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Abstract

In this paper we study the size of the value set of the Carmichael ½-function.

2000 Mathematics subject classification: primary 11N25, 11N56.

1. Introduction

Let ' denote the Euler function, which, for an integer n ≥ 1, is defined as usual as
the number of elements in the multiplicative group .Z=nZ/× and hence is given by the
product formula

'.n/ =
∏
p¹ ‖ n

p¹−1.p − 1/:

The Carmichael function ½ is defined for each integer n ≥ 1 as the largest order
of any element in the multiplicative group .Z=nZ/×. More explicitly, for any prime
power p¹ , one has

½.p¹/ =
{

p¹−1.p − 1/ if p ≥ 3 or ¹ ≤ 2;

2¹−2 if p = 2 and ¹ ≥ 3;

hence, on prime powers in the first (and more generic) case it coincides with the
Euler function, while in the second case it is half as large. Unlike the multiplicative
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Euler function, the Carmichael function for an arbitrary integer n is given by the least
common multiple, rather than the product of, its prime power constituents, that is

½.n/ = lcm
[
½.p¹1

1 /; : : : ; ½.p
¹k

k /
]
;(1.1)

where n = p¹1
1 · · · p¹k

k is the prime factorization of n. Note that ½.1/ = 1.
Given a positive integer-valued arithmetic function, it is an interesting question to

study the size of its image set. For any subset� of the positive integers, and for every
positive real number x we put � .x/ = � ∩ [1; x]. We write

� = {½.n/ : n ≥ 1}
and� for the corresponding image set of '.

In the case of the Euler function there is a long history of results giving increasingly
closer upper and lower bounds and culminating in the result of Ford determining the
precise order of magnitude of� .x/. For this and references to the earlier work see [4].

The fact that the Carmichael function is for a general argument given by the least
common multiple rather than the product seems to make it more difficult to deal with
and consequently quite a bit less is known.

The only lower bound of which we are aware is that of [1]:

#� .x/ ≥ x

log x
exp

(
c.1 + o.1//.log log log x/2

)
;

for a suitable positive constant c, which follows from either Theorem 1 or Theorem 2
of that paper. The same expression, with the same constant c, serves as both an upper
and a lower bound for � .x/, as was found by Maier and Pomerance [6]. Hence,
although we expect that the set � .x/ is rather larger than � .x/, we have not been
able to prove this.

The only reference to an upper bound we can find in the literature is contained
in the final paragraph of the paper [2] of Erdős, Pomerance and Schmutz, where it
is mentioned without proof that a bound of the form #� .x/ � x=.log x/c for some
c > 0 follows from a result of Erdős and Wagstaff [3].

In this paper, we refine the argument of [3] and prove an explicit bound.

THEOREM 1.1. The inequality

#� .x/ � x

.log x/�
.log log x/5=2+�

holds for all x ≥ 3, where � = 1 − .e log 2/=2 = 0:057 : : : .

Actually, as indicated at the end of the proof, the method gives a slightly sharper
result, although only so far as to improve the exponent of log log x .
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The letters p and q will always denote prime numbers. For a positive integer n,
we let P.n/, !.n/ and �.n/ denote the largest prime factor, the number of distinct
prime factors, and the total number (including multiplicities) of prime factors of n,
respectively. If z > 1 is any positive real number, we write !z.n/ and �z.n/ for the
number of distinct prime factors, and the total number of prime factors of n which
are ≤ z, respectively. For any integer ` ≥ 1, we write log` x for the `th iterate of
the natural logarithm. We shall throughout, without comment, assume that the real
variable argument of log` is sufficiently large that these are defined and positive. Also,
throughout the paper the implied constants in symbols ‘O’ and ‘�’ will be absolute.

2. Preliminary results

In this section we prove two lemmas which are needed for the proof of our Theo-
rem 1.1.

LEMMA 2.1. Let z > 1 be any real number. We set Þ to be a positive real in the
interval .0; 1/. Let

�z;Þ = {p prime : P.p − 1/ > z; P.p − 1/ ‖ p − 1 and !.p − 1/ ≤ Þ log log p}:
Then the estimate

#�z;Þ.t/ � t .log2 t/1=2

.log z/2.log t/−Þ log.e=Þ/

holds uniformly for t > z > 3, where the implied constant is absolute.

PROOF. Let p ∈ �z.t/, where for simplicity we omit the subscript Þ. Then
p − 1 = qm, where q = P.p − 1/. Clearly, P.m/ < q. Fix m. By Brun’s sieve
(see, for example, [5]), the number of primes p ≤ t such that p ≡ 1 .mod m/ and
.p − 1/=m is prime is

� t

�.m/.log.t=m//2
:

Since t=m ≥ q = P.p − 1/ > z, it follows that the above expression is

� t

�.m/.log z/2
:

Note that m is even and

!.m/ = !.p − 1/− 1 ≤ Þ log2 p ≤ Þ log2 t:
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Put K = 
Þ log2 t�. Summing over all the possible values of m, we get

#�z.t/ � t

.log z/2

∑
k≤K

∑
m≤t

!.m/=k

1

�.m/
:

Put Sk = ∑
m≤t; !.m/=k.1=�.m//. Clearly,

Sk ≤ 1

k!

⎛
⎜⎝ ∑

2≤q≤t
a≥1

1

qa−1.q − 1/

⎞
⎟⎠

k

≤ 1

k!
(
log2 t + O.1/

)k
:

Thus,

#�z.t/ � t

.log z/2

∑
k≤K

Sk � t

.log z/2

∑
k≤K

1

k!
(
log2 t + O.1/

)k
:

Since Þ < 1, one can easily verify that in the last sum above, the final term is the
largest one. Using this observation and Stirling’s formula, we get

#�z.t/ � t K

.log z/2

1

K !
(
log2 t + O.1/

)K
(2.1)

� t .log2 t/1=2

.log z/2

(
e log2 t + O.1/

K

)K

� t .log2 t/1=2

.log z/2

(
e

Þ
+ O

(
1

log2 t

))Þ log2 t

� t .log2 t/1=2

.log z/2.log t/−Þ log.e=Þ/
;

which completes the proof of the lemma.

If 1 < y < x , we write 9.x ; y/ = #{n ≤ x : P.n/ ≤ y}.

LEMMA 2.2. Let z > 1. Let þ be a real in the interval .0; 1/. Put

�z;þ = {n : !z.n/ ≤ þ log2 z}:
Then the estimate

#�z;þ.t/ � t .log2 z/3=2

.log z/1−þ log.e=þ/

holds uniformly for t > z > 3, where the implied constant is absolute.

PROOF. Let n ∈ �z.t/, where, again for simplicity, we omit the subscript þ. Then
n = uv, where u and v are coprime, P.u/ ≤ z, !.u/ ≤ þ log2 z, and every prime
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factor of v exceeds z. We fix u. Then v ≤ t=u is free of primes q ≤ z. By Brun’s
sieve, the number of such positive integers is � t=.u log z/. Summing over all the
possible values of u, we get

# �z.t/ � t

log z

∑
u≤t

P.u/≤z
!.u/≤L

1

u
;

where L = 
þ log2 z�. Let Tk = ∑
u≤t; P.u/≤z; !.u/=k 1=u. Clearly,

Tk ≤ 1

k!

⎛
⎜⎝ ∑

2≤p≤z
a≥1

1

pa

⎞
⎟⎠

k

≤ 1

k!
(
log2 z + O.1/

)k
:

Thus,

#�z.t/ � t

log z

L∑
k=0

1

k!
(
log2 z + O.1/

)k
:

Since þ < 1, one can easily verify that in the sum above, the last term is the largest
one. Using this observation and Stirling’s formula, we obtain

#�z.t/ � t L

log z

1

L!
(
log2 z + O.1/

)L
(2.2)

� t .log2 z/1=2

log z

(
e log2 z + O.1/

þ log2 z

)þ log2 z

� t .log2 z/1=2

.log z/1−þ log.e=þ/
;

which completes the proof of the lemma.

3. The proof of Theorem 1.1

PROOF. Let x be a large positive real number. We puty = exp
(
log x log3 x= log2 x

)
,

and write �1.x/ = {m ≤ x : P.m/ ≤ y}. It is well-known (see, for example, [8,
Chapter III.5]) that

#�1.x/ = 9.x ; y/ = x exp .−.1 + o.1//u log u/ ;

where u = log x= log y. Since u = log2 x= log3 x , a quick calculation shows that

#�1.x/ ≤ x

.log x/1+o.1/
:(3.1)

We now look at numbers m = ½.n/, m ≤ x that are not in�1.x/. Thus, there exists
a prime factor q > y of m. From formula (1.1) for ½, we conclude that either q2|n,
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hence q.q − 1/|m, or there exists a prime number p|n such that P.p − 1/ = q > y.
In the first case, denoting the set by�2, the number of such numbers m ≤ x does not
exceed

#�2.x/ ≤
∑
q>y

x

q.q − 1/
� x

∑
q>y

1

q2
� x

y
= o

(
x

log x

)
:

From now on, we need only look at numbers m ∈ � .x/\�1.x/ such that p − 1|m
for some prime number p with P.p − 1/ > y. Let q = P.p − 1/. In the case that
q2|m, writing �3 for the set of such m, the number of such numbers m ≤ x does not
exceed

#�3.x/ ≤
∑
q>y

x

q2
� x

∑
q>y

1

q2
� x

y
= o

(
x

log x

)
:

Hence, from now on we can assume that q ‖ m. In particular, P.p − 1/ ‖ .p − 1/.
Of these remaining m ≤ x , let�4.x/ be the subset for which we also have!.p−1/ <
Þ log2 p, where Þ ∈ .0; 1/ will be fixed later. In this case, p ∈ Py.x/. Furthermore,
since p − 1|m, the number of such positive integers m ≤ x does not exceed

∑
p∈�y.x/

x

p − 1
� x

∑
p∈�y .x/

1

p
:

By estimate (2.1) and partial summation, we get

∑
p∈�y.x/

1

p
� Py.x/

x
+

∫ x

y

Py.t/

t2
dt

� .log2 x/1=2

.log y/2.log x/−Þ log.e=Þ/
+

∫ x

y

.log2 t/1=2

.log y/2.log t/−Þ log.e=Þ/

dt

t

� .log2 x/1=2

.log y/2.log x/−Þ log.e=Þ/
+ .log2 x/1=2

.log y/2.log x/−1−Þ log.e=Þ/

� .log2 x/5=2

.log x/1−Þ log.e=Þ/.log3 x/2
:

Hence,

#�4.x/ � x.log2 x/5=2

.log x/1−Þ log.e=Þ/.log3 x/2
:(3.2)

Let �5.x/ be the set of those m ∈ � .x/ not yet considered and such that there
exists a prime p ≤ x with p − 1|m and m=.p − 1/ ∈ �y , for some value of þ to be
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fixed later. Lemma 2.2 tells us that for p a given prime, the number of such m ∈ �5.x/
is

≤ #�y

(
x

p − 1

)
� x.log2 y/3=2

p.log y/1−þ log.e=þ/
:

Summing this inequality over all possible values of p, we get

#�5.x/ � x.log2 x/3=2

.log y/1−þ log.e=þ/

∑
p≤x

1

p
� x.log2 x/5=2

.log y/1−þ log.e=þ/
(3.3)

= x.log2 x/5=2+1−þ log.e=þ/

.log x/1−þ log.e=þ/.log3 x/1−þ log.e=þ/
:

Finally, we let�6.x/ denote the set of remaining m ∈ � .x/. Such positive integers
m have the property that p − 1|m holds with some prime p such that P.p − 1/ > y,
!.p − 1/ ≥ Þ log2 p, and furthemore, !p.m=.p − 1// ≥ þ log2 p. This implies that

�.m/ ≥ !.p − 1/+ !p.m=p − 1/ ≥ .Þ + þ/ log2 p ≥ .Þ + þ/ log2 y:

Note that log2 y = log
(
log x log3 x= log2 x

) = log2 x − log3 x + log4 x . Put

Ž.x/ = .Þ + þ/ log2 y

log2 x
= .Þ + þ/

(
1 − log3 x

log2 x
+ log4 x

log2 x

)
:

We have �6.x/ ⊂ {m ≤ x : �.m/ > Ž.x/ log2 x}. We shall choose our constants so
that Þ + þ > 1 and this will make the latter set small. Specifically, a result of Norton
[7] shows that

#�6.x/ � x

.log2 x/1=2
exp

(−.1 − Ž.x/ log.e=Ž.x/// log2 x
)
:

If we set �.x/ = .log3 x − log4 x/= log2 x , we then have

Ž.x/ log.e=Ž.x// = .Þ + þ/.1 − �.x// log

(
e

Þ + þ

(
1 + �.x/+ O.�.x/2/

))

= .Þ + þ/.1 − �.x//

(
log

(
e

Þ + þ

)
+ �.x/+ O.�.x/2/

)

= .Þ + þ/ log

(
e

Þ + þ

)
+ � �.x/+ O.�.x/2/;

where we have set � = .Þ + þ − log.e=.Þ + þ//. We get that(
1 − Ž.x/ log

(
e

Ž.x/

))
log2 x

=
(

1 − .Þ + þ/ log

(
e

Þ + þ

))
log2 x − � .log3 x − log4 x/+ o.1/;
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therefore

#�6.x/ � x.log2 x/−1=2+�

.log x/1−.Þ+þ/ log.e=.Þ+þ//.log3 x/�
:(3.4)

Optimizing the exponent of log x among #�4.x/; #�5.x/ and #�6.x/ (see (3.2)–
(3.4)), we get Þ = þ and 1 − Þ log.e=Þ/ = 1 − .Þ + þ/ log.e=.Þ + þ//. This gives
Þ = e=4, � = e=2− log 2 = :66599 : : :, 1−Þ log.e=Þ/ = 1−e log 2=2 = 0:0579 : : :,
leading to the bound

#�6.x/ � x.log2 x/−1=2+e=2−log 2

.log x/1−e log 2=2.log3 x/e=2−log 2
:

The theorem now follows from estimates (3.2)–(3.4) and the stronger bounds for�1,
�2,�3, in fact in the slightly sharper form

#� .x/ � x

.log x/�
.log log x/5=2+�.log log log x/−� ;

where � was defined in the statement of the theorem.

In conclusion we remark that there was no necessity to choose Þ and þ to be fixed.
By slightly perturbing the above choices by a function of x tending to zero as x
approaches infinity, one can obtain a very minor improvement sharpening slightly the
exponent 5=2 + � of log log x .
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[2] P. Erdős, C. Pomerance and E. Schmutz, ‘Carmichael’s lambda function’, Acta Arith. 58 (1991),
363–385.
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Universidad Nacional Autónoma de México
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