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Abstract

In this paper we consider systems of diagonal forms with integer coefficients in which each form has
a different degree. Every such system has a nontrivial zero in every p-adic field Qp provided that
the number of variables is sufficiently large in terms of the degrees. While the number of variables
required grows at least exponentially as the degrees and number of forms increase, it is known that if p
is sufficiently large then only a small polynomial bound is required to ensure zeros in Qp . In this paper
we explore the question of how small we can make the prime p and still have a polynomial bound. In
particular, we show that we may allow p to be smaller than the largest of the degrees.

2000 Mathematics subject classification: primary 11D72; secondary 11E76, 11E95.

1. Introduction

In this paper, we study conditions under which the system of homogeneous equations

F1.x/ = a11xk1
1 + · · · + a1s xk1

s = 0
:::

:::
:::

FR.x/ = aR1xkR

1 + · · · + aRs xkR
s = 0

(1)

with ai j ∈ Z and k1; : : : ; kR ∈ Z+ is guaranteed to have a nontrivial solution in p-adic
integers. By nontrivial, we mean simply that at least one of the variables is not equal to
zero. A conjecture commonly attributed to Artin suggests that regardless of the values
of the coefficients, a nontrivial zero in Zs

p should exist for each prime p provided only

that we have s >
∑R

i=1 k2
i . If R = 1, then Davenport and Lewis [5] showed that this
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bound is correct. Unfortunately, the following theorem of Lewis and Montgomery [8]
showed that this conjecture is false, and that any such bound on s must in fact exhibit
exponential growth.

THEOREM 1.1 (Lewis-Montgomery). Suppose that p is an odd prime and that M
is a positive integer. Consider the system

x .p−1/m
1 + · · · + x .p−1/m

s ≡ 0 .mod p.p−1/M/; .M ≤ m < 2M/:

Suppose that there are integers x1; : : : ; xs, not all divisible by p, which satisfy this
system of congruences. Then s ≥ pM.

This theorem implies that a bound on s must exhibit exponential growth, since
the largest degree of a form in the system is d = .2M − 1/.p − 1/, which implies
that M > d=2.p − 1/. Hence, for p = 3, we see that there are infinitely many sets
of degrees such that the system in the theorem requires more than 3.d=4/ > .1:3/d

variables before admitting a nontrivial 3-adic solution. Hence any bound on s, which
applies for all primes, must be at least exponential in the largest degree.

On the other hand, Ax and Kochen [1] showed that if we ask only that a nontrivial
solution exists in Zs

p for p sufficiently large, then the Artin bound is sufficient. It is
therefore an interesting problem to determine how small we can take the prime p to
be before exponential growth is required. In particular, how small can we make p and
still obtain polynomial bounds for s?

In this paper, we explore this problem in the situation where the degrees of the
polynomials are all different. In order to write down our conclusions, we introduce
the following notational convention. Let 0∗

p.k1; : : : ; kR/ be the smallest number
such that any system of forms as in (1) has a nontrivial solution in Zs

p whenever
s ≥ 0∗

p.k1; : : : ; kR/. For example, if k1; : : : ; kR are fixed, then the result of Ax and
Kochen states that

0∗
p.k1; : : : ; kR/ ≤ 1 +

R∑
i=1

k2
i

for sufficiently large p. The purpose of this paper is to prove the following theorem.

THEOREM 1.2. Suppose that R ≥ 2 and let k1 > k2 > · · · > kR be positive integers.
For a fixed prime p, define numbers −i and k̃i , .1 ≤ i ≤ R/; so that ki = p−i k̃i with
.p; k̃i/ = 1.

(i) Define S1 = ∑R
i=1 k̃i .p−i +1 − 1/=.p − 1/. If p > k1 − kR + 1, then we have

0∗
p.k1; : : : ; kR/ ≤ .S1 + 1/

R∑
i=1

iki −
R∑

i=1

ki + R:
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This implies the bound

0∗
p.k1; : : : ; kR/ ≤ 3

2
R

(
R∑

i=1

ki

)2

+ .R − 1/

(
R∑

i=1

ki

)
+ R

for such p.
(ii) Define S2 = ∑R

i=1 k̃i .p−i +3 − 1/=.p − 1/. If

p > 1 + max
{
1; k1 − kR−1; .k1 − kR/=2

}
;

then

0∗
p.k1; : : : ; kR/ ≤ .S2 + 1/

R∑
i=1

iki −
R∑

i=1

ki + R:

This implies that for these p we have the bound

0∗
p.k1; : : : ; kR/ ≤ 3

2
R.k1 − kR + 1/2

(
R∑

i=1

ki

)2

+ .R − 1/

(
R∑

i=1

ki

)
+ R:

This shows in particular that polynomial bounds are possible for primes smaller
than the largest degree.

We prove this theorem by a method similar to the one used in [7]. First we
apply a normalization process which shows that we need only consider systems
that have certain desirable properties. Then we consider the system (1), with each
equation reduced modulo a power of p, and we determine a number of variables which
guarantees that this system of congruences has a nonsingular solution. Finally, we lift
this solution of congruences to a nontrivial solution of (1) in Zs

p through a version of
Hensel’s Lemma.

2. Normalization

In this section we describe the process by which we normalize the system of
equations and derive a few properties of normalized systems. Our normalization
process essentially combines the two used by Wooley in [10] and [11]. Suppose that
F = .F1; : : : ; FR/ is a system of additive forms as in (1), and that the prime p is fixed.
We define two fundamental operations on F. First, we may write

F′ = bF = .b1 F1; : : : ; bR FR/

for some vector b of nonzero rational numbers. Second, we may make a change of
variables of the form xi 	→ p−vi xi , where the vi are rational integers, yielding a system
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of the form F′′ = F.pv1 x1; : : : ; pvs xs/. These operations commute. A system G with
integer coefficients is said to be equivalent to F if G can be obtained from F through
a combination of the above operations, that is, if we can write

G = bF.pv1 x1; : : : ; pvs xs/:

Now we wish to define a function @.F/ whose value depends on the coefficients
of F1; : : : ; FR and which behaves nicely under the fundamental operations. Unfortu-
nately, this requires a fair amount of notation. Define K = k1k2 · · · kR and, for each i ,
let k ′

i = K=ki . For any fixed integer r with R ≤ r ≤ s, we define

Sr = {
. j1; : : : ; jR/ ∈ {1; : : : ; r}R : ji �= ji ′ when i �= i ′}

and note that if we set L = |Sr |, then L = r.r − 1/ · · · .r − R + 1/. For each
¦ = . j1; : : : ; jR/ ∈ Sr , write

D¦ .F/ = det

([
a

k′
i

i jm

]
1≤i;m≤R

)
:

Further, for fixed numbers m1; : : : ;m R−1 with r + 1 ≤ m1 ≤ · · · ≤ m R−1 ≤ s, we
define

M1 = {r + 1; : : : ;m1};
M2 = {m1 + 1; : : : ;m2};

. . . . . . . . . . . . . . . . . . . .

MR = {m R−1 + 1; : : : ; s};

taking Mi to be empty if mi = mi−1. Also, for i = 1; : : : ; R, we set Ni = .RL=r/k ′
i .

Finally, we define

@.F/ =
∏
¦∈Sr

D¦ .F/
∏
j∈M1

aN1
1 j

∏
j∈M2

aN2
2 j · · ·

∏
j∈MR

aNR
R j :

We now show that @.F/ behaves ‘nicely’ under the fundamental operations.

LEMMA 2.1. Suppose that F is a system of forms as in (1) with integral coefficients.
Then the following statements are true.

(i) If we set F′ = bF = .b1 F1; : : : ; bR FR/, then we have

@.F′/ =
(

R∏
i=1

b
.L+|Mi |RL=r/k′

i

i

)
@.F/:
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(ii) If we set F′′ = F .pv1 x1; : : : ; pvs xs/, then we have @.F′′/ = pRL Kv=r@.F/,
where v = v1 + · · · + vs .

PROOF. To prove the first statement, let F′ be the system

F ′
i = a′

i1xki

1 + · · · + a′
is xki

s .i = 1; : : : ; R/:

If F′ = bF, then we have a′
i j = bi ai j for each pair i; j . If ¦ = . j1; : : : ; jR/ ∈ Sr , then

D¦ .F′/ = det

([
b

k′
i

i a
k′

i
i jm

]
i;m

)
= b

k′
1

1 · · · b
k′

R
R det

([
a

k′
i

i jm

]
i;m

)
= b

k′
1

1 · · · b
k′

R
R D¦ .F/;

whence we obtain∏
¦∈Sr

D¦ .F′/ =
∏
¦∈Sr

b
k′

1
1 · · · b

k′
R

R D¦ .F/ = b
k′

1 L
1 · · · b

k′
R L

R

∏
¦∈Sr

D¦ .F/:(2)

Moreover, for each i = 1; : : : ; R, we have∏
j∈Mi

(
a′

i j

)Ni =
∏
j∈Mi

bNi
i aNi

i j = b|Mi |Ni

i

∏
j∈Mi

aNi
i j = b

|Mi |RLk′
i =r

i

∏
j∈Mi

aNi
i j :(3)

Putting (2) and (3) together, we obtain

@.F′/ =
(

b
k′

1 L
1 · · · b

k′
R L

R

R∏
i=1

b
|Mi |RLk′

i =r
i

)
@.F/ =

(
R∏

i=1

b
.L+|Mi |RL=r/k′

i
i

)
@.F/;

as desired.
In order to prove the second statement, we let F′′ be the system

F ′′
i = a′′

i1xki

1 + · · · + a′′
is xki

s .i = 1; : : : ; R/:

If F′′ = F.pv1 x1; : : : ; pvs xs/, then we have a′′
i j = pkiv j ai j for each pair i; j . If

¦ = . j1; : : : ; jR/ ∈ Sr , then we have

D¦ .F′′/ = det

([(
a′′

i jm

)k′
i

]
i;m

)
= det

([
pKv jm a

k′
i

i jm

]
i;m

)

= pKv j1 · · · pKv jR det

([
a

k′
i

i jm

]
i;m

)
= pKv j1 · · · pKv jR D¦ .F/:

Therefore we have∏
¦∈Sr

D¦ .F′′/ =
∏

¦=. j1;:::; jR /∈Sr

pKv j1 · · · pKv jR D¦ .F/

=
∏
¦∈Sr

pK .v j1 +···+v jR /
∏
¦∈Sr

D¦ .F/ = pK
∑
.v j1 +···+v jR /

∏
¦∈Sr

D¦ .F/;
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where the sum in the last line is over all ¦ ∈ Sr . Now there are L choices for ¦ , and
each of j1; : : : ; jr appears in RL=r of these choices. Hence we have

∑
¦∈Sr

.v j1 + · · · + v jR / = RL

r
v1 + · · · + RL

r
vr = RL

r

∗∑
v j ;

where we use the notation
∑∗ to represent a sum over all j ≤ r . Therefore we have

∏
¦∈Sr

D¦ .F′′/ = p
(

RL K
∑∗

v j

)
=r
∏
¦∈Sr

D¦ .F/:(4)

Additionally, for each i with 1 ≤ i ≤ R, we have∏
j∈Mi

(
a′′

i j

)Ni =
∏
j∈Mi

(
pkiv j ai j

)Ni =
∏
j∈Mi

pkiv j Ni

∏
j∈Mi

aNi

i j(5)

= pki Ni
∑i

v j

∏
j∈Mi

aNi
i j = p

(
RL K

∑i
v j

)
=r
∏
j∈Mi

aNi
i j ;

where
∑i represents a sum over all j ∈ Mi . Putting (4) and (5) together, we obtain

@.F′′/ = pRL K
∑∗

v j=r pRL K
∑1

v j =r · · · pRL K
∑R

v j =r@.F/ = pRL Kv=r@.F/:

This completes the proof of the lemma.

Suppose that F is a system of additive forms with integer coefficients. A standard
argument (see, for example, [6, page 572]) shows that in order to prove Theorem 1.2
for all systems of additive forms, it suffices to prove it for systems such that @.F/ �= 0.
We say that F is p-normalized if @.F/ �= 0 and the power of p dividing @.F/ is less
than or equal to the power of p dividing @.G/ for any system G of forms with integer
coefficients that is equivalent to F. Since any system is equivalent to one which is
p-normalized, it suffices to prove the theorem for p-normalized systems. We now
prove a lemma showing that p-normalized systems are explicit in a relatively large
number of variables when considered modulo p.

LEMMA 2.2. Suppose that F is a p-normalized system of additive forms. Then the
following statements are true.

(i) If N is the number of variables in F that are explicit when F is considered
modulo p, then one has N ≥ ∑R

i=1

(|Mi | + r=R
)
=ki .

(ii) If qi is the number of variables explicit modulo p in the form Fi of degree ki ,
then one has qi ≥ (|Mi | + r=R

)
=ki .
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PROOF. To prove the first statement, suppose (by relabeling if necessary) that the
variables x1; : : : ; xN are the variables which are explicit modulo p. Consider the
system F′ = p−1F.px1; : : : ; pxN ; xN+1; : : : ; xs/, that has integer coefficients. The
system F′ is obtained from F via a combination of the fundamental operations with
b1 = · · · = bR = p−1 and v = v1 + · · · + vs = N . Then we have

@.F′/ =
(

pRL K N=r
R∏

i=1

.p−1/.L+|Mi |RL=r/k′
i

)
@.F/ = pA@.F/;

where A = RL K N=r −∑R
i=1

(|Mi |RL=r +L
)
k ′

i . Since the system F is p-normalized,
we must have A ≥ 0, and the first part of the lemma follows.

For the second statement, fix i and suppose that the variables in the form Fi , which
are explicit modulo p, are x1; : : : ; xqi . Consider the system

F′′ = bF.px1; : : : ; pxqi ; xqi +1; : : : ; xs/;

where bi = p−1 and b j = 1 if j �= i . Note that F′′ is a system of forms with integer
coefficients. Then we have v = qi and hence @.F′′/ = pB@.F/, where

B = RL K qi

r
− |Mi |RLk ′

i

r
− Lk ′

i :

Since the system F is p-normalized and F′′ is equivalent to F, we must have B ≥ 0,
and part (ii) of the lemma follows. This completes the proof of the lemma.

3. Preliminary lemmata

In this section we establish some lemmata which are needed in the proof of The-
orem 1.2. Our first lemma, due to Schanuel [9], provides a bound on the number
of variables necessary to solve a system of congruences modulo various powers of a
prime p.

LEMMA 3.1. For 1 ≤ i ≤ R, let Fi be a (not necessarily homogeneous) polynomial
of degree ki in N variables with coefficients in Zp and no constant term. Also let Tp =
{x ∈ Zp : x p = x} be the set of Teichmüller representatives of {0; 1; 2; : : : ; p − 1}.
Then the system of equations

Fi.x1; : : : ; xN / ≡ 0 .mod pvi / .1 ≤ i ≤ R/

has a nontrivial solution in T N
p provided that N >

∑R
i=1 ki .pvi − 1/=.p − 1/.
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Our next lemma is a version of Hensel’s Lemma, which allows us to lift a non-
singular solution of a system of congruences to a p-adic solution. This is Lemma 4
of [7].

LEMMA 3.2. Consider system (1). Let p be a prime number, and for 1 ≤ i ≤ R we
define numbers −i and k̃i such that ki = p−i k̃i with .p; k̃i/ = 1. Further, for 1 ≤ i ≤ R,
we define

�i =
{
−i if p is odd;

−i + 1 if p = 2:

Let h be a positive integer and suppose that z is a nontrivial solution of the system of
congruences

Fi.x/ ≡ 0 .mod p2h+�i −1/ .1 ≤ i ≤ R/(6)

such that the matrix ⎡
⎢⎣

a11zk1−1
1 · · · a1s zk1−1

s
:::

: : :
:::

aR1zkR−1
1 · · · aRs zkR−1

s

⎤
⎥⎦(7)

has an R × R submatrix M such that

det M �≡ 0 .mod ph/:(8)

Then system (1) has a solution y ∈ Zs
p such that y ≡ z .mod ph/.

Our final goal for this section is to prove Lemma 3.6, a result stating that under
certain conditions the determinant of a matrix similar to (7) can be made nonzero
modulo a power of a prime p. This is needed later to ensure that our solutions of
congruences are nonsingular. In order to prove this lemma, we need some properties
of Bhargava’s generalized factorial function (see [2, 3, 4]), and refer the reader to [4]
for the definition of a p-ordering and the definitions of the functions vk.S; p/; wp.a/
and k!S. In order to prove Lemma 3.6, we need the following preliminary lemmata.

LEMMA 3.3. The sequence 0; 1; 2; : : : of nonnegative integers is a p-ordering for Z
for any prime p.

This is [4, Proposition 6].

LEMMA 3.4. Let p be a prime number, and let S be the set S = Z− pZ. Then the
sequence .a0; a1; a2; : : : / = .1; 2; 3; : : : ; p − 1; p + 1; : : : ; 2p − 1; 2p + 1; : : : / is a
p-ordering for S.
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PROOF. In the definition of a p-ordering, we may take a0 to be any element of S.
Hence it is permissible to set a0 = 1. Now suppose that a0; : : : ; ak are the first k + 1
terms of a p-ordering for S. We wish to show that ak+1 is allowable for the next term.
We divide the proof into two cases. First, if p � .ak + 1/, then ak+1 = ak + 1. Let mp
be the largest multiple of p such that mp < ak . Suppose by way of contradiction that
we cannot use ak+1 as the next term. Then there is some number y ∈ S − {a0; : : : ; ak}
such that wp..y − a0/ · · · .y − ak// < wp..ak+1 − a0/ : : : .ak+1 − ak//. Since any
element of S is relatively prime to p, we have

wp

(
ak∏

i=0

.y − i/

)
= wp

(
k∏

j=0

.y − a j /

)
· wp

(
m∏

j=0

.y − j p/

)

< wp

(
k∏

j=0

.ak+1 − a j/

)
· wp

(
m∏

j=0

.ak+1 − j p/

)

= wp

(
ak∏

i=0

.ak+1 − i/

)
;

where the inequality holds because

wp

(
m∏

j=0

.y − j p/

)
= wp

(
m∏

j=0

.ak+1 − j p/

)
= 1;

since ak+1 and y are both relatively prime to p. However we cannot have an element
y ∈ S−{a0; : : : ; ak} such thatwp

(∏ak

i=0.y− i/
)
< wp

(∏ak

i=0.ak+1 − i/
)
, since then the

sequence 0; 1; 2; : : : would not be a valid p-ordering of Z, contradicting Lemma 3.3.
Now suppose that p | .ak + 1/, and write ak + 1 = mp. Then ak+1 = ak + 2. As

before, suppose by way of contradiction that there is an element y ∈ S − {a0; : : : ; ak}
with wp..y − a0/ · · · .y − ak// < wp..ak+1 − a0/ · · · .ak+1 − ak//. Again noting that
both y and ak+1 are prime to p, we have

wp

(
ak+1∏
i=0

.y − i/

)
= wp

(
k∏

i=0

.y − ai /

)
· wp

(
m∏

j=0

.y − j p/

)

< wp

(
k∏

i=0

.ak+1 − ai/

)
· wp

(
m∏

j=0

.ak+1 − j p/

)

= wp

(
ak+1∏
i=0

.ak+1 − i/

)
;

and the existence of such an element y again violates Lemma 3.3. Hence, after having
chosen a0; : : : ; ak , the element ak+1 is allowable for the next term of a p-ordering
on S. So the lemma is true by induction.
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LEMMA 3.5. Suppose that the sequence a0; a1; : : : is a p-ordering for the set S. A
polynomial F of degree k, written in the form

F.x/ =
k∑

n=0

en.x − a0/.x − a1/ · · · .x − an−1/;

vanishes on S modulo pr if and only if en is a multiple of pr=.pr ; n!S/ for 0 ≤ n ≤ k.

This is [4, Lemma 14].

LEMMA 3.6. Consider the matrix

B =
⎡
⎢⎣

a11xk1−1
1 · · · a1R xk1−1

R
:::

: : :
:::

aR1xkR−1
1 · · · aR R xkR−1

R

⎤
⎥⎦ ;(9)

and assume that a11a22 · · · aR R �≡ 0 .mod p/. Then the following statements hold.

(i) If p > k1 − kR + 1, then there exist integers t2; : : : ; tR, all relatively prime
to p, such that if we set x2 = t2x1; : : : ; xR = tR x1 and let x1 be any integer relatively
prime to p, then det B �≡ 0 .mod p/.

(ii) If we have p > 1 + max
{
k1 − kR−1; .k1 − kR/=2

}
, then there exist integers

t2; : : : ; tR, all relatively prime to p, such that if we set x2 = t2x1; : : : ; xR = tR x1 and
let x1 be any integer relatively prime to p, then det B �≡ 0 .mod p2/.

If R = 1, then we interpret the condition in part (ii) of the lemma as p > 1.

PROOF. First, if we set x2 = t2x1; : : : ; xR = tR x1, then we have

det B = xk1+···+kR−R
1 .t2 · · · tR/

kR−1 det C;

where C is the matrix

C =

⎡
⎢⎢⎢⎣

a1;1 a1;2t k1−kR
2 · · · a1;Rtk1−kR

R
:::

:::
: : :

:::

aR−1;1 aR−1;2t kR−1−kR

2 · · · aR−1;RtkR−1−kR

R

aR;1 aR;2 · · · aR;R

⎤
⎥⎥⎥⎦ :

Since we require x1; t2; : : : ; tR to all be nonzero modulo p, the matrix B has the desired
property if and only if det C is nonzero modulo the appropriate power of p.

We prove part (i) of the lemma by induction on R. If R = 1, then det B = a11xk1−1
1 .

If a11 and x1 are both relatively prime to p, then so is det B. Now suppose that the
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statement is true for R = M − 1. We wish to prove that it holds for R = M . In this
situation, we have

B =
⎡
⎢⎣

a11xk1−1
1 · · · a1M xk1−1

M
:::

: : :
:::

aM1xkM −1
1 · · · aM M xkM −1

M

⎤
⎥⎦ ;

and the matrix C becomes

C =

⎡
⎢⎢⎢⎣

a1;1 a1;2t k1−kM
2 · · · a1;Mtk1−kM

M
:::

:::
: : :

:::

aM−1;1 aM−1;2t kM−1−kM

2 · · · aM−1;MtkM−1−kM

M

aM;1 aM;2 · · · aM;M

⎤
⎥⎥⎥⎦ :

Now consider the upper left-hand .M − 1/ × .M − 1/ submatrix of B. By the
inductive hypothesis, choose integers t2; : : : ; tM−1 all nonzero modulo p such that the
determinant of this matrix is nonzero modulo p whenever x1 is relatively prime to p.
Hence the determinant of the upper left-hand .M − 1/× .M − 1/ submatrix D of C
is also nonzero modulo p. Then we have

C =

⎡
⎢⎢⎢⎣ D

a1;M tk1−kM
M
:::

aM−1;MtkM−1−kM

M

aM;1 · · · aM;M−1 aM;M

⎤
⎥⎥⎥⎦ ;

and by expanding along the rightmost column we get det C = aM M det D + p.tM/,
where p.tM/ = c1t k1−kM

M + · · · + cM−1t kM−1−kM

M is a polynomial with no constant term.
If c1; : : : ; cM−1 are all divisible by p, then we can set tM = 1 and obtain

det C ≡ aM M det D �≡ 0 .mod p/:

If some of the ci are nonzero modulo p, then det C is a polynomial of degree at most
k1 − kM . If p − 1 > k1 − kM , then det C cannot be divisible (as a polynomial) by
t p−1
M − 1 = .tM − 1/.tM − 2/ · · · .tM − .p − 1//. Since the ring .Z=pZ/[tM ] has unique

factorization, there must be a value for tM which is nonzero modulo p and for which
det C �≡ 0 .mod p/. Therefore the values we have chosen for t2; : : : ; tM ensure that
det B �≡ 0 .mod p/ whenever .x1; p/ = 1. This completes the proof of part (i) of the
lemma.

To prove part (ii), first note that if R = 1, then the same argument as above
shows that the statement is true whenever p > 1. Now consider the matrix B given
in (9). Since p > k1 − kR−1 + 1, we can choose values of t2; : : : ; tR−1 such that the
upper left-hand .R − 1/ × .R − 1/ submatrix of B will be nonsingular modulo p
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whenever .x1; p/ = 1. As in the proof of part (i), this implies that the upper left-hand
.R − 1/ × .R − 1/ submatrix D of C will also be nonsingular modulo p. Thus we
just need to choose a value for tR .

We can now write

det C = p.tR/ = ck1−kR t k1−kR
R + · · · + ckR−1−kR t kR−1−kR

R + aR R det D:

This polynomial is slightly different than the one we called p.tM/ earlier. We wish to
show that this polynomial does not vanish modulo p2 on the set S = Z− pZ. Since
aR R det D �≡ 0 .mod p/, this is certainly true if cki −kR ≡ 0 .mod p/ for 1 ≤ i ≤ R−1.
If at least one of these coefficients is nonzero modulo p, let d be the smallest number
such that ckd−kR �≡ 0 .mod p/.

Let a0; a1; : : : be the p-ordering for S given in Lemma 3.4, and write p.tR/ in the
form

p.tR/ =
k1−kR∑
n=0

en.tR − a0/ · · · .tR − an−1/;(10)

as in Lemma 3.5. Because of the way we chose d , we have p | en whenever n > kd−kR.
It is then straightforward that we must have ekd−kR ≡ ckd−kR �≡ 0 .mod p/. We now
show that if p > 1+ .k1 − kR/=2, then ekd−kR is not a multiple of p2=

(
p2; .kd − kR/!S

)
.

Once this is done, our proof will be complete by Lemma 3.5.
In order to prove this divisibility criterion, we examine the values of p2=.p2; n!S/.

First, observe that n!S = ∏
q prime vn.S; q/ and that vn.S; q/ is a power of q. Again,

see [4] for an elementary explanation of Bhargava’s factorial function and this notation.
Since p is prime, the terms vn.S; q/with q �= p do not contribute anything to .p2; n!S/

and so we have .p2; n!S/ = .p2; vn.S; p//. By writing out the terms a0; a1; : : : for
the p-ordering for S given in Lemma 3.4, it is straightforward to see that

vn.S; p/ =

⎧⎪⎨
⎪⎩

1 if n ≤ p − 2;

p if p − 1 ≤ n ≤ 2p − 3;

p2 Ln; Ln ∈ Z if n ≥ 2p − 2:

Hence we see that

p2

.p2; n!S/
= p2

.p2; vn.S; p//
=

⎧⎪⎨
⎪⎩

p2 if n ≤ p − 2;

p if p − 1 ≤ n ≤ 2p − 3;

1 if n ≥ 2p − 2:

If p > 1 + .k1 − kR/=2, then k1 − kR ≤ 2p − 3. Since kd − kR ≤ k1 − kR , this implies
that p2=.p2; .kd − kR/!S/ is equal to p or p2. However, this number cannot divide
ekd−kR since ekd−kR is nonzero modulo p. This completes the proof of the lemma.
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4. The proof of Theorem 1.2

Since the proofs of the first bound in both parts of Theorem 1.2 are essentially
identical, we prove them together. In what follows, setting m = 1 proves the first
bound in part (i) of the theorem and setting m = 2 proves the first bound in part (ii).
We remark first that if there is some number N such that any system like (1) in N
variables has a nontrivial p-adic solution, then any such system in s > N variables
also has one. This can be seen by setting s − N of the variables equal to zero, leaving
a system in N variables. It therefore suffices to assume that we have

s = .Sm + 1/
R∑

i=1

iki −
R∑

i=1

ki + R

variables and show that system (1) has a nontrivial p-adic solution.
Since it is enough to prove each part of the theorem for p-normalized systems

of forms, we will assume throughout this section that all systems are p-normalized.
However, we must define the quantities r and |M1|; : : : ; |MR| used in the normalization
process. To do this, we set r = R and |Mi | = iki .Sm + 1/ − ki , .1 ≤ i ≤ R/. For
each i , Lemma 2.2 yields

qi ≥
(
|Mi | + r

R

) 1

ki
= i.Sm + 1/− 1 + 1

ki
:

However, since qi must be an integer, this implies that we have qi ≥ i.Sm + 1/. In
other words, for each i the form Fi of degree ki contains at least i.Sm + 1/ variables
that are explicit when Fi is reduced modulo p.

We now relabel the variables in our system using the following procedure. Since
q1 ≥ Sm + 1, we can choose Sm + 1 variables which are explicit when F1 is reduced
modulo p. Let �1 be the set containing these variables. Since q2 ≥ 2.Sm + 1/,
we can choose a set �2 containing Sm + 1 variables which are explicit when F2 is
reduced modulo p and which are not in �1. We continue this procedure to define sets
�3; : : : ;�R, where each �i contains Sm +1 variables, all of which are explicit when Fi

is considered modulo p, such that �1; : : : ;�R are pairwise disjoint. We now relabel
the variables in such a manner that, for each i , the variables in the set �i are labeled

xi ; xR+i ; : : : ; xRSm+i :

If i > R.Sm + 1/, then we set xi = 0. This leaves us with a system

F1.x/ = a1;1xk1
1 + · · ·+ a1;R.Sm +1/x

k1
R.Sm +1/ = 0

:::
:::

:::
:::

FR.x/ = aR;1xkR
1 + · · ·+ aR;R.Sm +1/x

kR

R.Sm +1/ = 0;

(11)
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which has the property that for 0 ≤ j ≤ Sm ,

a1; j R+1a2; j R+2 · · · aR; j R+R �≡ 0 .mod p/:

In other words, if we let A1 be the matrix of coefficients of the first R variables, A2

be the matrix of coefficients of the second R variables, and so on, then each diagonal
element of each of these matrices is nonzero modulo p.

To find a Qp-integral solution to (11), we first find a solution to the system

a1;1xk1
1 + · · · + a1;R.Sm+1/x

k1
R.Sm+1/ ≡ 0 .mod p2m+−1−1/

:::
:::

:::

aR;1xkR
1 + · · · + aR;R.Sm +1/x

kR

R.Sm +1/ ≡ 0 .mod p2m+−R−1/;

(12)

which is nonsingular modulo pm , where we recall that each −i is defined so that
ki = p−i k̃i with .p; k̃i/ = 1. Since both parts of the theorem require p to be odd, the
powers of p in (12) are the powers required in Lemma 3.2 when h = m.

If the bounds on p given in the statement of the theorem hold, then Lemma 3.6 tells
us that for each j with 0 ≤ j ≤ Sm , we can find integers t j R+2; : : : ; t j R+R such that if
we set x j R+i = t j R+i x j R+1, .2 ≤ i ≤ R/, and let B j be the matrix

Bj =
⎡
⎢⎣

a1; j R+1xk1−1
j R+1 · · · a1; j R+R xk1−1

j R+R
:::

: : :
:::

aR; j R+1xkR−1
j R+1 · · · aR; j R+R xkR−1

j R+R

⎤
⎥⎦ ;

then we have det Bj �≡ 0 .mod pm/ whenever x j R+1 �≡ 0 .mod p/.
After making the identifications above, we obtain a new system

c1;1xk1
1 + c1;R+1xk1

R+1 + · · · + c1;RSm +1xk1
RSm+1 ≡ 0 .mod p2m+−1−1/

:::
:::

:::
:::

cR;1xkR

1 + cR;R+1xkR

R+1 + · · · + cR;RSm +1xkR

RSm+1 ≡ 0 .mod p2m+−R−1/:

(13)

Suppose that we can find a solution to this system with at least one of the variables,
say x j R+1, not divisible by p. This leads to a solution of system (12) in which the
matrix Bj satisfies det Bj �≡ 0 .mod pm/. Then the solution of (12) lifts to a nontrivial
solution of (11) by Lemma 3.2, and this gives us a nontrivial solution of (1). Thus it
suffices to show that system (13) has a nontrivial solution.

We find a nontrivial solution of (13) with the variables restricted to the Teichmüller
set Tp = {x ∈ Zp : x p = x}. When x ∈ Tp, we have xki = x p−i k̃i = xk̃i . Therefore any
solution of the system

c1;1xk̃1
1 + c1;R+1xk̃1

R+1 + · · · + c1;RSm +1xk̃1
RSm+1 ≡ 0 .mod p2m+−1−1/

:::
:::

:::
:::

cR;1xk̃R
1 + cR;R+1xk̃R

R+1 + · · · + cR;RSm +1xk̃R
RSm+1 ≡ 0 .mod p2m+−R−1/

(14)
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with all the variables in Tp, is also a solution of (13). By Lemma 3.1, we can solve (14)
nontrivially whenever the number of variables is greater than

R∑
i=1

k̃i
p2m+−i −1 − 1

p − 1
= Sm:

Since we have Sm + 1 variables, there exists a nontrivial solution to (14) with each
variable in Tp. As mentioned above, this is also a nontrivial solution of (13), and
this leads to a nontrivial solution of (1). The first bound in each part of the theorem
follows.

To finish the proof, we need to show that the second bound in each part of the
theorem holds. For part (i), we have

S1 =
R∑

i=1

k̃i
p−i +1 − 1

p − 1
= p

p − 1

R∑
i=1

ki −
R∑

i=1

k̃i

p − 1
:

Since p ≥ 3, we obtain

S1 + 1 < 1 + p

p − 1

R∑
i=1

ki ≤ 1 + 3

2

R∑
i=1

ki ;

and since i ≤ R, we have
∑R

i=1 iki ≤ R
∑R

i=1 ki . From the first bound in part (i), we
then find that

0∗
p.k1; : : : ; kR/ ≤ 3

2
R

(
R∑

i=1

ki

)2

+ .R − 1/

(
R∑

i=1

ki

)
+ R;

as desired. For part (ii), if we have p > k1 − kR + 1, then part (i) of the theorem
applies and yields a smaller bound than given in part (ii). Hence we may assume that
p ≤ k1 − kR + 1. Then since we are assuming that p ≥ 3, we have

S2 + 1 = 1 +
R∑

i=1

k̃i
p−i +3 − 1

p − 1
< 1 +

R∑
i=1

k̃i p−i +3

p − 1

= 1 + p

p − 1
p2

R∑
i=1

ki ≤ 1 + 3

2
.k1 − kR + 1/2

R∑
i=1

ki :

Therefore we obtain

.S2 + 1/
R∑

i=1

iki <

(
1 + 3

2
.k1 − kR + 1/2

R∑
i=1

ki

)
R∑

i=1

Rki

= 3

2
R.k1 − kR + 1/2

(
R∑

i=1

ki

)2

+ R

(
R∑

i=1

ki

)
;
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and the second bound in part (ii) of the theorem follows. This completes the proof of
the theorem.
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