifF1 andF2 are two free filters on! that are not near coherent (such filters exist
under Martin’s Axiom), thenA.F1/ and A.F2/ are twoo-bounded and OF-undetermined subalgebras
of R! whose productA.F1/ × A.F2/ is OF-determined and noto-bounded (this resolves a problem
of Tkachenko). It is also shown that the statement that the product of twoo-bounded subrings ofR!

is o-bounded is equivalent to the set-theoretic principle NCF (Near Coherence of Filters); this suggests
that Tkachenko’s question on the productivity of the class ofo-bounded topological groups may be
undecidable in ZFC.

2000Mathematics subject classification: primary 03E35, 03E50, 03E60, 22A05, 54A35, 54D80, 54E52,
54G15, 54H11, 54H12, 54H13, 91A44.
Keywords and phrases: open-finite game,o-bounded group, filter game, near coherence of filters.

Introduction

In this paper we present a method for constructing examples of topological subgroups,
linear sublattices and linear subalgebras ofR! which possess various pathological
properties. The idea is to assign to a subsetB of R! and a filterF on ! a special
subspace~.B;F / of R!. The algebraic properties of this space~.B;F / depend on
the choice of the setB, while the geometric and topological properties of~.B;F /
depend on the choice of the filterF . In particular, ifB is the set of all sequences of
polynomial growth, then the space~.B;F /, denoted byA.F / in this case, is a linear
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sublattice and subalgebra ofR!. If F is a non-principal ultrafilter, then the algebra
A.F / is Baire and OF-undetermined (this example resolves Problem 5 of [11]). If F1

andF2 are two filters on! that are not near coherent (such filters exist under Martin’s
Axiom), then the algebrasA.F1/ andA.F2/ areo-bounded inR!, while their product
A.F1/× A.F2/ is noto-bounded inR!×R! and their sumA.F1/+ A.F2/ coincides
with R! (this answers Problem 3.2 of [22]). On the other hand, the near coherence of
all filters on! implies that the productX×Y of anyo-bounded subringsX andY ofR!

is o-bounded inR! × R!. This suggests that Problem 3.2 in [22] on the productivity
of the class ofo-bounded topological groups may be equivalent to the principle NCF
(Near Coherence of Filters), and hence be independent of ZFC.

To give an idea of our subsequent considerations, we briefly explain the relation
of NCF to the productivity problem for the class ofo-bounded subrings ofR! (the
definition and basic properties of near coherence will be given later). We shall see in
Proposition2 that for eacho-bounded subring ofR!, there is a filterF with respect to
which the subring has a stronger boundedness property that we calloF -boundedness.
The latter property, unlike the usualo-boundedness, is preserved by products. The
classes ofoF - andoF ′-bounded subsets coincide for near coherent ultrafiltersF ,F ′,
and this is the reason why the product of twoo-bounded subrings ofR! is o-bounded
under NCF.

Now let us recall the definitions of a number of types of boundedness in topo-
logical groups. Given a topological groupG, denote byN .e/ the family of open
neighborhoods of the identitye of G. A subsetB of G is defined to be

• boundedif for any neighborhoodU ∈ N .e/ there is a finite subsetF ⊂ G
such thatB ⊂ F · U ;

• ¦ -boundedif B = ⋃
n∈! Bn is a countable union of bounded subsetsBn of G;

• ℵ0-boundedif for any neighborhoodU ∈ N .e/ there is a subsetF of G with
|F | ≤ ℵ0 andB ⊂ F · U ;

• o-boundedif for any sequence{Un}n∈! ⊂ N .e/ there is a sequence{Fn}n∈! of
finite subsets ofG such thatB ⊂ ⋃

n∈! Fn · Un.
Observe that the conditionB ⊂ ⋃

n∈! Fn · Un is equivalent to saying that the set
Nx = {n ∈ ! : x ∈ Fn · Un} is non-empty for eachx ∈ B. Trying to impose more
control on the setsNx for x ∈ B, we arrive at the concept of anoF -bounded set. First
we introduce some notation. Denote byP.!/ (respectively[!]!) the collection of
all (infinite) subsets of the set! of non-negative integers. Given a familyF ⊂P.!/
and a function' : ! → !, let

'[F ] = {E ⊂ ! : ∃F ∈ F with '.F/ ⊂ E}:
A function' : ! → ! is calledfinite-to-oneif the pre-image'−1.n/ is finite for every
n ∈ !.

A subsetB of a topological groupG is calledoF -bounded, whereF ⊂P.!/, if
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for any sequence{Un}n∈! ⊂ N .e/ there is a sequence{Fn}n∈! of finite subsets ofG
such thatB ⊂ ⋃

F∈F
⋂

n∈'.F/ Fn · Un for some finite-to-one function' : ! → !.
Here we assume conventionally that

⋂
n∈∅ Fn · Un = G, so that every subset ofG is

oF -bounded if∅ ∈ F .
Observe that a subsetB ⊂ G is o-bounded if and only if it isoF -bounded for the

collectionF = {{n} : n ∈ !} of singletons. Note also that anyoF -bounded subset
B ⊂ G is oF ′-bounded for any familyF ′ ⊂ P.!/ and any finite-to-one function
' : ! → ! with '[F ′] ⊃ F .

It is clear that each¦ -bounded subsetB of G is o-bounded. In fact,¦ -bounded
subsets ofG have a stronger property, which is called stricto-boundedness in [22]
and [10] and II-boundedness in [2]. We define a version of this property parameterised
by a collectionF ⊂P.!/, as follows. GivenF , consider the following game OFF
(abbreviated from Open-Finite) on a subsetB of a topological groupG. Two players,
I and II, choose at every stepn ∈ ! a neighborhoodUn ∈ N .e/ and a finite
subsetFn ⊂ G, respectively. At the end of the game, II is declared the winner if
B ⊂ ⋃

F∈F
⋂

n∈'.F/ Fn · Un for some finite-to-one function' : ! → !.
A subsetB of a topological groupG is defined to be
• IIF -boundedif the second player has a winning strategy in the game OFF on B;
• IF -boundedif the first player has no winning strategy in the game OFF on B;
• OFF -determinedif one of the players has a winning strategy in the game OFF

on B;
• OFF -undeterminedif G is not OFF -determined (equivalently, ifG is

IF -bounded but not IIF -bounded).
A topological group G is defined to bebounded (respectively¦ -bounded,

ℵ0-bounded, IIF -bounded, IF -bounded, oF -bounded, OFF -determined, OFF -un-
determined) if G has the respective property as a subset ofG. If F is the collection of
all the singletons of!, then we shall omit the subscriptF and shall speak about the
game OF and II-, I-,o-bounded, OF-determined and OF-undetermined sets in place of
the game OFF and IIF -, IF -, oF -bounded, OFF -determined and OFF -undetermined
sets, respectively. It should be mentioned that in [1, 10, 11, 22, 23], II-bounded
groups are called ‘strictlyo-bounded’, but we prefer the term ‘II-bounded’, accepted
also in [2].

We note that the definitions of all the boundedness conditions above are in fact
with respect to the left uniformity of the groupG. Similar definitions can of course be
given with respect to the right uniformity and with respect to the two-sided uniformity.
Since however our focus in this paper is almost exclusively on abelian groups, in which
these distinctions are irrelevant, we shall work with definitions in the one-sided form
given.

Although we have defined the properties of IIF -, IF -, andoF -boundedness for
arbitrary familiesF ⊂P.!/, they behave especially nicely for the familiesF called
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semi-filters.
By a semi-filter, we understand a familyF of infinite subsets of! closed under

taking supersets and such thatF \ K ∈ F for any F ∈ F and any finite subsetK
of !. A semi-filterF is called afilter if F ∩ F ′ ∈F for anyF; F ′ ∈F . It is easy to
see that a family of sets is a semi-filter if and only if it is a union of filters. Note that all
our filtersF arefree in the sense that∩F = ∅. Note also that ifF is a (semi-)filter
and' : ! → ! is a finite-to-one function, then'[F ] is again a (semi-)filter. A
filter F is called anultrafilter if F = F ′ for any filterF ′ ⊃ F . Ultrafilters are
maximal elements of the naturally ordered set of all filters. This set has a unique
minimal element—the Fréchet filterFr , consisting of all cofinite subsets of!. The
filter Fr is also the smallest element of the set of all semi-filters, which, unlike the
set of all filters, has a unique maximal element—the semi-filter[!]! consisting of all
infinite subsets of!.

Identifying each subset of! with its characteristic function, we identify the power-
setP.!/ of ! with the Cantor cube{0; 1}!, and thus introduce a metrizable compact
topology onP.!/. Referring to this topology, we can speak of¦ -compact, meager,
analytic or projective subspaces ofP.!/ or [!]!.

The interplay between the properties of IIF -, IF -, andoF -boundedness depends
to a large extent on the properties of the familyF . We illustrate this thesis by the
following diagram, which holds for subsets ofR!, the countable product of lines (see
Theorems6 and7). (In fact, this diagram holds more generally for subsets of Lindelöf
Čech-complete groups [2].) In the diagram,F is a filter on!, whileFr and[!]! are
the smallest and the largest semi-filters described above, respectively.

¦ -bounded⇔ IIFr -bounded⇔ IFr -bounded⇔ oFr -bounded

m ⇓ ⇓
IIF -bounded⇒ IF -bounded⇔ oF -bounded

m ⇓ ⇓
II [!]! -bounded⇒ I[!]!-bounded⇒ o[!]!-bounded

m ⇓ m
II-bounded ⇒ I-bounded ⇒ o-bounded ⇒ ℵ0-bounded

In general, the non-equivalence implications from this diagram cannot be reversed:
the countable product of linesR! isℵ0-bounded but noto-bounded [10, Example 2.6];
R! contains a denseGŽ-subset~.[!]!/ which is o-bounded but not I-bounded; this
GŽ-set provides also an example of ano[!]!-bounded subset which is neither
I[!]!-bounded noroF -bounded for a filterF (see Proposition1); for any non-
meager filterF the spaceR! contains a Baire linear subspaceA.F / which is
OFF -undetermined, that is, IF -bounded but not IIF -bounded; this spaceA.F / is
also I-bounded but not II-bounded (see Theorem8); under the negation of NCF there
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are two linear subspacesA1, A2 of R! whose unionA1 ∪ A2 is I [!]!-bounded but
not IF -bounded for a filterF ; these spacesA1, A2 are I-bounded inR! but their
product A1 × A2 is not o-bounded inR! × R! and their sumA1 + A2 coincides
with R! (see Corollary3). Finally,R! contains an I-bounded subspace which is not
I[!]!-bounded [2]. Besides these examples (which are all subsets ofR!), there is
also an example of a non-metrizable II-bounded group which is not¦ -bounded [10,
Example 3.1].

The non-metrizability of the last counterexample is not merely incidental, in view
of the following theorem, whose proof can be found in [1, 2] or [20, Section 7].

THEOREM1. Let G be a metrizable topological group.

(1) Each II-bounded subsetB of G is ¦ -bounded.
(2) Each analytic I-bounded subsetB of G is ¦ -bounded.
(3) If G is ano-bounded SIN-group, then each analytic subsetB of G is¦ -bounded.

We recall that a topological groupG is called aSIN-groupif G has a neighborhood
baseB at the origin such thatg−1Ug = U for anyg ∈ G andU ∈ B.

A topological spaceX is analytic if it is a metrizable continuous image of a Polish
(separable completely metrizable) space. In fact, the class61

1 of analytic spaces is the
first member in the hierarchy of projective classes61

n and51
n, n ∈ N. These classes

are defined by induction. The class51
n consists of all separable metrizable spacesX

whose complement̄X \ X in some metrizable compactification̄X of X belongs to
the class61

n, and the class61
n+1 consists of metrizable continuous images of spaces

from the class51
n (see [14, Section 37.A]). Spaces from the class

⋃
n∈! 6

1
n ∪ 51

n

are calledprojective. It should be mentioned that under the principle of Projective
Determinacy [14, Definition 38.15] (which is one of the so-called Strong Set-Theoretic
Hypotheses and follows from the existence of a suitable large cardinal [12, page 282],
[19]), the analyticity of the subsetB in Theorem1 can be replaced by the projectivity
of B. All of this shows that examples designed to demonstrate the difference between
the boundedness properties we are considering must of necessity have a complex
descriptive structure.

A reflection of this is the fact that the first claimed example of a metrizableo-
bounded non-II-bounded groupH , presented by Hernández in [10, Example 6.1]
(and exploited in [22, page 195], [1, Theorem 4] and [11, Example 2.12]), turned
out to be incorrect. (By [1], the groupH is analytic, and being non-¦ -bounded, is
not o-bounded, according to Theorem1 (3).) The error was noted by the second
author; see also [16], [20, page 45]. Valid examples ofo-bounded non-II-bounded
groups have been constructed under certain additional set-theoretic assumptions. In
particular, in [11] a (non-metrizable) OF-undetermined group was constructed under
the Diamond Principle♦ (afterwards, a similar example was constructed in ZFC [15]
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or [20, Section 6]). In [1] a Baire OF-undetermined subgroup was constructed in each
abelian non-locally compact Polish divisible group under Martin’s Axiom. Finally,
it was shown in [2] that each abelian non-locally compact Polish group contains an
OF-undetermined subgroup (see also [9]). All these examples of OF-undetermined
groups were constructed by transfinite induction, and this led naturally to the problem
of finding more ‘real’ and palpable ZFC-examples distinguishing various sorts of
boundedness.

In this paper, many such examples are constructed using the filter approach (after
writing an initial version of this paper, we learned that a similar filter approach was
used also in [16] and [20]). All our examples are subsets ofR!, the countable product
of lines, endowed with the Tychonov product topology. The spaceR! is a very
rich object and carries a wealth of algebraic structures. Besides the linear and group
operations, the spaceR! has the operation of coordinatewise multiplication (that is,R!

is a linear topological algebra with unity) as well as the operations of coordinatewise
maximum and minimum (that is,R! is a linear topological lattice). We can thus speak
of algebraic subobjects ofR! of many different types, including subgroups, convex
sets, linear subspaces, sublattices, linear subalgebras.

It will be convenient to think of elements ofR! as functions from! to R. For
everyn ∈ !, consider the seminorm‖ · ‖n onR! defined by‖x‖n = maxi ≤n |x.i /|
for x ∈ R!. Given two functionsf; g ∈ R!, we write f ≤ g (respectively f < g)
if f .n/ ≤ g.n/ (respectively f .n/ < g.n/) for all n ∈ !, and f ≤∗ g (respectively
f <∗ g) if there ism ∈ ! such thatf .n/ ≤ g.n/ (respectivelyf .n/ < g.n/) for all
n ≥ m.

By thegrowthof a function f ∈ R! we understand the function↑ f ∈ R! defined
by ↑ f .n/ = ‖ f ‖n for n ∈ !. It is clear that↑ f is a non-negative non-decreasing
function. A subsetA of R! is defined to beabsolutely symmetricif for any a ∈ A and
b ∈ R! with ↑ b ≤ ↑ a we haveb ∈ A.

The central objects of our study are the absolutely symmetric subsets of the form

~.B;F / = {x ∈ R! : ∃b ∈ B ∃F ∈F ∀n ∈ F ‖x‖n < ‖b‖n};
whereB ⊂ R! andF is a collection of subsets of!.

If B = {b} for someb ∈ R!, then we write~.b;F / in place of~.{b};F /. Also,
we write~.F / in place of~.id;F /, where id∈ R! is the identity functioni 7→ i
for i ∈ !. Thus

~.F / = {x ∈ R! : ∃F ∈ F ∀i ∈ F ‖x‖i < i }:
It is clear that if B ⊂ B′ andF ⊂ F ′, then~.B;F / ⊂ ~.B′;F ′/. If the

collectionF consists of infinite subsets of!, then the set~.B;F / can be equivalently
defined as

~.B;F / = {x ∈ R! : ∃b ∈ B ∃F ∈F with |x| < bF};
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wherebF ∈ R! is the non-decreasing step-function assigning to eachi ∈ ! the number
bF.i / = min{‖b‖ j : j ∈ F ∩ [i;∞/} = ‖b‖min.F∩[i;∞//.

For familiesF1; : : : ;Fn ⊂P.!/ and a functionb ∈ R!, define by induction the
sets

~.b;F1; : : : ;Fi +1/ = ~.~.b;F1; : : : ;Fi /;Fi +1/

for i < n. We shall write~.F1; : : : ;Fn/ in place of~.id;F1; : : : ;Fn/. It is easy to
see that~.b;F ; : : : ;F / = ~.b;F / whenever the familyF is a filter.

The sets of the form~.b;F / play a fundamental role in the class ofoF -bounded
subsets ofR!.

THEOREM2. (1) A subsetB ⊂ R! is oF -bounded, whereF is a semi-filter on!,
if and only if B ⊂ ~.b;'[F ]/ for some increasing functionb : ! → ! and some
finite-to-one map' : ! → !.
(2) A subsetB ⊂ R! is o-bounded if and only ifB is o[!]!-bounded if and only if

B ⊂ ~.b; [!]!/ for someb ∈ R!.

Our interest in subsets of the form~.B;F / can be explained by the following
theorem, which describes some algebraic and geometric properties of such sets, and
follows easily from the corresponding definitions.

THEOREM3. Let B ⊂ R! and letF be a filter on!.

(1) If supx∈B; n∈! ‖x‖n = ∞, then~.B;F / is a dense subset ofR!.
(2) If for all x; y ∈ B andt ∈ [0; 1] there existsz ∈ B with t ↑ x+.1−t/↑ y ≤∗ ↑ z,

then~.B;F / is a convex subset ofR!.
(3) If for all x; y ∈ B there existsz ∈ B with max{↑ x;↑ y} ≤∗ ↑ z, then~.B;F /

is a sublattice ofR!.
(4) If for all x; y ∈ B there existsz ∈ B with ↑ x + ↑ y ≤∗ ↑ z, then~.B;F / is a

linear sublattice ofR!.
(5) If for all x; y ∈ B there existsz ∈ B with ↑.x · y/ + ↑ x + ↑ y ≤∗ ↑ z, then
~.B;F / is a linear subalgebra ofR!.

Next, we investigate the dependence of the topological and boundedness properties
of the set~.B;F / on the properties of the setB and the semi-filterF .

THEOREM4. Let B ⊂ R! and letF be a semi-filter on!.

(1) If the setB is ¦ -bounded inR! (andF is a filter), then the set~.B;F / is
oF -bounded(and IF -bounded) in R!.
(2) If ~.B;F / 6= R!, thenB is o-bounded inR!.
(3) If the spaceB is analytic andF is a non-meager filter, then~.B;F / is

oF -bounded if and only if~.B;F / 6= R! if and only if B is ¦ -bounded.



328 Taras Banakh, Peter Nickolas and Manuel Sanchis [8]

(4) The set~.B;F / is ¦ -bounded inR! if and only if eithersupn∈! ‖b‖n < ∞ for
eachb ∈ B or B is ¦ -bounded andF is meager in[!]!.

Next, we study the topological and descriptive structure of the sets~.B;F /. We
recall that a topological spaceX is Baire if the intersection of any countable family
of open dense subsets ofX is dense inX; we say thatX is hereditarily Baireif each
closed subspace ofX is Baire. It is known that each Polish space is hereditarily Baire
and that a coanalytic space (that is, a space of the projective class51

1) is hereditarily
Baire if and only if it is Polish (see [14, Corollary 21.21]).

THEOREM5. Let B ⊂ R! and letF be a semi-filter on!.

(1) The set~.B;F / is a continuous image ofB ×F × .−1; 1/!.
(2) If B;F ∈ 61

n for somen ∈ N, then~.B;F / ∈ 61
n.

(3) If F is a non-meager filter on!, then the space~.F / is Baire; moreover, the
closureĀ of any subsetA ⊂ ~.Fr / in ~.F / is a Baire space.
(4) If F is a non-meagerP-filter, then the space~.F / is hereditarily Baire.
(5) The space~.B;F / is not hereditarily Baire ifB contains a function sequence
.bn/n∈! with ↑ bn <

∗ ↑ bn+1 for everyn ∈ ! and such that for everyb ∈ B there is
n ∈ ! such that↑ b ≤∗ ↑ bn.

It is well-known that each ultrafilter on! is non-meager (see [14, Exercise 8.50]
or [26]). Moreover, there are models of ZFC containing non-meager filters of projec-
tive class61

3 (see [3] or [13]). Repeating the argument of Talagrand [21] (see also
[24, page 32]), we can prove that a semi-filterF on! is meager if and only ifF lies
in a ¦ -compact subset of[!]! if and only if there is an increasing number sequence
.mk/k∈! ∈ !! such that eachF ∈ F meets all but finitely many intervals[mk;mk+1/.
A filter F is called aP-filter if for any countable subcollectionF ′ ⊂ F there is
F ∈ F such that the complementF \ F ′ is finite for anyF ′ ∈ F ′. Ultrafilters that
are P-filters are calledP-points. It is well known thatP-points exist under Martin’s
Axiom, while there exist models of ZFC withoutP-points [26]. Let us note that the
Fréchet filterFr of all cofinite subsets of! is a meagerP-filter. The problem of the
existence of a non-meagerP-filter seems to still be open (see [4, page 230]).

Theorems2 and 4 will allow us to prove the following two important results
describing the interplay between various boundedness properties.

THEOREM6. For a subsetB ⊂ R!, the following conditions are equivalent:

(1) B is ¦ -bounded;
(2) B is II-bounded;
(3) B is IIF -bounded for some semi-filterF ;
(4) B is IIF -bounded for any semi-filterF ;
(5) B is oF -bounded for some meager semi-filterF .
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THEOREM7. (1) If F is a filter, then eachoF -bounded subset ofR! is IF -
bounded.
(2) For any filtersF1; : : : ;Fn and any functionb ∈ R!, the union~.b;F1/∪ · · ·∪
~.b;Fn/ is I [!]!-bounded inR!.

Now we apply Theorems4 and5 to sets of the form~.F /.

COROLLARY 1. LetF be a semi-filter on!.

(1) ~.F / is an absolutely symmetric denseoF -bounded subset ofR!.
(2) If F is a filter, then~.F / is a IF -bounded convex sublattice ofR!.
(3) ~.F / is ¦ -bounded inR! if and only if the semi-filterF is meager.
(4) If F is a non-meager filter on!, then the set~.F / is OFF -undetermined and

Baire.
(5) If F is a non-meagerP-filter, then the space~.F / is hereditarily Baire.

In the case whenF = [!]!, the set~.F / gives us an interesting example of an
o-bounded subset.

PROPOSITION1. The set~.[!]!/ has the following properties.

(1) ~.[!]!/ is a dense absolutely symmetricGŽ-subset ofR!.
(2) ~.[!]!/ is o-bounded ando[!]!-bounded.
(3) ~.[!]!/ is not I-bounded.
(4) For any filterF , the set~.[!]!/ is notoF -bounded.
(5) The productB ×~.[!]!/with a subsetB ⊂ R! is o-bounded inR! ×R! if and

only if B is ¦ -bounded inR!.

As observed earlier, we have~.~.F /;F / = ~.F ;F / = ~.F / for any filterF .
If F is a non-meager filter, then by Corollary1 (4) the setB = ~.F / is OFF -
undetermined, that is, IF -bounded but not IIF -bounded. In particular,B is not
¦ -bounded, while~.B;F / = ~.F / = B is IF -bounded. This shows that the
analyticity of the setB in Theorem4 (3) is essential.

Now we apply Theorems3–5 to subsets of the formA.F / = ~.{idn}n∈!;F /,
where idn is the mapi 7→ i n for i ∈ !. Note that whenF = Fr , the setA.F /
coincides with the set of all functions of polynomial growth. In the particular case of
the setsA.F /, Theorems3–5 imply the following.

THEOREM8. Let F be a filter on!.

(1) A.F / is a dense absolutely symmetric linear sublattice and subalgebra ofR!.
(2) A.F / is a IF -bounded subset ofR!.
(3) If F is meager, thenA.F / is a¦ -bounded subset ofR!.
(4) If F is non-meager, thenA.F / is a Baire OFF -undetermined subset ofR!.
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(5) If F is a non-meagerP-filter, then A.F / contains the absolutely symmetric
dense convex hereditarily Baire sublattice~.F /.
(6) The spaceA.F / is not hereditarily Baire.
(7) The spaceA.F / is a continuous image ofF ×N× .−1; 1/!.
(8) If F ∈ 61

n for somen ∈ N, thenA.F / ∈ 61
n.

Since each ultrafilter is non-meager [26] and there are models of ZFC containing
non-meager filters of projective class61

3 (see [3] or [13]), Theorems8 implies the
following corollary, resolving Problem 5 of [11].

COROLLARY 2. The countable productR! contains a Baire OF-undetermined linear
subalgebra. It is consistent to assume that this subalgebra belongs to the projective
class61

3.

It is interesting to remark that under the principle of Projective Determinacy, each
projective subset of a Polish group is OF-determined (this follows [1, Proposition 4]
and [14, Exercise 38.18]). Thus the existence of a projective OF-undetermined subset
of R! is undecidable in ZFC.

Next, we consider Problem 3.2 of [22], concerning products of (strictly)o-bounded
groups. Answering a part of this problem, it was shown in [2] that the productG × H
of two II-bounded topological groups is II-bounded. Moreover, the productG × H
of a II-bounded groupG and ano-bounded groupH is o-bounded. For products of I-
or o-bounded groups the situation is different. Assuming the existence of two filters
that are not near coherent, we shall construct two I-bounded subalgebras ofR! whose
product is noto-bounded inR! × R! and whose sum inR! coincides withR!.

FamiliesF1; : : : ;Fn ⊂ P.!/ are callednear coherentif there is an increasing
number sequence.mk/k∈! ∈ !! such that for any elementsF1 ∈ F1; : : : ; Fn ∈ Fn

there isk ∈ ! such that[mk−1;mk+1/ ∩ Fi 6= ∅ for all i ≤ n. Near coherence of
filters was introduced and studied in detail by Blass in [5, 6]. The statement that any
two filters on! are near coherent is known in set theory as NCF; NCF is false under
Martin’s Axiom [5], but there are models of ZFC in which NCF is true [7, 8]. Note that
the Talagrand characterization [21] of meagerness quoted earlier implies that meager
(semi-)filtersF1; : : : ;Fn are near coherent.

THEOREM 9. For (semi-)filtersF1; : : : ;Fn, the following conditions are equiva-
lent.

(1) The(semi-)filtersF1; : : : ;Fn are near coherent.
(2) For any functionb ∈ R! the product~.b;F1/×· · ·×~.b;Fn/ is oF -bounded

in .R!/n for some(semi-)filter F .
(3) The productA.F1/× · · · × A.Fn/ is o-bounded in.R!/n.
(4) The product~.F1/× · · · ×~.Fn/ is o-bounded in.R!/n.
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(5) The sum~.F1/+ · · · +~.Fn/ is o-bounded inR!.
(6) ~.F1/+ · · · +~.Fn/ 6= R!.

Moreover, ifF1; : : : ;Fn are filters, then the conditions(1)–(6)are equivalent to the
following.

(7) There is a permutation¦ of {1; : : : ; n} such that for any functionb ∈ R! the set
~.b;F¦.1/; : : : ;F¦.n// is oF -bounded for some filterF .
(8) There is a permutation¦ of {1; : : : ; n} such that~.F¦.1/; : : : ;F¦.n// 6= R!.
(9) The union~.F1/ ∪ · · · ∪~.Fn/ is oF -bounded for some filterF .

Theorems9 and7 imply the following.

COROLLARY 3. Under the negation of NCF, there are two I-bounded subalgebras
A1; A2 of R! such that

(1) the productA1 × A2 is noto-bounded inR! ×R!;
(2) the sumA1 + A2 coincides withR!;
(3) the unionA1 ∪ A2 is I[!]!-bounded inR!;
(4) the unionA1 ∪ A2 fails to beoF -bounded for all filtersF .

After writing this paper, we learned that a result similar to Corollary3 had been
obtained in [16] and [20, Section 5]. Specifically, under CH twoo-bounded linear
subspacesL1; L2 ⊂ R! were constructed whose sumL1 + L2 equalsR!. In fact,
the spacesL1, L2 have the Menger property, which is stronger thano-boundedness.
Another result of this sort can be also found in [25].

It turns out that additional set-theoretic assumptions of some kind, such as those
in [16] and Corollary3, are essential: under NCF the product of twoo-bounded
subrings ofR! is o-bounded. Indeed, this result is true for what we call mixable
subsets ofR!.

We shall say that a subsetX of R! is mixable if there exists a non-decreasing
function f : [0;∞/ → [0;∞/ such that for anyx; y ∈ X there isz ∈ X such that
f ◦ ↑ z ≥∗ max{↑ x;↑ y}. Many examples of mixable subsets ofR! are supplied by
subsets ofR! closed with respect to certain algebraic operations. For example, any
subring ofR! is mixable, because

√
x2 + y2 ≥ max{|x|; |y|} for anyx; y ∈ R!. An

additive subgroupG of R! is mixable if it is | · |-closed, that is, if |x| ∈ G for each
x ∈ G. In its turn, since|x| = max{x;−x}, each sublatticeL of R! is | · |-closed
provided it iscentrally symmetricin the sense that−x ∈ L for eachx ∈ L. We do
not know however if every additive subgroup ofR! is mixable. Mixableo-bounded
subsets ofR! have the following remarkable property.

PROPOSITION2. A mixable subsetX ⊂ R! is o-bounded inR! if and only if it is
oF -bounded inR! for some filterF on!.
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This proposition will help us to characterize NCF in terms of preservation ofo-
boundedness by products. It is interesting to compare our characterization (resulting
from Theorems2, 7, 9) with the characterizations of NCF presented in [6].

THEOREM10. The following conditions are equivalent.

(1) NCF is true(that is, any two filters on! are near coherent).
(2) The productX × Y of o-bounded mixable subsetsX;Y ⊂ R! is IF -bounded in
R! ×R! for some filterF .
(3) The productX × Y of o-bounded centrally symmetric sublatticesX;Y ⊂ R! is

IF -bounded inR! ×R! for some filterF .
(4) The productX×Y ofo-bounded|·|-closed sublatticesX;Y ⊂ R! is IF -bounded

in R! × R! for some filterF .
(5) The productX × Y of o-bounded| · |-closed additive subgroupsX;Y ⊂ R! is

IF -bounded inR! ×R! for some filterF .
(6) The productX ×Y of o-bounded subringsX;Y ⊂ R! is IF -bounded inR!×R!

for some filterF .
(7) The productX × Y of o-bounded linear subalgebrasX;Y ⊂ R! is IF -bounded

in R! × R! for some filterF .
(8) For any filtersF1, F2 on !, the productA.F1/ × A.F2/ of the I-bounded

subalgebrasA.F1/; A.F2/ of R! is o-bounded inR! × R!.
(9) For any filtersF1,F2 on!, the sumA.F1/+ A.F2/ 6= R!.

Finally, let us ask a question suggested by the above results. We have explored
subrings ofR!, but we know nothing about subrings of the countable productC! of
the complex planeC.

QUESTION 1. Is everyo-bounded subgroup(subring) of C! mixable? I-bounded?
oF -bounded for some filterF?

Filter games and properties of the sets~(B;F )

Now let us pass to proofs of our results. We start from the proofs of certain
statements concerning the interplay between the game OFF on subsets ofR! and the
filter games considered in [17] and [18].

First we make precise the notions of a game and of a strategy in a game. From
the most general point of view, the games we consider in this paper can be described
as follows. Suppose that we are supplied with setsX, Y and a subset8 of the
product X! × Y! (8 can be thought of as some property of pairs of sequences
..xn/; .yn// ∈ X! × Y!). Two players, I and II, choose at every stepn ∈ ! a
point xn of the setX and a pointyn of the setY, respectively. At the end of the
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game, player II is declared the winner if the constructed sequences.xn/n∈! and.yn/n∈!
have the property8 (equivalently, the pair..xn/n∈!; .yn/n∈!/ belongs to the set8);
otherwise, player I is declared the winner. The setsX andY are called the sets of
admissible movesof I and II, respectively. Thus thegamecan be identified with the
subset8 ⊂ X! × Y!.

A strategy of II in the game8 ⊂ X! × Y! can be thought as a function
$II : X<! → Y, whereX<! = ⋃

n∈! Xn stands for the family of all finite sequences of
elements ofX (including the empty sequence). Player IIplays according toa strategy
$II : X<! → Y if yk = $II .x0; : : : ; xk/ for eachk ∈ ! and each.x0; : : : xk/ ∈ Xk+1. A
strategy $II : X<! → Y of II is winning in a game8 ⊂ X! × Y! if for any infinite
sequence.xn/n∈! ∈ X! the pair..xn/n∈!; .yn/n∈!/ belongs to8 whenever II plays
according to the strategy $II .

Dually, a strategy of I in a game8 ⊂ X! × Y! is a function $I : Y<! → X, and
player I plays according to a strategy $I if xk = $I.y0; : : : ; yk−1/ for eachk ∈ ! and
.y0; : : : ; yk−1/ ∈ Yk. A strategy $I : Y<! → X of I is winning if for any infinite
sequence.yk/k∈! ∈ Y! the pair..xn/n∈!; .yn/n∈!/ fails to belong to8 whenever I
plays according to the strategy $I.

Let X be a set. For a finite sequence¦ = .x0; : : : ; xn/ ∈ X<! and a pointx ∈ X,
let |¦ | denote the lengthn + 1 of ¦ and write¦∧x = .x0; : : : ; xn; x/. By [X]! we
denote the family of all infinite subsets ofX and by[X]<! =P.X/ \ [X]! the family
of all finite subsets ofX.

We shall reduce our game OFF to the gameG.X ; [!]<!;Z / considered in [17]
and [18]. Given subsetsX ;Z ⊂ P.!/, the gameG.X ; [!]<!;Z / is defined as
follows. At every stepk ∈ !, two players, I and II, choose an elementXk ∈X and a
finite subsetsk ⊂ Xk, respectively. At the end of the game, II is declared the winner
if

⋃
k∈! sk ∈ Z .

We shall exploit the following two results proven in [17, Theorems 2.11 and 2.15].
(We recall thatFr stands for the Fréchet filter of all cofinite subsets of!.)

LEMMA 1 (Laflamme [17]). LetF be a filter on!.

(1) I has a winning strategy in the gameG.Fr ; [!]<!;F / if and only if the filterF
is meager.
(2) I has no winning strategy in the gameG.F ; [!]<!;F / if and only ifF is a

non-meagerP-filter.

To reduce the game OFF on ~.b;F / to the gameG.Fr ; [!]<!;F /, we shall
consider two intermediate games: OCF (abbreviated from Open-Compact) and LHF
(abbreviated from Length-Height) on subsets ofR!.

For a familyF ⊂P.!/, the game OCF on a subsetB of a topological groupG is
defined as follows. Two players, I and II, at every stepn ∈ ! choose a neighborhood
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Un ∈ N .e/ and a compact subsetKn of G, respectively. At the end of the game, II
is declared the winner ifB ⊂ ⋃

F∈F
⋂

n∈'.F/ Kn · Un for some finite-to-one function
' : ! → ! (recall thatN .e/ is the family of all neighborhoods of the identitye of
the groupG). We denote byK .G/ the collection of all compact subsets ofG.

LEMMA 2. For a familyF ⊂ P.!/, the player I has a winning strategy in the
game OFF on a subsetB of a topological groupG if and only if I has a winning
strategy in the game OCF on B.

PROOF. The ‘if’ part is trivial and follows from the compactness of finite subsets
of G. To prove the ‘only if’ part, assume that $: .[G]<!/<! → N .e/ is a winning
strategy of I in the game OFF on B. Fix a function g : N .e/ → N .e/ such
that g.U / · g.U / ⊂ U for any U ∈ N .e/ and, using compactness, fix a function
f : K .G/×N .e/ → [G]<! such thatK ⊂ f .K ;U /U for any.K ;U / ∈ K .G/×
N .e/.

We define a strategȳ$: K .G/<! → N .e/ of I in the game OCF by induction, by
setting$̄.∅/ = g.$.∅// and

$̄.K0; : : : ; Kn/ = g ◦ $
(

f .K0; $̄.∅//; f .K1; $̄.K0//; : : : ; f .Kn; $̄.K0; : : : ; Kn−1//
)

for .K0; : : : ; Kn/ ∈ K .G/<!. Let us show that̄$ is a winning strategy. Fix any
infinite sequence.Kn/n∈! ∈ K .G/! of compact subsets ofG. We need to show
that for any finite-to-one function' ∈ !!, we haveB 6⊂ ⋃

F∈F
⋂

n∈'.F/ Kn · Un,

whereUn = $̄.K0; : : : ; Kn−1/ for n ∈ !. For everyn ∈ ! consider the finite subset
Fn = f .Kn;Un/ of G. Since $ is a winning strategy,B 6⊂ ⋃

F∈F
⋂

n∈'.F/ Fn · Vn,
whereVn = $.F0; : : : ; Fn−1/ for n ∈ !. Observe that

g.Vn/ = g ◦ $.F0; : : : ; Fn−1/ = g ◦ $. f .K0;U0/; : : : ; f .Kn−1;Un−1//

= $̄.K0; : : : ; Kn−1/ = Un:

Then for eachF ∈ F , we have⋂
n∈'.F/

Kn · Un ⊂
⋂

n∈'.F/
. f .Kn;Un/ · Un/ · Un

=
⋂

n∈'.F/
Fn · g.Vn/ · g.Vn/ ⊂

⋂
n∈'.F/

Fn · Vn;

and sinceB 6⊂⋃
F∈F

⋂
n∈'.F/ Fn·Vn, we conclude thatB 6⊂⋃

F∈F
⋂

n∈'.F/ Kn ·Un.

Next, given a familyF ⊂P.!/we consider the game LHF on a subsetB ⊂ R!,
defined as follows. Two players, I and II, choose at every stepk ∈ ! two numbersnk

andmk, respectively. At the end of the game, II is declared the winner if there is a
finite-to-one function' : ! → ! such that for everyx ∈ B there isF ∈ F such that
‖x‖nk ≤ mk for all k ∈ '.F/.
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LEMMA 3. LetF ⊂ P.!/. If player I has a winning strategy in the game OCF
on a subsetB of R!, then I has a winning strategy in the game LHF on B.

PROOF. Fix a winning strategy $: K .R!/<! → N .0/ of I in the game OCF on
a subsetB of R!. Let l : N .0/ → ! be a function assigning to each neighborhood
U ∈ N .0/ a numberl .U / ∈ ! such thatB̄l .U/.0/ ⊂ U , whereB̄n."/ = {x ∈ R! :
‖x‖n ≤ "}.

Define a strategȳ$: !<! → ! of I in the game LHF on B by setting

$̄.m0; : : : ;mk/ = l ◦ $.[−m0;m0]!; : : : ; [−mk;mk]!/
for .m0; : : : ;mk/ ∈ !<!. We claim that̄$ is a winning strategy for I in the game LHF .
To show this, take an arbitrary infinite sequence.mk/k∈! ∈ !! and letn0 = $̄.∅/ and
nk = $̄.m0; : : : ;mk−1/ for k > 0. Given a finite-to-one map' : ! → ! we have to
find a function f ∈ B such that for anyF ∈ F there is ak ∈ '.F/ with ‖ f ‖nk > mk.

For eachF ∈ F and k ∈ '.F/, let Ck = [−mk;mk]! ⊂ R! and Uk =
$.C0; : : : ;Ck−1/. Observe thatl .Uk/ = l ◦ $.C0; : : : ;Ck−1/ = nk, and thusCk +
B̄l .Uk/.0/ = {x ∈ R! : ‖x‖nk ≤ mk}. Since $ is a winning strategy for I in the game
OCF , there is f ∈ B such thatf =∈ ⋂

k∈'.F/ Ck + Uk for any F ∈ F . Hence there is
k ∈ '.F/ with f =∈ Ck + Uk ⊃ Ck + B̄l .Uk/.0/, and it follows that‖ f ‖nk > mk.

LEMMA 4. For any non-meager filterF on! and any functionb ∈ !!, the first
player has no winning strategy in the game LHF on the subset~.b;F / of R!.

PROOF. Assume that $: !<! → ! is a strategy of I in the game LHF on~.b;F /
for some non-meager filterF on!. To show that $ is not winning we have to find
an infinite number sequence.mk/k∈! ∈ !! and a finite-to-one map' : ! → ! such
that for every functionf ∈ ~.b;F / there isF ∈ F such that‖ f ‖nk ≤ mk for all
k ∈ '.F/, wherenk = $.m0; : : : ;mk−1/. To construct such a sequence.mk/, we
shall use the absence of a winning strategy for I in the gameG.Fr ; [!]<!;F / (see
Lemma1(1)). Define a strategȳ$: .[!]<!/<! → Fr for I in the gameG.Fr ; [!]<!;F /
by letting

$̄.s0; : : : ; sk/ = {
n ∈ ! : n > max{$.‖b‖maxs0; : : : ; ‖b‖maxsk/;maxsk}

}
for each sequence.s0; : : : ; sk/ of finite subsets of!. Since$̄ is not a winning strategy
for I in the gameG.Fr ; [!]<!;F /, there is an infinite sequence.sk/k∈! of finite subsets
of ! such that

⋃
k∈! sk ∈ F andsk ⊂ $̄.s0; : : : ; sk−1/ for all k ∈ !.

For everyk ∈ !, let mk = ‖b‖maxsk andnk = $.m0; : : : ;mk−1/. Then from the
fact thatsk ⊂ $̄.s0; : : : ; sk−1/, we have minsk > max{nk;maxsk−1} for all k ∈ !.
Therefore, the family{sk}k∈! is disjoint and we can find a finite-to-one function
' : ! → ! such thatsk ⊂ '−1.k/ for everyk ∈ !.
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Fix any function f ∈ ~.b;F /, and chooseF ∈ F such that‖ f ‖i < ‖b‖i for
all i ∈ F . SinceF is a filter and

⋃
k∈! sk ∈ F , we can assume thatF ⊂ ⋃

k∈! sk.
Then for anyk ∈ '.F/ we can findi ∈ sk ∩ F and conclude that‖ f ‖nk ≤ ‖ f ‖i <

‖b‖i ≤ ‖b‖maxsk = mk. This means that the strategy $ of I is not winning in the
game LHF .

We say that a space isnowhere locally compactif none of its points has a compact
neighborhood. For the proof of Theorem4 (3) we shall need the following.

LEMMA 5. If the setB is a closed nowhere locally compact subset ofR!, then
~.B;F / = R! for every non-meager filterF on!.

PROOF. Assume thatF is a non-meager filter andB is a closed nowhere locally
compact subset ofR!. To show that~.B;F / = R!, fix any functionx ∈ R! and
find a function f ∈ !! such that‖x‖n ≤ ‖ f ‖n for all n ∈ !. For a subsetA ⊂ R!

andn ∈ !, let diamn.A/ = supx;y∈A ‖x − y‖n and‖A‖n = supa∈A ‖a‖n.
Repeating the standard inductive argument (see [14, Section 7.C]), assign to each

finite number sequence¦ ∈ !<! an open subsetU¦ ⊂ B and a numberl .¦ / ∈ ! so
that for every¦ ∈ !<! andi ∈ ! the following conditions hold:

(1) Ū¦∧i ⊂ U¦ ;
(2) diaml .¦ /.U¦∧i / ≤ 2−|¦ | and‖U¦∧i ‖l .¦ / > i + 1;
(3) l .¦∧i / > l .¦ / and diaml .¦∧i /.U¦∧ i / = ∞.

Next, define a strategy $: .[!]<!/<! → Fr for I in the gameG.Fr ; [!]<!;F / by
letting

$.s0; : : : ; sk/ = {
n ∈ ! : n ≥ l .‖ f ‖maxs0; : : : ; ‖ f ‖maxsk/

}
for each sequence.s0; : : : ; sk/ of finite subsets of!. By Lemma1 (1), $ is not a
winning strategy. This means that there exists a sequence.sk/k∈! of finite subsets of!
such that

⋃
k∈! sk ∈ F andsk ⊂ $.s0; : : : ; sk−1/ for all k ∈ !. For everyk ∈ !, let

mk = ‖ f ‖maxsk and¦k = .m0; : : : ;mk/. SinceB is closed in the complete spaceR!,
the intersection

⋂
k∈! U¦k contains a pointb ∈ B. We claim that‖ f ‖n < ‖b‖n for

all n ∈ ⋃
k∈! sk. Indeed, givenn ∈ ⋃

k∈! sk, find k ∈ ! such thatn ∈ sk. Since
sk ⊂ $.s0; : : : ; sk−1/ = [l .¦k−1/;∞/, we findn ≥ l .¦k−1/ and

‖b‖n ≥ ‖b‖l .¦k−1/ ≥ ‖U¦k‖l .¦k−1/ − diaml .¦k−1/.U¦k/

> mk + 1 − 2−|¦k−1| ≥ mk = ‖ f ‖maxsk ≥ ‖ f ‖n:

Thus‖ f ‖n < ‖b‖n for all n ∈ ⋃
k∈! sk, as claimed. Finally, since we have‖x‖n ≤

‖ f ‖n for all n ∈ !, it follows thatx ∈ ~.B;F /, as required.

We now prove another difficult lemma, which will be used in the proof of statements
(3) and (4) of Theorem5.
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LEMMA 6. Assume thatF ⊂ F ′ are two filters on! such that I has no winning
strategy in the gameG.F ; [!]<!;F ′/. Then for any subsetA ⊂ ~.F /, the closure
Ā of A in ~.F ′/ is a Baire space.

PROOF. We have to verify that the intersection
⋂

k∈N Uk of any decreasing sequence
.Uk/k∈N of dense open subsets ofĀ is dense inĀ. It suffices to verify that for any
non-empty open subsetU0 ⊂ Ā, the intersection

⋂
k∈! Uk is non-empty.

Fix any functionh∅ ∈ U0 ∩ A. SinceU0 is a neighborhood ofh∅ in Ā, there
are l .∅/ ∈ ! and ".∅/ > 0 such thatx ∈ U0 for any functionx ∈ Ā satisfying
‖x − h∅‖l .∅/ ≤ ".∅/. Sinceh∅ ∈ A ⊂ ~.F /, we can find a subsetF.∅/ ∈ F such
that F.∅/ ⊂ [l .∅/+ 1;∞/ and‖h∅‖n < n for all n ∈ F.∅/.

By induction over the tree!<!, assign to every finite sequence¦ ∈ !<! a function
h¦ ∈ A, a setF.¦ / ∈ F , a numberl .¦ / ∈ !, and real positive numbers".¦/, Ž.¦/
such that the following conditions hold for every¦ ∈ !<! andi ∈ !:

(1) Ž.¦∧i / ≤ Ž.¦/ andŽ.¦ ∧i / ≤ 1
2 min j ∈F.¦ /∩[0;i ]. j − ‖h¦‖ j /;

(2) h¦∧i ∈ A ∩ U|¦∧i | and‖h¦∧i − h¦‖i ≤ 2−|¦∧i | min{".¦/; Ž.¦ ∧i /};
(3) ".¦∧i / ≤ ".¦/;
(4) for all x ∈ Ā, ‖x − h¦∧i ‖l .¦∧i / ≤ ".¦∧i / implies x ∈ U|¦∧ i |;
(5) ‖h¦∧i ‖ j < j for all j ∈ F.¦ ∧i /;
(6) max{i; l .¦∧i /} < min F.¦ ∧i /.

Define a strategy $: .[!]<!/<! → F for I in the gameG.F ; [!]<!;F ′/ letting
$.s0; : : : ; sk/ = F.maxs0; : : : ;maxsk/ for .s0; : : : ; sk/ ∈ .[!]<!/<!. According to
our hypothesis, $ is not a winning strategy of I. Hence there is a sequence.sk/k∈! of
finite subsets of! such that

⋃
k∈! sk ∈ F ′ andsk ⊂ $.s0; : : : ; sk−1/ for all k ∈ !.

For everyk ∈ !, let mk = maxsk and¦k = .m0; : : : ;mk/. Consider the function
sequence.h¦k/k∈! ⊂ A. The condition (2) implies that this sequence is Cauchy inR!,
and thus has a limith∞ ∈ R!. Let us show that‖h∞‖i < i for all i ∈ ⋃

k∈! sk. Given
arbitraryi ∈ F ′ = ⋃

k∈! sk, find k ∈ ! with i ∈ sk. Sincei ∈ sk ⊂ $.s0; : : : ; sk−1/ =
F.¦k−1/ andi ≤ maxsk = mk, we have

‖h∞‖i ≤ ‖h¦k−1‖i + ‖h∞ − h¦k−1‖i ≤ ‖h¦k−1‖i +
∞∑

p=k

‖h¦p − h¦p−1‖mp

≤ ‖h¦k−1‖i +
∞∑

p=k

1

2|¦p| Ž.¦p/ ≤ ‖h¦k−1‖i +
∞∑

p=k

1

2p+1
Ž.¦k/

≤ ‖h¦k−1‖i + Ž.¦k/ ≤ ‖h¦k−1‖i + 1

2
.i − ‖h¦k−1‖i / = 1

2
.i + ‖h¦k−1‖i / < i;

and thush∞ ∈ ~.F ′/. Sinceh∞ is the limit of the sequence.h¦k/k∈! ⊂ A, we have
h∞ ∈ Ā.
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Now it remains to verify thath∞ ∈ Uk = U|¦k−1| for all k ∈ !. By (4), it
suffices to show that‖h∞ − h¦k−1‖l .¦k−1/ ≤ ".¦k−1/. But using the fact thatl .¦k−1/ <

min F.¦k−1/ ≤ minsk ≤ mk, we find

‖h∞ − h¦k−1‖l .¦k−1/ ≤
∞∑

p=k

‖h¦p − h¦p−1‖l .¦k−1/ ≤
∞∑

p=k

‖h¦p − h¦p−1‖mp

≤
∞∑

p=k

1

2|¦p| ".¦p−1/ ≤
∞∑

p=k

1

2p+1
".¦k−1/ ≤ ".¦k−1/;

and the proof is complete.

In our subsequent considerations, we shall often need the following simple but
useful result.

LEMMA 7. For any ¦ -bounded subsetB ⊂ R!, there is an increasing function
b ∈ !! such that~.B;F / ⊂ ~.b;F / for every semi-filterF .

PROOF. Write B = ⋃
n∈! Bn, where.Bn/n∈! is an increasing sequence of bounded

subsets ofR!. Let b.−1/ = 0, and for everyn ∈ ! fix by induction anyb.n/ >
b.n − 1/ with b.n/ ≥ sup{‖x‖n : x ∈ Bn}. Clearly,b is validly defined. To prove
that~.B;F / ⊂ ~.b;F / for any semi-filterF , fix any function x ∈ ~.B;F /
and, by the definition of~.B;F /, find a functiony ∈ B and a subsetF ∈ F
such that‖x‖i < ‖y‖i for all i ∈ F . Next, findn ∈ N such thaty ∈ Bn and let
F ′ = F ∩ [n;∞/ ∈ F . Then‖x‖i < ‖y‖i ≤ b.i / = ‖b‖i for all i ∈ F ′, and thus
x ∈ ~.b;F /.

In the sequel we shall need a characterization of meager semi-filters which gener-
alizes the Talagrand characterization of meager filters [21] and can be proved by the
same argument (see [24, page 32]).

PROPOSITION3. For a semi-filterF , the following conditions are equivalent:

(1) F is meager inP.!/;
(2) F lies in a¦ -compact subset of[!]!;
(3) there is an increasing number sequence.mi / such that eachF ∈ F meets all

but finitely many intervals[mi ;mi +1/.

Proofs of main results

PROOF OFTHEOREM2. (1) First, assume that the setB is oF -bounded inR!. For
everyn ∈ ! consider the open neighborhoodUn = {x ∈ R! : ‖x‖n < 1} of the origin
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ofR!. Since the setB isoF -bounded inR! there is a sequence.Fn/n∈! of finite subsets
of R! and a finite-to-one function' ∈ !! such thatB ⊂ ⋃

F∈F
⋂

n∈'.F/ Fn + Un. We
claim thatB ⊂ ~.b;'[F ]/, whereb.n/ = 1 + max{‖x‖n : x ∈ Fn}, n ∈ !.

Take anyx ∈ B, and findF ∈F such that for everyn ∈ '.F/we havex ∈ Fn+Un.
Then‖x‖n < b.n/, and hencex ∈ ~.b;'[F ]/.

Next, assuming thatB ⊂ ~.b; '[F ]/ for some functionb ∈ R! and some finite-
to-one function' ∈ !!, we shall show that the setB is oF -bounded inR!. Let
.Uk/k∈! be a sequence of neighborhoods of the origin ofR!. For everyk ∈ !, find
nk ∈ ! and"k > 0 such thatB̄nk."k/ ⊂ Uk, whereB̄n."/ = {x ∈ R! : ‖x‖n ≤ "}. We
can assume thatnk+1 > nk for all k ∈ !. Now for everyk ∈ ! find a finite subset
Fk ⊂ R! such that[− ↑ b.nk+1/;↑ b.nk+1/]! ⊂ Fk + B̄nk."k/. Let  ∈ !! be the
finite-to-one function defined by −1.k/ = [nk; nk+1/ for k ∈ !.

We claim thatB ⊂ ⋃
F∈F

⋂
k∈ ◦'.F/ Fk + Uk. Take anyx ∈ B ⊂ ~.b;'[F ]/ and

find F ∈ F such that↑ x.i / < ↑ b.i / for all i ∈ '.F/. SinceF is a semi-filter
and' is finite-to-one, we can assume that min'.F/ ≥ n0. In this case, for every
k ∈  ◦ '.F/ we can find a numberi ∈ [nk; nk+1/ ∩ '.F/. Then

x ∈ [− ↑ b.i /;↑ b.i /]! + B̄i .0/ ⊂ [− ↑ b.nk+1/;↑ b.nk+1/]! + B̄nk.0/

⊂ Fk + B̄nk."k/+ B̄nk.0/ = Fk + B̄nk."k/ ⊂ Fk + Uk:

HenceB ⊂ ⋃
F∈F

⋂
k∈ .'.F// Fk + Uk, and soB is oF -bounded.

(2) In light of the previous item, to prove the second statement of Theorem2,
it suffices to verify that eacho-bounded subsetB ⊂ R! is o[!]!-bounded. Fix a
sequence.Un/n∈! of neighborhoods of the origin ofR!. Since the setB is o-bounded
in R!, for every k ∈ ! there is a sequence.F k

n /n≥k of finite subsets ofR! such
that B ⊂ ⋃

n≥k Fk
n + Un. For everyk ∈ !, let Fn = ⋃

k≤n Fk
n , and note that

B ⊂ ⋃
n≥k Fk

n + Un ⊂ ⋃
n≥k Fn + Un. Then for everyx ∈ B there is an infinite subset

S ⊂ ! such thatx ∈ Fn + Un for eachn ∈ S. HenceB ⊂ ⋃
S∈[!]!

⋂
n∈S Fn + Un,

which means that the setB is o[!]! -bounded.

PROOF OF THEOREM 4. Let B ⊂ R! andF be a semi-filter on!. It will be
convenient to start with the last assertion of the theorem.

(4) We must show that~.B;F / is¦ -bounded if and only if either supn∈! ‖b‖n < ∞
for all b ∈ B or B is ¦ -bounded andF is meager.

If supn∈! ‖b‖n < ∞ for all b ∈ B, then the set~.b;F / consists of bounded
functions and hence is¦ -bounded inR!. Next, assume that the setB is¦ -bounded and
the semi-filterF is meager. By Lemma7,~.B;F / ⊂ ~.b;F / for some increasing
functionb : ! → !. Using Proposition3, find an increasing number sequence.mi /

such that each elementF ∈ F meets almost all half-intervals[mi ;mi +1/. Consider
the increasing functionf : ! → ! defined by f .i / = b.mi +2/ for i ∈ !. The
¦ -boundedness of the set~.b;F / will follow as soon as we show that↑ x ≤∗ f
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for every x ∈ ~.b;F /. Indeed, given anyx ∈ ~.b;F /, find F ∈ F such that
‖x‖i < b.i / for all i ∈ F . Next, find i0 ∈ ! such thatF ∩ [mi ;mi +1/ 6= ∅ for all
i ≥ i0. Then for anyk ≥ mi0 there is a numberi ≥ i0 with k ∈ [mi ;mi +1/ and an
elementn ∈ F ∩ [mi +1;mi +2/. Observing that

‖x‖k ≤ ‖x‖n < b.n/ ≤ b.mi +2/ = f .i / ≤ f .mi / ≤ f .k/;

we conclude that↑ x ≤∗ f .
Now assume that the set~.B;F / is ¦ -bounded and supn∈! ‖b‖n = ∞ for some

b ∈ B. We have to show that the setB is ¦ -bounded andF is meager. Using the
¦ -boundedness of the set~.B;F /, find an increasing functionf : ! → ! such that
↑ x ≤∗ f for any x ∈ ~.B;F /. Let m0 = 0, and by recursion define an increasing
number sequence.mi / by settingmi +1 = min{k ∈ ! : ‖b‖k > 2 f .mi /}. We claim
that each elementF ∈ F meets almost all half-intervals[mi ;mi +1/. ReplacingF by
F ∩ [n;∞/ for sufficiently largen, if necessary, we can assume that‖b‖i > 0 for all
i ∈ F . Then the functionbF=2, wherebF.i / = ‖b‖min F∩[i;∞/, belongs to~.B;F /,
and thusbF=2 ≤∗ f . Find i0 ∈ ! such thatbF.k/ ≤ 2 f .k/ for all k ≥ mi0. We claim
that for everyi ≥ i0 the setF meets the half-interval[mi ;mi +1/. Indeed, assuming
that F ∩ [mi ;mi +1/ = ∅ for somei ≥ i0 we would getb.mi +1/ ≤ bF .mi / ≤ 2 f .mi /,
which contradicts the definition ofmi +1. ThereforeF meets all the half-intervals
[mi ;mi +1/ for i ≥ i0, and by Proposition3, the semi-filterF is meager.

It remains to show that the setB is ¦ -bounded. Observe that for anyb ∈ B the
function b=2 belongs to~.b;F /, and thusb=2 ≤∗ f . This is equivalent to saying
thatb ≤∗ 2 f for eachb ∈ B, and we conclude thatB is ¦ -bounded inR!.

Now we are able to prove the first item of Theorem4.
(1) If the set B is ¦ -bounded inR!, then we can apply Lemma7 to find an

increasing functionb ∈ !! with ~.B;F / ⊂ ~.b;F /. Applying Theorem2, we
conclude that the set~.b;F /, and therefore the set~.B;F /, is oF -bounded.

Now we show that~.b;F / is IF -bounded ifF is a filter. If the filterF is
meager, then~.b;F / is ¦ -bounded according to item (4). Consequently, the set
~.B;F / ⊂ ~.b;F / is ¦ -bounded and hence isIF -bounded. If the filterF is
non-meager, then Lemmas2–4 imply that the first player has no winning strategy in
the games LHF , OCF and OFF on~.b;F /. This implies that the set~.b;F /, and
hence the set~.B;F /, is IF -bounded.

(2) To prove the second item of Theorem4 it suffices to verify that a subsetB ⊂ R!

is o-bounded provided~.B;Fr / 6= R!. Fix any function f ∈ R! \ ~.B;Fr /. We
claim thatB ⊂ ~.| f |+1; [!]!/. Indeed, letb ∈ B. Then for each cofinite setF ⊂ !

there existsn ∈ F such that‖ f ‖n ≥ ‖b‖n, and it follows that there exists an infinite
set F ′ ⊂ ! such that‖ f ‖n ≥ ‖b‖n for all n ∈ F ′. This implies immediately that
b ∈ ~.| f | + 1; [!]!/, and so we haveB ⊂ ~.| f | + 1; [!]!/, as claimed. It follows
from this, by Theorem2, that the setB is o-bounded.
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(3) Assume thatB is an analytic subspace ofR! andF is a non-meager filter. If
the setB is ¦ -bounded, then by item (1), the set~.B;F / is oF -bounded inR!, and
thus~.B;F / 6= R!. If B is not¦ -bounded, thenB contains a subsetB′ ⊂ B which
is nowhere locally compact and is closed inR! (see [14, Corollary 21.23]). In this
situation we can apply Lemma5, and conclude that

R! = ~.B′;F / ⊂ ~.B;F / = R!;

and that in particular~.B;F / is notoF -bounded.

PROOF OFTHEOREM5. Let B ⊂ R! andF be a semi-filter on!.
(1) Recall that forb ∈ R! andF ∈ [!]!, we denote bybF the function inR! defined

by bF.i / = ‖b‖min.F∩[i;∞// for all i ∈ !. It is easy to check that the mappingR! ×
[!]! → R! defined by.b; F/ 7→ bF is continuous, and it then follows immediately
that the map9 : R! × [!]! × .−1; 1/! → R! defined by9 : .b; F; t/ 7→ t · bF is
also continuous, wheret · bF is the coordinatewise product of the functionst andbF .
Clearly, the space~.B;F / is the image of the productB ×F × .−1; 1/! under9.

(2) If B;F ∈ 61
n for somen ∈ N, then B × F × .−1; 1/! ∈ 61

n (see [14,
Proposition 37.1]), and~.B;F /, being a continuous image ofB ×F × .−1; 1/!,
also belongs to the class61

n.
(3) IfF is a non-meager filter, then by Lemma1 (1) the first player has no winning

strategy in the gameG.Fr ; [!]<w;F /. Applying Lemma6, we conclude that the
closureĀ of any subsetA ⊂ ~.Fr / in~.F / is a Baire space. In particular, the space
~.F /, being the closure of~.Fr /, is Baire.

(4) If F is a non-meagerP-filter, then by Lemma1 (2), the first player has no
winning strategy in the gameG.F ; [!]<!;F /. Applying Lemma6, we conclude
that the closure of any subsetA ⊂ ~.F / in~.F / is a Baire space. The space~.F /
is thus hereditarily Baire.

(5) Suppose that.bk/k∈! ⊂ B is a sequence of unbounded functions such that
↑ bk <

∗ ↑ bk+1 for all k ∈ ! and such that for everyb ∈ B there isk ∈ ! such that
↑ b ≤∗ ↑ bk. Let l0 = 0. By induction, construct an increasing number sequence
.lk/k∈! ∈ !! such that for everyk ∈ ! and everyi ≥ lk we have↑ bk−1.i / < ↑ bk.i /
(which is equivalent to‖bk−1‖i < ‖bk‖i ). It follows that for everyk < n and every
i ≥ ln we have‖bk‖i < ‖bn‖i .

Given a subsetA of !, consider the functionf A ∈ R! defined fori ∈ ! by f A.i / =
‖bk‖i , wherek ∈ ! is chosen to satisfy the condition max.[0; i ]∩.A∪{0}// ∈ [l k; lk+1/.
We claim thatfA ∈ ~.B;F / if and only if the setA is finite.

Assuming thatA is finite, find k ∈ ! such that max.A ∪ {0}/ ∈ [lk; lk+1/, and
observe that| fA.i /| = ‖bk‖i < ‖bk+1‖i for all i ≥ lk+1. This yields fA ∈ ~.B;F /.

Next, assume that the setA is infinite. To show thatfA =∈ ~.B;F / it suffices
for every b ∈ B to find m ∈ ! such that‖ f A‖i ≥ ‖b‖i for all i ≥ m. Given
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arbitrary b ∈ B, find p ∈ ! such that↑ b ≤∗ ↑ bp. Next, find q ≥ p such that
A ∩ [lq; lq+1/ 6= ∅ and↑ b.i / ≤ ↑ bp.i / for all i ≥ lq. Given arbitraryi ≥ lq+1, find
k ∈ ! such that max.[0; i ] ∩ .A ∪ {0}/ ∈ [lk; lk+1/, and observe thatk ≥ q ≥ p and
‖ fA‖i ≥ | fA.i /| = ‖bk‖i ≥ ‖bp‖i ≥ ‖b‖i .

Now consider the map9 : P.!/ → R! assigning to each subsetA ⊂ ! the
function fA. It is easy to see that the map9 is continuous. We have already proved
that9.P.!// ∩ ~.B;F / = 9.[!]<!/, and thus9.[!]<!/ is a countable closed
subset of~.B;F / because the set9.P.!// is compact. It remains to observe
that the space9.[!]<!/ has no isolated points and that9.[!]<!/ is thus a closed
meager subspace of~.B;F /. This implies that the space~.B;F / is not hereditarily
Baire.

PROOF OFTHEOREM 6. The implications (1) implies (5), (1) implies (4), (4) im-
plies (3), and (3) implies (2) are trivial.

Though the implication (2) implies (1) follows from Theorem1 (1) we give a short
proof to make the paper self-contained. So, suppose thatB is a II-bounded subset
of R! and let $: N .0/<! → [R!]<! be a winning strategy of the second player in
the game OF on the setB. For everyn ∈ !, let Un = {x ∈ R! : ‖x‖n < 1}.

Our crucial observation is that

b ∈
⋃

.n1;:::;nk/∈!<!

⋂
m∈!

$.Un1; : : : ;Unk ;Um/+ Um

for everyb ∈ B. Indeed, assuming that this is false, we can construct by induction an
infinite sequence.nk/k∈! ∈ !! such thatb =∈ $.Un1; : : : ;Unk /+ Unk for everyk ∈ !.
Thenb =∈ ⋃

k∈! $.Un1; : : : ;Unk/+Unk , which shows that the strategy $ is not winning,
a contradiction. HenceB is contained in the set⋃

.n1;:::;nk/∈!<!

⋂
m∈!

$.Un1; : : : ;Unk ;Um/+ Um;

which is the countable union of the bounded subsets
⋂

m∈! $.Un1; : : : ;Unk ;Um/+ Um

of R! for .n1; : : : ; nk/ ∈ !<!.
(5) implies (1): Assume that a setB ⊂ R! is oF -bounded for some meager semi-

filter F . By Theorem2, B ⊂ ~.b;'[F ]/ for someb ∈ !! and some finite-to-one
function ' ∈ !!. The¦ -boundedness of the set~.b;'[F ]/ will therefore follow
from Theorem4 (4) as soon as we prove that the semi-filter'[F ] is meager.

By Proposition3, the semi-filterF , being meager, lies in a¦ -compact subset
K ⊂ [!]!. Consider the mapP.'/ :P.!/ →P.!/ defined byP.'/.A/ = '.A/
for A ∈P.!/. Since' is finite-to-one,P.'/.[!]!/ ⊂ [!]!. The continuity ofP.'/
implies that the setL = {'.F/ : F ∈ F } is ¦ -compact in[!]!. Finally, observe that

'[F ] ⊂ ↑L = {E ⊂ ! : ∃L ∈ L with L ⊂ E}
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and that the set↑L is ¦ -compact in[!]!. Applying Proposition3 to the semi-filter
'[F ], we conclude that it is meager.

PROOF OFTHEOREM7. (1) Suppose thatB ⊂ R! is oF -bounded for some filterF .
Applying Theorem2, find a functionb ∈ !! and a finite-to-one function' : ! → !

such thatB ⊂ ~.b;'[F ]/. Since'[F ] is a filter, we can apply Theorem4 (1) to
conclude that the set~.b;'[F ]/ is I'[F ]-bounded and henceIF -bounded, and that
the subsetB ⊂ ~.b;'[F ]/ is therefore alsoIF -bounded.

(2) Suppose thatF1; : : : ;Fn are filters andb ∈ !!. According to Lemmas2–3,
to prove that the unionU = ~.b;F1/ ∪ · · · ∪~.b;Fn/ is I [!]!-bounded, it suffices
to verify that the first player has no winning strategy in the game LH[!]! on U . To
show this we shall use the argument from the proof of Theorem 2.12 of [17]. Suppose
that the first player has a winning strategy $: !<! → ! in the game LH[!]! on U .
Without loss of generality, we can assume thatn ≥ 2, that the functionb is increasing
and takes positive integer values, and that the strategy $ is monotone in the sense
that $.m0; : : : ;mk/ > mk for any finite sequence.m0; : : : ;mk/ ∈ !<!. To beat the
strategy $ of I, the second player will simultaneously play.3n + 1/ games, and will
win in one of these games.

For everyp ∈ {0; : : : ; 3n}, define a number sequence.mp; j / j ∈! by letting

m0;0 = b ◦ $.∅/;
mp+1; j = b ◦ $.mp;0; : : : ;mp; j / for p < 3n, and

m0; j +1 = b ◦ $.m3n;0; : : : ;m3n; j / for j ∈ !:
The sequence.mp; j / j ∈! will be interpreted as the moves of the second player in the
pth game.

It follows from our assumption onb and $ that

m0;0 < m1;0 < · · · < m3n;0 < m0;1 < m1;1 < · · · < m3n;1 < m0;2 < · · · :
Let M3n = ⋃

j ∈![m3n; j ;m0; j +1/ andMp = ⋃
j ∈![mp; j ;mp+1; j / for 0 ≤ p < 3n.

Since M0 ∪ · · · ∪ M3n = ! for every i ∈ {1; : : : ; n} there is a numberp.i / ∈
{0; : : : ; 3n} such that|Mp.i / ∩ F | = ∞ for eachF ∈ Fi . It follows by an elemen-
tary combinatorial argument that there is a numberp ∈ {1; : : : ; 3n − 1} such that
|p − p.i /| > 1 for everyi ∈ {1; : : : ; n}.

We claim that the moves.mp; j / j ∈! of the second player beat the strategy $ of I in
the game LH[!]! on U . Let nk+1 = $.mp;0; : : : ;mp;k/ for k ≥ ∅. To show that the
strategy $ is not winning, it suffices to find for eachx ∈ U an infinite subsetI ⊂ !

such that‖x‖nk ≤ mp;k for all k ∈ I .
Given arbitraryx ∈ U , find i ∈ {1; : : : ; n} such thatx ∈ ~.b;Fi /. Next, find an

elementFi ∈ Fi such that‖x‖ j < b. j / for all j ∈ Fi . It follows from the choice of
the numberp that the setI = {k ∈ ! : Fi ∩ [mp+1;k−1;mp−1;k/ 6= ∅} is infinite.
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We claim that‖x‖nk ≤ mp;k for eachk ∈ I . Indeed, given anyk ∈ I , find a
number j ∈ Fi ∩ [mp+1;k−1;mp−1;k/. Note that

nk = $.mp;0; : : : ;mp;k−1/ ≤ b ◦ $.mp;0; : : : ;mp;k−1/ = mp+1;k−1:

Then

‖x‖nk ≤ ‖x‖mp+1;k−1 ≤ ‖x‖ j < b. j / ≤ b.mp−1;k/

≤ b ◦ $.mp−1;0; : : : ;mp−1;k/ = mp;k:

PROOF OFPROPOSITION1. (1) To see that~.[!]!/ is a denseGŽ-subset ofR!,
notice thatR! \~.[!]!/ = ⋃

n∈! Mn, where the setsMn, defined byMn = {x ∈ R! :
|x.i /| ≥ i for all i ≥ n} for all n ∈ !, are closed nowhere dense subsets ofR!.

(2) Theorem2 implies that the set~.[!]!/ is o[!]!-bounded and henceo-bounded.
(3) The set~.[!]!/, being a denseGŽ-subset ofR!, is not¦ -bounded, because

¦ -bounded subsets ofR! are meager. By Theorem1 (2), I-bounded analytic subsets
of R! are¦ -bounded. Consequently,~.[!]!/, being analytic and not¦ -bounded, is
not I-bounded inR!.

(4) Assuming that~.[!]!/ is oF -bounded for some filterF , and applying Theo-
rem7, we conclude that~.[!]!/ is IF -bounded and thusI -bounded, which contradicts
the previous item.

(5) If B is a¦ -bounded subset ofR!, then the productB ×~.[!]!/ is o-bounded
in R! × R!, by [11, Theorem 2.7] or Theorem9 (2) applied to the near coherent
semi-filters[!]! andFr . Next, suppose that the productB ×~.[!]!/ is o-bounded
for some subsetB ⊂ R!. Let9 : R! × R! → R! be the isomorphism mapping a
pair of sequences..xi /; .yi // ∈ R! ×R! onto the sequence.zi / such thatz2i = xi and
z2i +1 = yi for i ∈ !. Then the image9.B ×~.[!]!// is o-bounded inR!. Applying
Theorem2, we conclude that the set9.B × ~.[!]!// is o[!]!-bounded and lies in
~. f ; [!]!/ for some increasing functionf ∈ !!. Consider the increasing functions
g; h : ! → ! defined byg.i / = f .2i + 2/ andh.i / = g.g.i /+ 1/ for i ∈ !.

The¦ -boundedness ofB will follow as soon as we prove that↑ b ≤∗ h for any
b ∈ B. Assuming that this is false, we would find a functionb ∈ B and an infinite
subsetN ⊂ ! such that‖b‖n > h.n/ = g.g.n/+ 1/ for everyn ∈ N. Without loss
of generality we can assume thatN ∩ [n; g.n/] = {n} for any n ∈ N. Let {nk}k∈!
be the increasing enumeration of the setN. Consider the functionc ∈ !! defined
by c.i / = min

(
g.N/ ∩ [i − 1;∞/

)
and observe thatc ∈ ~.[!]!/. Let us show that

max{‖b‖i ; ‖c‖i } ≥ g.i / for any i ≥ n0. Indeed, given arbitraryi ≥ n0, find a unique
numberk such thatnk ≤ i < nk+1. The choice of the setN implies thatg.nk/ < nk+1.
If i ≤ g.nk/+ 1, then

max{‖b‖i ; ‖c‖i } ≥ ‖b‖i ≥ ‖b‖nk > g.g.nk/+ 1/ ≥ g.i /;
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while if i > g.nk/+ 1, then

max{‖b‖i ; ‖c‖i } ≥ ‖c‖i = min g.N/ ∩ [i − 1;∞/

≥ min g.N/ ∩ .g.nk/;∞/ = g.nk+1/ ≥ g.i /:

Consider the functiona = 9.b; c/, and note that

a ∈ 9.B ×~.[!]!/ ⊂ ~. f ; [!]!/:
On the other hand, given anyk > 2n0, find the smallesti ∈ !with 2i > k, and observe
that i ≥ n0 and hence‖a‖k ≥ max{‖b‖i ; ‖c‖i } ≥ g.i / = f .2i + 2/ ≥ f .k/: Now
the inequality f ≤∗ ↑ a contradicts the fact thata ∈ ~. f; [!]!/. This contradiction
completes the proof of the¦ -boundedness ofB.

PROOF OFTHEOREM9. We shall prove the implications (1) implies (2) implies (3)
implies (4) implies (5) implies (6) implies (1), (1) implies (7) implies (8) implies (1),
and (1) implies (9) implies (4). In fact, the implications (7) implies (8) and (2) implies
(3) implies (4) are trivial. To see (4) implies (5) note that~.F1/ + · · · + ~.Fn/

is the image of~.F1/ × · · · × ~.Fn/ under the continuous group homomorphism
h : .R!/n → R!, h : .x1; : : : ; xn/ 7→ x1 + · · · + xn, and use a result of [10] asserting
thato-bounded groups are preserved by homomorphic images.

(1) implies (2): Assume that the (semi-)filtersF1; : : : ;Fn are near coherent, and
let b ∈ !! be an increasing function. Using the near coherence of the semi-filters
F1; : : : ;Fn, find an increasing sequence.mk/k∈! such thatm0 = 0 and such that for
any Fi ∈ Fi , for 1 ≤ i ≤ n, the set

I .F1; : : : ; Fn/ = {
k ∈ ! : [mk;mk+2/ ∩ Fi 6= ∅ for all i ≤ n

}
is non-empty. Consider the (semi-)filter

F =
{

F ⊂ ! :
⋃

k∈I .F1;:::;Fn/

[nmk; nmk+1/ ⊂ F for some F1 ∈F1; : : : ; Fn ∈ Fn

}
:

Next, define the functionf : ! → ! by f : j 7→ b.mk+2/, wherek is chosen to satisfy
the conditionj ∈ [nmk; nmk+1/.

Consider the linear isomorphism9 : R! → Rn assigning to ann-tuple of functions
.x1; : : : ; xn/ ∈ R! the functiony = 9.x1; : : : ; xn/ defined byy.nq+ i / = xi +1.q/ for
all q ∈ ! and 0≤ i < n. We claim that9.~.b;F1/× · · · ×~.b;Fn// ⊂ ~. f ;F /.
Take any functionsxi ∈ ~.b;Fi / for 1 ≤ i ≤ n, and lety = 9.x1; : : : ; xn/. For
everyi , find Fi ∈Fi such that‖xi ‖ j < ‖b‖ j for all j ∈ Fi , and let

F =
⋃

k∈I .F1;:::;Fn/

[nmk; nmk+1/ ∈ F :
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We claim that‖y‖ j < ‖ f ‖ j for all j ∈ F . We have to verify that|y.p/| < ‖ f ‖ j for
every p ≤ j . Write p = nq + i , whereq ∈ ! and 0≤ i < n. Next, findk ∈ ! such
that j ∈ [nmk; nmk+1/. Sincep ≤ j , we haveq ≤ mk. Becausek ∈ I .F1; : : : ; Fn/,
there is a pointq′ ∈ Fi +1 ∩ [mk;mk+2/. Thenq ≤ mk ≤ q′ < mk+2 and

|y.p/| = |xi +1.q/| ≤ ‖xi +1‖q′ < ‖b‖q′ = b.q′/ ≤ b.mk+2/ = f . j / ≤ ‖ f ‖ j :

Thus y ∈ ~. f ;F / and9
(∏n

i =1~.b;Fi /
) ⊂ ~. f ;F /. By Theorem2, the

set~. f ;F / is oF -bounded inR!. Since9 is a group isomorphism, the product
~.b;F1/×· · ·×~.b;Fn/ and its subset~.B1;F1/×· · ·×~.Bn;Fn/ are therefore
oF -bounded inR!.

(6) implies (1): Assume that~.F1/+· · ·+~.Fn/ 6= R!. First we show that the set
~.F1/+· · ·+~.Fn/ is absolutely symmetric inR! . Fix anyx ∈ ~.F1/+· · ·+~.Fn/

and anyy ∈ R! with ↑ y ≤ ↑ x. Write x = x1 + · · · + xn, wherexi ∈ ~.Fi /,
i ≤ n. Then |y| ≤ ↑ y ≤ ↑ x ≤ ↑ x1 + · · · + ↑ xn, and we can find functions
y1; : : : ; yn ∈ R! such thaty = y1 + · · · + yn and |yi | ≤ ↑ xi for all i ≤ n. By
the absolute symmetry of the sets~.Fi /, we haveyi ∈ ~.Fi / for all i , and thus
y = y1 + · · · + yn ∈ ~.F1/+ · · · +~.Fn/.

Fix any f =∈ ~.F1/ + · · · + ~.Fn/. Because the set~.F1/ + · · · + ~.Fn/ is
absolutely symmetric, we can assume thatf = ↑ f and that f is thus a positive
non-decreasing function. Letm0 = 0 andmk+1 = f .mk/+1 for k ∈ !. We claim that
for any setsF1 ∈ F1; : : : ; Fn ∈ Fn, there is ak ∈ ! such that[mk;mk+2/ ∩ Fi 6= ∅
for all i ≤ n. Without loss of generality, 0=∈ Fi for all i ≤ n.

For every 1≤ i ≤ n, consider the functionxi = idFi −1 ∈ ~.Fi /, by which
notation we mean the functionxi : j 7→ min.Fi ∩ [ j ;∞// − 1. Then the function
y = x1+· · ·+xn belongs to~.F1/+· · ·+~.Fn/. As f =∈ ~.F1/+· · ·+~.Fn/, we
conclude that↑ y. j / < ↑ f . j / for somej ∈ !. Findk ∈ ! such thatj ∈ [mk;mk+1/.
Then for any 1≤ i ≤ n, we have

min.Fi ∩ [ j ;∞//− 1 = xi . j / ≤ ↑ y. j / < ↑ f . j /

= f . j / ≤ f .mk+1/ = mk+2 − 1:

Hence min.Fi ∩ [mk;∞// ≤ min.Fi ∩ [ j ;∞// < mk+2 andFi ∩ [mk;mk+2/ 6= ∅ for
all 1 ≤ i ≤ n. This means that the semi-filtersF1; : : : ;Fn are near coherent.

(1) implies (7): Assume thatF1; : : : ;Fn are near coherent filters, and fix an
increasing number sequence.mk/ such that for anyF1 ∈ F1; : : : ; Fn ∈ Fn there is a
k ∈ ! such that[mk;mk+2/ ∩ Fi 6= ∅ for everyi ≤ n. For every permutation¦ of the
set{1; : : : ; n} and elementsFi ∈ Fi , for i ≤ n, let

K¦ .F¦.1/; : : : ; F¦.n//

= {mk : ∃p1 ≥ · · · ≥ pn with pi ∈ [mk;mk+2/ ∩ F¦.i / for 1 ≤ i ≤ n};
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and also letF¦ = {K¦ .F¦.1/; : : : ; F¦.n// : Fi ∈ Fi for 1 ≤ i ≤ n}. It is easy to see
that for some permutation¦ of {1; : : : ; n} the collectionF¦ is centered, and hence
can be completed to a filterF . (A collectionA is centeredif ∩C 6= ∅ for any finite
subcollectionC ⊂ A ).

We shall show that the set~.b;F¦.1/; : : : ;F¦.n// is oF -bounded for this permuta-
tion¦ and for any functionb ∈ R!. To do this, fix any increasing functionf : ! → !

such thatf .mk/ ≥ ‖b‖mk+2. We claim that~.b;F¦.1/; : : : ;F¦.n// ⊂ ~. f ;F /.
Fix any functionx ∈ ~.b;F¦.1/; : : : ;F¦.n//. Let xn = x, and find by induction,

for every i ∈ {n; n − 1; : : : ; 2}, a functionxi −1 ∈ ~.b;F¦.1/; : : : ;F¦.i −1// and an
elementF¦.i / ∈ F¦.i / such that‖xi ‖ j < ‖xi −1‖ j for every j ∈ F¦.i /. Finally, find a set
F¦.1/ ∈ F¦.1/ such that‖x1‖ j < ‖b‖ j for every j ∈ F¦.1/.

We claim that‖x‖mk < f .mk/ for everymk ∈ K¦ .F¦.1/; : : : ; F¦.n// ∈ F . Indeed,
given such anmk, we can find numbersp1 ≥ · · · ≥ pn such thatpi ∈ [mk;mk+2/∩F¦.i /
for every 1≤ i ≤ n. Then

‖x‖mk ≤ ‖xn‖pn < ‖xn−1‖pn ≤ ‖xn−1‖pn−1

< ‖xn−2‖pn−2 ≤ · · · ≤ ‖x1‖p1 < ‖b‖p1 ≤ ‖b‖mk+2 ≤ f .mk/;

and thusx ∈ ~. f;F /. By Theorem2, the set~.b;F¦.1/; : : : ;F¦.n//, being a subset
of ~. f ;F /, is oF -bounded.

(8) implies (1): Assume that~.F¦.1/; : : : ;F¦.n// 6= R! for some permutation¦
of {1; : : : ; n}. We have to show that the semi-filtersF1; : : :Fn are near coherent.
Without loss of generality, assume that¦.i / = i for everyi .

Fix any function f =∈ ~.F1; : : : ;Fn/. Since the set~.F1; : : : ;Fn/ is absolutely
symmetric, we can assume thatf is increasing and takes positive integer values.
Let m0 = 0 andmk+1 = f .mk/ + 2 for k ≥ 0. The near coherence of the filters
F1; : : : ;Fn will follow as soon as we show that for anyF1 ∈ F1; : : : ; Fn ∈ Fn there
is a numberk ∈ ! such that[mk;mk+2/ ∩ Fi 6= ∅ for everyi ≤ n.

Consider the sequence of increasing functionsg0; : : : ; gn ∈ R!, whereg0. j / = j
and gi . j / = −1=n + min Fn ∩ [gi −1. j /;∞/ for j ∈ !. It is easy to see that
gi ∈ ~.F1; : : : ;Fi / for every i ≤ n. It follows from f =∈ ~.F1; : : : ;Fn/ 3 gn

that gn. j / ≤ f . j / for some j ∈ !. For this numberj , find a uniquek such that
j ∈ [mk;mk+1/.

It follows from the definition of the numbergn. j / ≤ f . j / that there is a number
jn ∈ Fn such thatgn−1. j / ≤ jn ≤ f . j / + 1=n. Similarly, for the functiongn−1

there is a numberjn−1 ∈ Fn−1 such thatgn−2. j / ≤ jn−1 ≤ jn + 1=n ≤ f . j / + 2=n.
Proceeding in this way, for everyi ∈ {n; n − 1; : : : ; 1} we find a numberji ∈ Fi such
thatgi −1. j / ≤ ji ≤ f . j /+ .n − i + 1/=n. Then

mk ≤ j = g0. j / ≤ j1; : : : ; jn ≤ f . j /+ 1 ≤ f .mk+1/+ 1< mk+2;

and thus each setFi , for 1 ≤ i ≤ n, meets the half-interval[mk;mk+2/.
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(1) implies (9): If the filtersF1; : : : ;Fn are near coherent, then the product
~.F1/× · · · ×~.Fn/ is oF -bounded in.R!/n for some filterF , by the implication
(1) implies (2). Hence the image~.F1/ + · · · + ~.Fn/ ⊃ ~.F1/ ∪ · · · ∪ ~.Fn/

of this product under the continuous homomorphismh : .R!/n → R! defined by
h : .x1; : : : ; xn/ 7→ x1 + · · · + xn is alsooF -bounded inR!.

(9) implies (4): Assume that the union~.F1/∪ · · · ∪~.Fn/ is oF -bounded from
some filterF . Then the sets~.F1/; : : : ;~.Fn/ areoF -bounded inR!, and hence
their product~.F1/ × · · · × ~.Fn/ is o-bounded, according to the implication (1)
implies (2) of Theorem9 applied ton copies of the filterF .

PROOF OFPROPOSITION2. Given ano-bounded mixable subsetX ⊂ R!, find a non-
decreasing functionf : [0;∞/ → [0;∞/ such that for anyx; y ∈ X there is az ∈ X
such that f ◦ ↑ z ≥∗ max{↑ x;↑ y}. Replacing f .t/ by max{ f .t/; t} if necessary,
we can assume thatf .t/ ≥ t for all t ∈ [0;∞/. Let f 1 = f , and by recursion let
f n+1 = f ◦ f n for n ≥ 1. Take any increasing functiong : [0;∞/ → [0;∞/ such that
g ≥∗ f n for all n ≥ 1. Then by induction it can be shown that for anyx1; : : : ; xn ∈ X
there is az ∈ X such thatg ◦ ↑ z ≥∗ max{↑ x1; : : : ;↑ xn}.

Using theo-boundedness of the setX and Theorem2, find a non-decreasing
function b ∈ R! such thatX ⊂ ~.b; [!]!/. For eachx ∈ X, let Fx = {n ∈ ! :
↑ x.n/ < g ◦ b.n/}, and consider the collectionC = {Fx : x ∈ X}. We claim that
this collection is centered. Indeed, assuming the converse to hold, we would find
pointsx1; : : : ; xn ∈ X such thatFx1 ∩ · · · ∩ Fxn = ∅. The last equality implies that
max{↑ x1; : : : ;↑ xn} ≥ g◦b. It follows from the choice of the functiong that there is an
elementz ∈ X such thatg ◦ ↑ z ≥∗ max{↑ x1; : : : ;↑ xn} ≥ g ◦ b. Taking into account
that the mapg is increasing, we get↑ z ≥∗ b, which contradictsz ∈ ~.b; [!]!/.

Therefore the collectionC is centered, and can be completed to a filterF ⊃ C .
ThenX ⊂ ~.g ◦ b;C / ⊂ ~.g ◦ b;F /, and by Theorem2, X is oF -bounded.
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