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Abstract

The concept of loosely Markov dynamical systems is introduced. We show that for these systems the
recurrence rates and pointwise dimensions coincide. The systems generated by hyperbolic exponential
maps, arbitrary rational functions of the Riemann sphere, and measurable dynamical systems generated
by infinite conformal iterated function systems are all checked to be loosely Markov.

2000 Mathematics subject classification: primary 37C45; secondary 37C40, 37F35, 37A25.

1. Introduction and preliminaries

Let .X; ²/ be a metric space,¼ be a Borel probability measure on X and let T : X → X
be a¼-invariant measurable map. Given x ∈ X , one defines lower and upper pointwise
dimensions of ¼ at the point x respectively as follows.

d¼.x/ = lim inf
r→0

log¼.B.x; r//

log r
and d¼.x/ = lim sup

r→0

log¼.B.x; r//

log r
:

Given in addition r > 0, one defines

−r .x/ = inf{n ≥ 1 : T n.x/ ∈ B.x; r/} = inf{n ≥ 1 : ².T n.x/; x/ < r}:
The lower and upper recurrence rates of x are defined as

R.x/ = lim inf
r→0

log −r.x/

− log r
and R.x/ = lim sup

r→0

log −r.x/

− log r
:
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Let HD.¼/ be the Hausdorff dimension of the measure ¼ (inf{HD.Y /} taken over all
Borel sets Y with ¼.Y / = 1). It is well-known that if X is a subset of a Euclidean
space and ² is the corresponding Euclidean metric, then HD.¼/ = ess sup.d¼/. The
pointwise dimensions and recurrence rates seem to be a priori absolutely unrelated.
The former are purely geometric notions whereas the latter are rather dynamical. How-
ever Boshernitzan, in his pioneering work [4], has been able to prove the remarkable
inequality R.x/ ≤ HD.¼/ for ¼-almost-everywhere x ∈ X . Since then, a number
of papers devoted to finding closer relations (under various additional assumptions)
between recurrence rates and dimensions have appeared. In the remarkable paper [2],
the authors provided a sufficient condition for R.x/ = d

¼
.x/ and R.x/ = d¼.x/ to

hold ¼-almost-everywhere. Their condition involved a uniform expanding property
and a strong mixing property with respect to the reference partition. We provide a
sufficient condition for these two equalities to hold. However in contrast to [2], we do
not assume any expanding property and instead of assuming a mixing condition with
respect to a reference partition, we impose an assumption on the rate of convergence
of the Perron-Frobenius operator associated to the measure ¼. We do not have to,
therefore, care too much about a good partition, and in particular, about mixing with
respect to such a partition. Our general condition, Theorem 2.1, applies to dynami-
cal systems such as hyperbolic exponential maps, arbitrary rational functions of the
Riemann sphere and measurable dynamical systems generated by infinite conformal
iterated function systems. Let us now introduce and describe some technical notions
and results needed in the proof of Theorem 2.1.

Given two points x ∈ X and y ∈ B.x; r/, the return time of the point y into X is
defined as −r.y; x/ = min{k ≥ 1 : ².T k.y/; x/ < r}. For each x ∈ X and all r; " > 0,
consider the set

A".x; r/ = {y ∈ B.x; r/ : −r .y; x/ ≤ ¼.B.x; r//−1+"}:(1.1)

The measure ¼ is said to have long return time with respect to T if

lim inf
r→0

log¼.A".x; r//

log¼.B.x; r//
> 1

for ¼-almost-everywhere x ∈ X and all " > 0 sufficiently small. The following
fact has been proved in [1].

PROPOSITION 1.1. Let X be a subset of a Euclidean space, ¼ be a Borel probability
measure on X and let T : X → X be a ¼-invariant measurable map. If ¼ has long
return time and d¼.x/ > 0 for ¼-almost-everywhere x ∈ X, then d¼.x/ = R.x/ and

d¼.x/ = R.x/ for ¼-almost-everywhere x ∈ X.

A Borel probability measure on a Euclidean space Rd is said to be weakly dia-
metrically regular if for ¼-almost-everywhere x ∈ Rd and every " > 0, there exists
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Ž > 0 such that if r < Ž, then ¼.B.x; 2r// ≤ ¼.B.x; r//r−". The following result
also comes from [1].

PROPOSITION 1.2. Every Borel probability measure on a Euclidean space is weakly
diametrically regular.

The return time − .A/ of a set A into itself is defined as

− .A/ = min{n ≥ 1 : T n.A/ ∩ A �= ∅}:
Given a partition Þ of X and a point x ∈ X , denote by Þ.x/ the only element of Þ
containing x . Given in addition an integer n ≥ 1, the refined partition,

Þ ∨ T −1.Þ/ ∨ · · · ∨ T n−1.Þ/

is denoted by Þn. The basic property joining the notions above is captured by the
following result, proven in [14].

PROPOSITION 1.3. Suppose that T : Y → Y is a measurable transformation pre-
serving an ergodic probability measure ¼. If Þ is a finite or countable partition
of Y with positive entropy h¼.T; Þ/, then lim infn→∞ 1

n
− .Þn.x// ≥ 1 for ¼-almost-

everywhere x ∈ Y .

2. Loosely Markov maps

Let .X; ²/ be a metric space and let f : X → X be a Borel map that is at
most countable-to-one. Let ¼ be a Borel probability f -invariant measure on X .
Suppose that f is non-singular with respect to ¼, that is, ¼. f .A// = 0 if ¼.A/ = 0.
Consider J¼, the Jacobian of the map f with respect to the measure ¼. The Perron-
Frobenius operator L¼ of f with respect to the measure is given by the formula

L¼.g/.x/ =
∑

y∈ f −1.x/

J −1
¼ .y/g.y/:

Since the measure ¼ is f -invariant, L¼.1/ = 1. Suppose that J¼ : X → .0;+∞/ is
a bounded locally Hölder continuous function, with an exponent ¾ > 0. Denote the
class of all such functions by H¾ . Let Cb.X/ denote the Banach space of all bounded
real-valued functions on X endowed with the supremum norm ‖ ·‖. Then H¾ becomes
a Banach space when equipped with the norm ‖ · ‖¾ defined as ‖g‖¾ = v¾ .g/+‖g‖∞,
where

v¾ .g/ = sup

{ |g.y/− g.x/|
²¾.y; x/

: x ∈ X; y ∈ B.x; Ž/ \ {x}
}
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and Ž is small enough.
Suppose that the Perron-Frobenius operatorL¼ preserves Cb.X/ and H¾ . Assuming

from now on that X is Borel subset of a Euclidean space and ² is the standard Euclidean
metric, the dynamical system . f; ¼/ is said to be loosely Markov provided that the
following conditions are satisfied. There exists a continuous function C1 : X →
.0;+∞/ such that

(a) There exists � ∈ .0; 1/ such that for all g ∈ H¾ , n ≥ 0, and x ∈ X

|Ln
¼.g/.x/− ¼.g/| ≤ C1.x/�

n‖g‖¾ :
(b) For¼-almost-everywhere x ∈ X there exists �.x/ > 0 and a countable partition
Þ of X (by Borel sets) such that h¼. f; Þ/ > 0 and Þn.x/ ⊃ B.x; exp.−�.x/n// for
¼-almost-everywhere x ∈ X and all n ≥ 0 large enough.
(c) For ¼-almost-everywhere x ∈ X , 0 < d

¼
.x/ ≤ d¼.x/ < ∞.

We shall now prove a general theorem (which in some sense corresponds to [2,
Theorem 6]) such that all the concluding results stated in the next sections follow from
it after some appropriate preparations.

THEOREM 2.1. If . f; ¼/ is a loosely Markov dynamical system, then R.x/ = d
¼
.x/

and R.x/ = d¼.x/ for ¼-almost-everywhere x ∈ X.

PROOF. Fix a Borel set W ⊂ X such that ¼.W / = 1 and conditions (b) and (c) are
satisfied for all x ∈ W . Combining condition (b) and Proposition 1.3, we see that

lim inf
r→0

− .B.x; r//

− log r
= lim inf

n→∞
−
(
B.x; exp.−�.x/n//)

�.x/n
≥ lim inf

n→∞
− .Þn.x//

�.x/n
≥ 1

�.x/
:

This implies that

B.x; r/ ∩ f −k.B.x; r// = ∅(2.1)

for all r > 0 small enough and all k ≤ −.1=2�/ log r , where � := �.x/. It follows
from condition (c) that for every s > 0 sufficiently small (depending on x), we have

s2d¼.x/ ≤ ¼.B.x; s// ≤ sd¼.x/=2:(2.2)

Let Br = B.x; r/ for all r ∈ .0; 1/. Given in addition � > 0, define the function
�r;� : [0;+∞/ → [0; 1] by the following formula.

�r;� .t/ =

⎧⎪⎨
⎪⎩

1 if 0 ≤ t ≤ r;

r−�.r + r � − t/ if r ≤ t ≤ r + r� ;

0 if t ≥ r + r� :
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Define gr;� : X → [0; 1] by setting gr;� .z/ = �r;� .².z; x//. Since the function
z �→ ².z; x/ is Lipschitz continuous with Lipschitz constant equal to 1, and since �r;�

is Lipschitz continuous with Lipschitz constant equal to r−� , the composite function
gr;� : X → [0; 1] is Lipschitz continuous with Lipschitz constant equal to r−� . In
particular, gr;� ∈ H¾ and ‖gr;�‖¾ ≤ r−� . We now show that the measure ¼ has long
return time at the point x . Since C1 : X → .0;+∞/ is continuous, we may assume
r > 0 to be so small that that C1.z/ ≤ 2C1.x/ for all z ∈ Br . It follows from condition
(a) of the loosely Markov property and Proposition 1.2 that for every k ≥ 0

¼
(
B.x; r/ ∩ f −k.B.x; r//

) ≤ ∫
Br

Lk
¼

(
1Br

)
d¼ ≤

∫
Br

Lk
¼

(
gr;�

)
d¼(2.3)

≤
∫

Br

(
¼.gr;� /+ C1�

k‖gr;�‖¾
)
d¼

≤
∫

Br

(
¼.gr;� /+ 2C1.x/r

−�� k
)
d¼:

Assuming that r ∈ .0; 1/ is sufficiently small, using (2.2), and with þ = −.log � /=4�
and some universal constant C2 > 0, we have that

r−þ
2.log r/=.log � /∑
k=−.logr/=2�

� k ≤ C2r
−þr−.log� /=2� = C2r

−.log� /=4� ≤ C2¼.Br/
−.log� /=8�d¼.x/

and

¼.gr;þ/ ≤ ¼
(
Br+rþ
) ≤ ¼

(
B2rmin{1þ}

) ≤ 2d¼.x/=2rd¼.x/min{1;þ}=2

≤ 2d¼.x/=2¼.Br/
d¼.x/min{1;þ}=4d¼.x/:

Combining these two last formulas, (2.3) and (2.2), we obtain

2.log r/=.log� /∑
k=−.log r/=2�

¼
(
Br ∩ f −k.Br/

)
(2.4)

≤
2.log r/=.log � /∑
k=−.logr/=2�

∫
Br

(
¼.gr;þ/+ 2C1.x/r

−þ� k
)

d¼

≤
((

2

log �
+ 1

2�

)
log.r/¼.gr;þ/+ 2C1.x/r

−þ
2.log r/=.log� /∑
k=−.log r/=2�

� k

)
¼.Br/

≤
((

2

log �
+ 1

2�

)
log.r/2d¼.x/=2¼.Br/

d¼.x/min{1;þ}=4d¼.x/

+ 2C1.x/C2¼.Br/
−.log� /=8�d¼.x/

)
¼.Br/
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≤ (¼.Br/
d¼.x/min{1;þ}=8d¼.x/ + 2C1.x/C2¼.Br/

−.log� /=8�d¼.x/
)
¼.Br/

≤ .1 + 2C1.x/C2/¼.Br/
1+� ;

where � = .1=8d¼.x//min
{
d¼.x/min{1; þ};−.log� /=�

}
. Using (2.2) we also have

that

r−1
¼.Br /

−1+"∑
k=2.log r/=.log � /

� k ≤ C3r
−1� 2.log r/=.log � / = C3r

−1 exp

(
2

log r log �

log �

)

= C3r ≤ C3¼.Br/
1=2d¼.x/

with some universal constant C3 > 0. Applying (2.3) and Proposition 1.2, we thus
get, for all r > 0 small enough, that

¼.Br /
−1+"∑

k=2.log r/=.log � /

¼
(
Br ∩ f −k.Br/

)

≤
¼.Br /

−1+"∑
k=2.log r/=.log� /

∫
Br

(
¼.gr;1/+ 2C1.x/r

−1� k
)
d¼

≤
⎛
⎝¼.Br/

−1+"¼.gr;1/+ 2C1.x/r
−1

¼.Br /
−1+"∑

k=2.log r/=.log� /

� k

⎞
⎠¼.Br/

≤
(
¼.Br/

−1+"¼.B2r/+ 2C1.x/C3¼.Br/
1=2d¼.x/

)
¼.Br/

=
(
¼.Br/

−1+"¼.Br/r
−"=2 + 2C1.x/C3¼.Br/

1=2d¼.x/
)
¼.Br/

=
(
¼.Br/r

"=2 + 2C1.x/C3¼.Br/
1=2d¼.x/

)
¼.Br/

≤ .1 + 2C1.x/C3/¼.Br/
1+�;

where � = min{"; 1=d¼.x/}=2. Combining this with (1.1), (2.1) and (2.4), we obtain
for all r ∈ .0; 1/ sufficiently small that

¼.A".x; r// ≤
¼.Br /

−1+"∑
k=0

¼
(
Br ∩ f −k.Br/

)
≤ .1 + 2C1.x/C2/¼.Br/

1+� + .1 + 2C1.x/C3/¼.Br/
1+�

≤ 2C1.x/.1 + C2 + C3/¼.Br/
1+min{�;�}:

Thus

log
(
¼.A".x; r//

)
log.¼.Br//

≥ log
(
2C1.x/.1 + C2 + C3/

)
log.¼.Br//

+ .1 + min{�; �}/
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and consequently

lim inf
r→0

log
(
¼.A".x; r//

)
log.¼.Br//

≥ .1 + min{�; �}/ > 1:

Hence, the measure ¼ has long return time and the theorem follows by applying
Proposition 1.1.

3. Rational functions of the Riemann sphere C

In this short section f : �C → �C is an arbitrary rational function of degree ≥ 2.
Denote by J . f / the Julia set of the function f . A function � : J . f / → R is assumed
to be Hölder continuous and to satisfy inequality P.�/ > sup.�/, where P.�/ is the
topological pressure of � (see [12] and [13] for its definition and a fairly thorough
exposition of its properties). It was shown in [5] that in this situation there exists a
unique equilibrium state (see also [12] and [13]) ¼� of � and f : J . f / → J . f /. Our
aim is to show that the dynamical system .J . f /; ¼�/ is loosely Markov. Indeed, it
was proved in [12] (see Theorem 9.4.2) that

d¼� .x/ = d¼� .x/ = HD.¼�/ = h¼�
�¼�

(3.1)

for ¼�-almost-everywhere x ∈ J . f /. In particular, condition (c) of the definition
of a loosely Markov map is satisfied. Condition (b) was established in the proof of
Theorem 9.4.2 from [12]. Finally, condition (a) is exactly the content of Theorem 10
in [8]. Hence, applying Theorem 2.1 and using (3.1), we get the following.

THEOREM 3.1. If f : �C → �C is a rational function of degree ≥ 2 and if � :
J . f / → R is a Hölder continuous potential such that P.�/ > sup.�/, then for
¼�-almost-everywhere z ∈ J . f /, the number R¼� .z/ exists and moreover

R¼� .z/ = HD.¼�/ = h¼�
�¼�

:

4. Hyperbolic exponential maps

In this section we consider the maps f½ : C → C, ½ ∈ C\ {0}, given by the formula

f½.z/ = ½ez :

We assume that f½ is hyperbolic, that is, f½ has an attracting periodic cycle (this is
always the case if½ ∈ C is in a sufficiently small neighborhood of the interval .0; 1=e/).
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We are interested in the recurrence rates for the mapping F½, canonically associated
with f½, which carries essentially all significant information about the dynamics of f½
and is more suitable for measure theoretic considerations. So, the equivalence relation
‘∼’ on C × C is defined as follows: z ∼ w if and only if w − z ∈ 2³ iZ. The map
f½ projects down to the holomorphic map F½ of the cylinder Q = C=∼ such that if
5 : C → Q denotes the canonical projection, then f½ ◦5 = 5 ◦ F½. From now on
we will drop the subscript ½ and simply write f and F . Let

Ž = 1

2
min

{
1

2
; dist

(
J .F/; {F n.5.0// : n ≥ 0})}

Since the map f : J . f / → J . f / is hyperbolic, we see that Ž > 0. For every n ≥ 1
and every v ∈ J .F/ the map F−n

v : B.Fn.v/; 2Ž/ → P is then defined to be the
holomorphic inverse branch of Fn on B.Fn.v/; 2Ž/, sending Fn.v/ to v. Let � be a
real-valued Hölder continuous function defined on some Euclidean R-neighbourhood
of the Julia set J .F/ ⊂ C, R ∈ .0; Ž=2/. Hölder continuous means here that there
exists an Þ > 0 and for all r ∈ .0; R/, there exists Hr > 0 such that if |y − x | ≤ r
then |�.y/− �.x/| ≤ Hr |y − x|Þ . One can prove (see [15]) that for every z ∈ J .F/
the following limit exists and is independent of the point z.

P.�/ = lim
n→∞

1

n
log
∑

x∈F−n.z/

exp
(
Sn�.x/

)
:

The number P.�/ is called the topological pressure of the potential �. The following
easy technical fact is also established in [15].

LEMMA 4.1. For every Þ-Hölder function � : J .F/ → C there exists a constant
L� > 0 such that |Sn�.F−n

v .y// − Sn�.F−n
v .x//| ≤ L�|y − x |Þ for all n ≥ 1, all

x; y ∈ J .F/ with |x − y| ≤ Ž and all v ∈ F−n.x/. In particular,

exp
(
Sn�.F

−n
v .y//

) ≤ T exp
(
Sn�.F

−n
v .x//

)
;

where T = exp
(
LŽÞ
)
.

A Hölder continuous function � : J .F/ → R is called 1+-tame if there exists
� > 1 such that A� := sup{|�.z/+ � Re z| : z ∈ J .F/} < +∞. The following three
basic facts have been proved in [15].

THEOREM 4.2. If f : C → C is hyperbolic and � : J .F/ → R is a 1+-tame
potential, then there exists a unique Borel probability measure m� on J .F/ such that

m�

(
F−n
v

(
B.z; Ž/

)) =
∫

B.z;Ž/

exp
(
Sn�
(
F−n
v .w/

)− P.�/n
)

dm�.w/

for all n ≥ 1, all z ∈ J .F/ and all v ∈ F−n.z/.
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THEOREM 4.3. There exists a unique Borel probability F-invariant measure ¼�
absolutely continuous with respect to m�. In addition, ¼� is ergodic, equivalent to m�

and the Radon-Nikodym derivative d¼�=dm� has a continuous everywhere (on J .F/)
positive and uniformly bounded version.

THEOREM 4.4. The invariant measure ¼� is an equilibrium state of the potential �,
that is P.�/ = h¼� + ∫ �d¼� .

The following two more technical facts have also been proved in [15].

THEOREM 4.5. The entropy h¼� .F/ is positive.

THEOREM 4.6. The Lyapunov exponent �¼� = ∫ log |F ′|d¼� is finite.

We verify that the dynamical system .F; ¼F / is loosely Markov starting with the
following.

THEOREM 4.7. If f : C → C is a hyperbolic exponential map and � : J .F/ → R
is a 1+-tame potential, then for ¼�-almost-everywhere z ∈ J .F/, the local dimension
d¼� .z/ exists and is equal to h¼� =�¼� . In particular, HD.¼�/ = h¼� =�¼� .

PROOF. In view of Birkhoff’s ergodic theorem, there exists a Borel set X ⊂ J .F/
such that ¼�.X/ = 1 and, for every x ∈ X ,

lim
n→∞

1

n
log |.Fn/′.x/| = �¼� and lim

n→∞
1

n
Sn�.x/ =

∫
� d¼�:(4.1)

Fix x ∈ X and " > 0. There exists k ≥ 1 such that, for every n ≥ k,

∣∣∣∣1n log |.Fn/′.x/| − �¼�

∣∣∣∣ < ":(4.2)

Fix r ∈ .0; Ž/ and let n = n.r/ ≥ 0 be the largest integer such that

B.x; r/ ⊂ F−n
x

(
B.Fn.x/; Ž/

)
:(4.3)

Then B.x; r/ is not contained in F−.n+1/
x .B.Fn+1.x/; Ž// and it follows from the

1=4-Koebe’s distortion theorem that

r ≥ Ž|.Fn+1/′.x/|−1=4:(4.4)
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Taking r > 0 sufficiently small, we may assume that n ≥ k. Applying Theorem 4.2
and using (4.3) along with Lemma 4.1, we get that

m�.B.x; r// ≤
∫

B.Fn.x/;Ž/

exp
(
Sn� ◦ F−n

x − P.�/n
)

dm�

≤ T exp
(
Sn�.x/− P.�/n

)
m�

(
B.Fn.x/; Ž/

)
≤ T exp

(
Sn�.x/− P.�/n

)
:

Applying now (4.4) and (4.2), we obtain

log m�.B.x; r//

log r
≥ log T + Sn�.x/− P.�/n

log r

≥ log T + Sn�.x/− P.�/n

log Ž − log 4 − log |.Fn+1/′.x/|
≥ log T + Sn�.x/− P.�/n

log Ž − log 4 − .�¼� − "/.n + 1/
:

Dividing the numerator and denominator of the last quotient by n = n.r/, letting
r ↘ 0 (which implies that n.r/ → ∞), and using the second part of (4.1), we get that

dm�
.x/ ≥ − ∫ � d¼� + P.�/

�¼�
:

Since, by Theorem 4.3, the measures¼� and m� are equivalent with positive continuous
Radon-Nikodym derivatives, we obtain for all x ∈ X that

d¼� .x/ ≥ − ∫ �d¼� + P.�/

�¼�
:(4.5)

For every s > 0, let Js = {z ∈ J .F/ : | Re.z/| ≤ s}. Take M so large that¼�.JM/ > 0.
Since the measure m� is positive on non-empty open subsets of J .F/, we get that

W := inf{m�.B.z; Ž/ : z ∈ JM} > 0:

In view of ergodicity of the measure ¼� and Birkhoff’s ergodic theorem, there exists
a Borel set Y ⊂ X such that ¼�.Y / = 1 and

lim
n→∞

1

n
Sn

(
1JM

)
.x/ = ¼�.JM/ > 0

for all x ∈ Y . In particular, if {n j}∞
j=1 is the unbounded, increasing sequence of all

integers n ≥ 1 such that Fn.x/ ∈ JM , then

lim
j→∞

n j+1

n j
= 1:(4.6)
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Keep x ∈ Y and let l ≥ 0 be the least integer such that

B.x; r/ ⊃ F−i
x

(
B.Fi.x/; Ž/

)
for all i ≥ l. Taking r > 0 small enough, we may assume that l > max{k; n1}. Then
there exists a unique j ≥ 2 such that

n j−1 < l ≤ n j :(4.7)

Also F−.l−1/
x

(
B.Fl−1.x/; Ž/

)
is not contained in B.x; r/, and it therefore follows from

Koebe’s distortion theorem that

r ≤ K Ž|.Fl−1/′.x/|−1:(4.8)

It follows from the definition of l, formula (4.7), and Lemma 4.1 that

m�.B.x; r// ≥ m�

(
F−n j

x

(
B.Fn j .x/; Ž/

))
=
∫

B.Fn j .x/;Ž/

exp
(
Sn j� ◦ F−n j

x − P.�/n j

)
dm�

≥ T −1 exp
(
Sn j�.x/− P.�/n j

)
m�

(
B.Fn j .x/; Ž/

)
≥ W T −1 exp

(
Sn j�.x/− P.�/n j

)
:

Applying (4.2), (4.4) and (4.7), we obtain

log m�.B.x; r//

log r
≤ log W − log T + Sn j�.x/− P.�/n j

log r

≤ log W − log T + Sn j�.x/− P.�/n j

log.K Ž/− log |.Fl−1/′.x/|
≤ log W − log T + Sn j�.x/− P.�/n j

log.K Ž/− .�¼� + "/.l − 1/

≤ log W − log T + Sn j�.x/− P.�/n j

log.K Ž/− .�¼� + "/n j−1
:

Dividing numerator and the denominator of the last quotient by n j−1, letting r ↘ 0
(which implies that n j−1 → ∞), and using the second part of (4.1) along with (4.6),
we find that

dm�
.x/ ≤ − ∫ � d¼� + P.�/

�¼�
:

Since, by Theorem 4.3, the measures¼� and m� are equivalent with positive continuous
Radon-Nikodym derivatives, we obtain for all x ∈ Y that

d¼� .x/ ≤ − ∫ � d¼� + P.�/

�¼�
:
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Since, by Theorem 4.4, P.�/ − ∫ �d¼� = h¼� , combining this inequality with (4.5),
completes the proof.

We now prove the existence of a partition with the properties required by condi-
tion (b) of the definition of loosely Markov maps.

LEMMA 4.8. If f : C → C is hyperbolic exponential map and � : J .F/ → R is a
1+-tame potential, then there exists a countable partitionÞ of J .F/ (consisting of Borel
sets) such that h¼� .T; Þ/ > 0 and Þn.x/ ⊃ B.x; e−�.x/n/ for ¼�-almost-everywhere
x ∈ J .F/, some constant �.x/ > 0 and all n ≥ 1 large enough.

PROOF. It was proven in [17] that if¼ is a Borel probability measure on the cylinder
Q, then for every ¾ > 0 there exists a partition Þ of Q with diam.Þ/ ≤ ¾ and such
that for every þ > 0

∞∑
n=0

∑
A∈Þ

¼
(
B.@A; e−þn/

)
< ∞:(4.9)

Let us apply this fact with ¼ = ¼� . Since h¼� > 0, there exists ¾ > 0 so small that
h¼� .T; Þ/ > 0. Since the measure ¼� is F-invariant, it follows from (4.9) that

∞∑
n=0

∑
A∈Þ

¼
(
F−n
(
B.@A; e−þn/

)) =
∞∑

n=0

∑
A∈Þ

¼
(
B.@A; e−þn/

)
< ∞:(4.10)

Fix " > 0. It follows from Birkhoff’s ergodic theorem, expression (4.10), and the
Borel-Cantelli lemma that there exists a Borel set X" ⊂ J .F/ such that ¼�.X"/ = 1,
and for every x ∈ X" there exists n.x/ ≥ 1 such that Fn.x/ =∈ B.@A; e−þn/ and∣∣∣∣1n log |.Fn/′.x/| − �¼�

∣∣∣∣ < "(4.11)

for all n ≥ n.x/. The former property means that

B.Fn.x/; e−"n/ ⊂ Þ.Fn.x//:(4.12)

So, fix x ∈ X" and n ≥ n.x/. There obviously exists � .x/ > 0 so large that

Fq
(
B.x; e−� .x/n/

) ⊂ Fq
(
B.x; e−� .x/n.x//

) ⊂ Þ.Fq.x//:(4.13)

for all integers q = 0; 1; : : : ; n.x/. It follows from the 1=4-Koebe’s distortion theorem
that F−n

x

(
B.Fn.x/; Ž/

) ⊃ B
(
x; Ž|.Fn/′.x/|−1=4

)
. Consequently, all the maps Fq ,

0 ≤ q ≤ n, restricted to the ball B
(
x; Ž|.Fn/′.x/|−1=4

)
are univalent. If q ∈

{n.x/; n.x/+ 1; : : : ; n}, then applying (4.11), we get

B
(
x; 8−1Ž exp

(− .�¼� + 3"/n
)) ⊂ B

(
x; 8−1Ž|.Fn/′.x/|−1

)
;
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and it therefore follows from Koebe’s distortion theorem that,

Fq
(
B
(
x; 8−1Ž exp

(− .�¼� + 3"/n
)))

(4.14)

⊂ B
(
Fq.x/; 8−1ŽK |.Fq/′.x/| exp

(− .�¼� + 3"/n
))

⊂ B
(
Fq.x/; 8−1ŽK exp

(
.�¼� + "/q

)
exp
(− .�¼� + 3"/n

))
⊂ B
(
Fq.x/; 8−1ŽK exp

(
�¼� .q − n/

)
exp.−2"n/

)
⊂ B
(
Fq.x/; 8−1ŽK exp.−2"n/

)
⊂ B
(
Fq.x/; exp.−"n/) ⊂ B

(
Fq.x/; exp.−"q/);

where the second last inclusion sign was written assuming that n is large enough
(depending on "). Since �¼� > 0, we can find " > 0 so small that �¼� + 3" ≤ 2�¼� .
Then, for all n ≥ n.x/ large enough, we have that 8−1ŽK exp

( − .�¼� + 3"/n
) ≥

exp
(− 3�¼�n

)
. It follows from (4.14) that

Fq
(
B
(
x; exp.−3�¼�n/

)) ⊂ B
(
Fq.x/; exp.−"q/)

for all n large enough and all q ∈ {n.x/; n.x/ + 1; : : : ; n}. Combining this with
expressions (4.12) and (4.13), we see that Fq

(
B
(
x; e−�.x/n)) ⊂ Þ.Fq.x// for all n ≥ 1

and all 0 ≤ q ≤ n, where �.x/ = max{� .x/; 3�¼� }. Hence, B
(
x; e−�.x/n) ⊂ Þn.x/

and we are done.

We are now in position to conclude the main result of this section.

THEOREM 4.9. If f : C → C is a hyperbolic exponential map and � : J .F/ → C
is a 1+-tame potential, then for ¼�-almost-everywhere z ∈ J .F/, R¼� .z/ exists and
moreover R¼� .z/ = HD.¼�/ = h¼� =�¼� .

PROOF. We shall verify that the dynamical system .F; ¼�/ is loosely Markov.
Indeed, condition (a) is guaranteed by appropriate results from [15]. Condition (b)
is Lemma 4.8, and condition (c) was established in Theorem 4.7. Thus the proof is
completed by applying Theorem 2.1 along with Theorem 4.7.

5. Conformal infinite iterated function systems

Let us first describe the setting of conformal (infinite) iterated function systems
introduced in [9]. Let I be a countable index set or alphabet with at least two
elements and let S = {�i : X → X : i ∈ I } be a collection of injective contractions
from a compact metric space X into X for which there exists 0 < s < 1 such that
².�i.x/; �i.y// ≤ s².x; y/, for every i ∈ I and for every pair of points x; y ∈ X .
Thus, the system S is uniformly contractive. Any such collection S of contractions
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is called an iterated function system. We define the limit set, J , of this system as the
image of the coding space under a coding map as follows. Let I n denote the space of
words of length n, I ∞ the space of infinite sequences of symbols in I , I ∗ = ⋃n≥1 I n

and for ! ∈ I n, n ≥ 1, let �! = �!1 ◦�!2 ◦· · ·◦�!n . If ! ∈ I ∗ ∪ I ∞ and n ≥ 1 does not
exceed the length of !, we denote by !|n the word !1!2 · · ·!n. Since given ! ∈ I ∞,
the diameters of the compact sets �!|n .X/, n ≥ 1, converge to zero and since they
form a decreasing family, the set

⋂∞
n=0 �!|n.X/ is a singleton and therefore, denoting

its only element by ³.!/, defines the coding map ³ : I ∞ → X . The main object of
interest ise the limit set

J = JS = ³.I ∞/ =
⋃
!∈I ∞

∞⋂
n=1

�!|n.X/:

Observe that J satisfies the natural invariance equality, J = ⋃i∈I �i.J /. If I is finite,
then J is compact and this property fails for infinite systems.

An iterated function system S = {�i : X → X : i ∈ I } is said to satisfy the Open
Set Condition (OSC) if there exists a nonempty open set U ⊂ X (in the topology of X)
such that �i.U / ⊂ U for every i ∈ I and �i.U / ∩ � j.U / = ∅ for every pair i; j ∈ I ,
i �= j . We do not exclude the possibility that �i.U / ∩ � j.U / �= ∅.

An iterated function system S satisfying the OSC is said to be conformal if X ⊂ Rd

for some d ≥ 1 and the following conditions are satisfied.

(1a) U = IntRd .X/.
(1b) There exists an open connected set V such that X ⊂ V ⊂ Rd such that all maps
�i , i ∈ I , extend to C1 conformal diffeomorphisms of V into V . For d = 1 this just
means that all the maps �i , i ∈ I , are C1 monotone diffeomorphisms, for d ≥ 2 the
words C1 conformal mean holomorphic or antiholomorphic, and for d > 2 the maps
�i , i ∈ I are Möbius transformations. The proof of the last statement can be found in
[3] for example, where it is called Liouville’s theorem.
(1c) There exist � and l > 0, such that for every x ∈ X ⊂ Rd there exists an open
cone Con.x; �; l/ ⊂ Int.X/ with vertex x , central angle of Lebesgue measure � , and
altitude l.
(1d) Bounded Distortion Property (BDP). There exists K ≥ 1 such that

|�′
!.y/| ≤ K |�′

!.x/|
for every ! ∈ I ∗ and every pair of points x; y ∈ V , where |�′

!.x/| means the norm of
the derivative.

Let us now collect some geometric consequences of (BDP). We have for all words
! ∈ I ∗ and all convex subsets C of V

diam.�!.C// ≤ ‖� ′
!‖ diam.C/ and diam.�!.V // ≤ D‖� ′

!‖;
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where the norm ‖ · ‖ is the supremum norm taken over V and D ≥ 1 is a constant
depending only on V . Moreover,

diam.�!.X// ≥ D−1‖�′
!‖ and �!.B.x; r// ⊃ B.�!.x/; K −1‖�′

!‖r/

for every x ∈ X , 0 < r ≤ dist.X; @V /, and every word ! ∈ I ∗.
Let ¦ : I ∞ → I ∞ be the shift mapping, that is, cutting off the firs coordinate. In

order to define the dynamical systems we want to deal with in this section we first
state the following special case of Theorem 4.4.1 proven in [10].

THEOREM 5.1. If ¼ is a Borel shift-invariant ergodic probability measure on I ∞,
then

¼ ◦ ³−1
(
�!.X/ ∩ �− .X/

) = 0(5.1)

for all incomparable words !; − ∈ I ∗.

It follows from this theorem that for ¼-almost-everywhere x ∈ J there exists
exactly one element i ∈ I such that x ∈ �i.J /. Setting f .x/ = �−1

i .x/, we obtain
a dynamical system f : J → J defined ¼-almost-everywhere on J . Given a subset
Y of I ∞ and i ∈ I , let [iY ] = {i! ∈ I ∞ : ! ∈ Y }. Using shift-invariantness of the
measure ¼, we get for every Borel set A ⊂ J that

¼ ◦ ³−1. f −1.A// = ¼ ◦ ³−1

(⋃
i∈I

�i.A/

)

= ¼

(⋃
i∈I

³−1.�i.A//

)
= ¼

(⋃
i∈I

[
i³−1.A/

])

= ¼.¦−1.³−1.A/// = ¼ ◦ ³−1.A/:

This means that the measure ¼ ◦ ³−1 is f -invariant and we can consider the metric
dynamical system . f; ¼ ◦ ³−1/. The Lyapunov characteristic exponent �¼◦³−1. f / of
this system is defined by the formula

�¼◦³−1. f / = −
∫

I ∞
log |�′

!1
.³.¦.!///|d¼ ◦ ³−1.!/ > 0:

We could have defined this quantity in terms of the dynamical system . f; ¼ ◦ ³−1/ as
this system and the shift map .¦; ¼/ are isomorphic via the projection map ³ : I ∞ →
J . In order to relate the recurrence rates and pointwise dimensions of the dynamical
system . f; ¼ ◦ ³−1/, we need to restrict ourselves to a smaller, though fairly large
and geometrically significant, class of shift-invariant measures ¼ generated by the
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summable Hölder families of functions. Following [6], [10] and [16], we define these
families and measures as follows. Fix þ > 0 and let G = {g.i/ : X → R : i ∈ I } be a
family of continuous functions. For each n ≥ 1, let

Vn.G/ = sup
!∈I n

sup
x;y∈X

{|g.!1/.�¦.!/.x//− g.!1/.�¦.!/.y//|} eþ.n−1/;

and assume that Vþ.G/ = supn≥1{Vn.G/} < ∞. The collection G is then called a
Hölder family of functions (of order þ). If, in addition,

∑
i∈I esup.g.i// < ∞, then the

family G is called a summable Hölder family of functions of order þ. Throughout
this section the family F is assumed to be summable Hölder of some order þ > 0.
Following the classical thermodynamic formalism, we defined the topological pressure
of F by setting

P.G/ = lim
n→∞

1

n
log
∑
|!|=n

exp

(
sup

X

n∑
j=1

g! j ◦ �¦ j!

)
:

The limit indeed exists since the logarithm of the partition function

Zn.G/ =
∑
|!|=n

exp.sup.S!.G///

is subadditive, where S!.G/ =∑n
j=1 g.! j / ◦ �¦ j!. Moreover

P.G/ = inf
n≥1

{
1

n
log Zn.G/

}
:

Now, a Borel probability measure mG is said to be G-conformal provided it is supported
on the limit set J , for every Borel set A ⊂ X

mG.�!.A// =
∫

A

exp
(
S!.G/− P.G/|!|) dmG; for all ! ∈ I ∗

and mG.�!.X/∩�−.X// = 0 for all incomparable!; − ∈ I ∗. In [6] and [16], (compare
with [10]), the following is proved.

THEOREM 5.2. If G is a summable Hölder family of functions, then there exists
exactly one G-conformal measure mG . In addition, there exists a unique shift-invariant
Borel probability measure ¼̃G on I ∞ such that the measure ¼G = ¼̃G ◦ ³−1 on J is
absolutely continuous with respect to mG. In addition, the Radon-Nikodym derivative
d¼G=dmG is uniformly bounded away from zero and infinity.

The measure ¼G is called the Gibbs state of the Hölder family G. It follows from
Theorem 5.2 and the statements above that we may consider the dynamical system
. f; ¼G/. Our aim is to verify that this dynamical system is loosely Markov. We start
with the following.
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PROPOSITION 5.3. If G is a summable Hölder family of functions with finite Lya-
punov exponent �¼G , then

lim
r→0

log¼G.B.x; r//

log r
= h¼G . f /

�¼G

= HD.¼G/:

for ¼G-almost-everywhere x ∈ J .

PROOF. Define the function ² : I ∞ → R by the formula

².!/ = lim inf
r→0

log mG.B.x; r//

log r
:

We shall show for every ! ∈ I ∞ that

².¦!/ ≥ ².!/:(5.2)

Indeed, using G-conformality of the measure ¼G , we get for every ! ∈ I ∞ and every
r ∈ .0; dist.X; @V // that

mG

(
B.³.!/; ‖� ′

!1
‖r/
) ≥ mG

(
�!1

(
B.³.¦!/; r/

))
=
∫

B.³.¦!/;r/

exp
(
g.!1/.³.!//− P.G/

)
dmG

≥ e− P.G/ exp
(

inf{g.!1/}mG

(
B.³.¦!/; r/

)
:

Hence, expression (5.2) follows. Since the measure ¼̃G is ergodic, it follows from
Birkhoff’s ergodic theorem that the function ² : I ∞ → R is constant ¼̃G-almost-
everywhere, say ².!/ = ²̂ for some ²̂ > 0 and all ! ∈ Y ⊂ I ∞ with ¼̃G.Y / = 1. Set
now

².!/ = lim inf
r→0

log¼G.B.x; r//

log r
:

Since, by Theorem 5.2, the measures ¼G and mG are equivalent with bounded Radon-
Nikodym derivatives, we have that ² = ², and consequently, ² = ²̂ for all ! ∈ Y .
Since HD.¼G/ = ess sup.²/ and, in view of [10, Theorem 4.4.2] (compare with [16,
Theorem 3.1]), we have HD.¼G/ = h¼G . f /=�¼G , we therefore conclude that

lim inf
r→0

log¼G.B.x; r//

log r
= h¼G . f /

�¼G

= HD.¼G/:

for all ! ∈ Y . Since it was demonstrated in the proof of [10, Theorem 4.4.2] (compare
with Theorem 3.1) that

lim sup
r→0

log¼G.B.x; r//

log r
≤ h¼G . f /

�¼G
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for ¼̃G-almost-everywhere ! ∈ I ∞, we therefore conclude that

lim
r→0

log¼G.B.x; r//

log r
= h¼G . f /

�¼G

= HD.¼G/

for ¼̃G-almost-everywhere ! ∈ I ∞. The proof is complete.

The iterated function system {�i}i∈I is said to satisfy the strong open set condition
if J ∩ IntRd .X/ �= ∅. In the case when the alphabet I is finite, then the strong open set
condition is always satisfied (see [11]) perhaps with a different seed set X . The main
result of this section is the following.

THEOREM 5.4. Suppose that {�i}i∈I is a conformal iterated function system sat-
isfying the strong open set condition. Suppose also that G is a summable Hölder
family of functions with finite Lyapunov exponent �¼G . If . f; ¼G/ is the corresponding
dynamical system, then for ¼G-almost-everywhere z ∈ J , the number R¼G .z/ exists
and moreover R¼G .z/ = HD.¼G/ = h¼G . f /=�¼G .

PROOF. We shall verify that the dynamical system . f; ¼G/ is loosely Markov. Con-
dition (a) follows immediately from [10, Theorem 2.4.6] and the relation L�.1/.!/ =
L̃�.1/.³!/ established in [7, page 128]. In order to check condition (b) put � = �¼G .
Let W1 ⊂ I ∞ be the set of all sequences ! ∈ I ∞ such that

lim
n→∞

1

n
log |�′

!i
.³.¦ i+1!//| = −�:(5.3)

By Birkhoff’s ergodic theorem, ¼̃G.W1/ = 1. The strong open set condition im-
plies the existence of a finite word � ∈ I ∗ such that ��.X/ ⊂ Int X . Let r =
dist.��.X/; @X/. It follows from Birkhoff’s ergodic theorem that there exists a Borel
set W2 ⊂ W1 such that ¼̃G.W2/ = 1, and for every ! ∈ W2

lim
k→∞

nk+1.!/

nk.!/
= 1;(5.4)

where {nk.!/}∞
k=1 is the infinite sequence of all consecutive integers n ≥ 1 such that

¦ n.!/ ∈ {�} × I ∞. In particular ¼G.³.W2// = 1. The family Þ = {�i.X/}i∈I . is
a partition of J . Fix x ∈ ³.W2/, x = ³.!/, where ! ∈ W2. Using the bounded
distortion property and expressions (5.3) and (5.4), we see that for all n ≥ 1 large
enough, |�′

!|n.x/| ≥ r−1 exp.−2�n/ and nk+1 ≤ 2nk , where k ≥ 1 is uniquely
determined by the requirement that nk ≤ n < nk+1. We then have that

Þn.x/ = �!|n .X/ ⊃ �!|nk+1
.X/

⊃ �!|nk+1

(
B
(
³.¦ nk+1!; r/

)) ⊃ B
(
³.!/; exp.−2�nk+1/

)
⊃ B
(
³.!/; exp.−4�nk/

) ⊃ B
(
³.!/; exp.−4�n/

)
:
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So, condition (b) of the definition of loosely Markov systems is also satisfied. Con-
dition (c) follows immediately from Proposition 5.3. Thus the proof is completed by
applying Theorem 2.1 along with Proposition 5.3.
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