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Abstract

Let G be a finite group, K a field, and V a finite-dimensional K G-module. Write L.V / for the free Lie
algebra on V ; similarly, let M.V / be the free metabelian Lie algebra. The action of G extends naturally
to these algebras, so they become K G-modules, which are direct sums of finite-dimensional submodules.
This paper explores whether indecomposable direct summands of such a K G-module (for some specific
choices of G, K and V ) must fall into finitely many isomorphism classes. Of course this is not a question
unless there exist infinitely many isomorphism classes of indecomposable K G-modules (that is, K has
positive characteristic p and the Sylow p-subgroups of G are non-cyclic) and dim V > 1.

The first two results show that the answer is positive for M.V / when K is finite and dim V = 2, but
negative when G is the Klein four-group, the characteristic of K is 2, and V is the unique 3-dimensional
submodule of the regular module D. In the third result, G is again the Klein four-group, K is any field of
characteristic 2 with more than 2 elements, V is any faithful module of dimension 2, and B is the unique
3-dimensional quotient of D; the answer is positive for L.V / if and only if it is positive for each of L.B/,
L.D/, and L.V ⊗ V /.

2000 Mathematics subject classification: primary 17B01, 17B30; secondary 20C20.

1. Introduction and notation

Let K be a field of positive characteristic p and G a group. Throughout this paper, all
K G-modules considered will be right K G-modules and all tensor products are tensor
products over K . If V is a vector space over K (or, briefly, K -space), we write A.V /
for the free associative algebra (with identity element) on V : thus A.V / is the free
associative algebra over K with the property that A.V / contains V as a subspace, and
every basis for V generates A.V / freely as an algebra. If V is a K G-module, the
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action of G on V extends uniquely to A.V / subject to A.V / becoming a K G-module
on which the elements of G act as algebra automorphisms. Similarly, R.V / denotes
the free restricted Lie algebra on V and L.V / denotes the free Lie algebra on V . It is
well-known that if A.V / is regarded as a restricted Lie algebra under the operations
given by [a; b] = ab − ba and a[p] = a p, then the Lie subalgebra generated by V
and the restricted Lie subalgebra generated by V may be identified with L.V / and
R.V /, respectively. In this sense, we consider L.V / and R.V / submodules of A.V /.
For a non-negative integer n, let An.V / be the nth homogeneous component of A.V /:
it is the subspace of A.V / spanned by all monomials v1 · · · vn, with v1; : : : ; vn ∈ V ,
and each An.V / is a K G-module. It is well-known that A.V / has the following
direct decomposition as K -space: A.V / = ⊕

n≥0 An.V / with A0.V / = K . For
n ≥ 1, the homogeneous components of degree n in L.V / and R.V / are given by
Ln.V / = L.V / ∩ An.V / and Rn.V / = R.V / ∩ An.V /. The free metabelian Lie
algebra on V is defined by M.V / = L.V /=L.V /′′, where L.V /′′ is the second derived
algebra of L.V /. Furthermore, we write S.V / for the symmetric algebra on V . These
algebras will be regarded as K G-modules in the obvious way and their homogeneous
components of degree n will be denoted by Mn.V / (for n ≥ 1) and Sn.V / (for n ≥ 0,
and S0.V / = K ), respectively. Each Mn.V / and Sn.V / is a K G-module. For any Lie
algebra L over K (or, briefly, Lie algebra), we write [u; v] for the Lie product with
u; v ∈ L , and expressions of the form [u1; u2; : : : ; un] are taken as left-normed so that
[u1; u2; : : : ; un] = [[u1; : : : ; un−1]; un] for n ≥ 3.

For a finite-dimensional K G-module V , let � .V / denote the set of isomor-
phism classes of indecomposable direct summands of V . A graded K G-module
is a K G-module V with a distinguished decomposition V = V1 ⊕ V2 ⊕ · · · where
each Vn is a finite-dimensional K G-module. For a graded K G-module V , we define
� .V / = ⋃

n≥1� .Vn/. All the aforementioned algebras on a finite-dimensional
K G-module are graded K G-modules. By a result of Higman (see [10, Chapter VII,
Theorem 5.4]), a necessary and sufficient condition for the existence of infinitely many
isomorphism classes of indecomposable K G-modules is that the field K has positive
characteristic p and the group G has a non-cyclic Sylow p-subgroup.

Our main purpose in this paper is to study whether� .L.V // or� .M.V // is finite
for certain K , G and V . Let K be a finite field, G = SL.2; K / and V the natural
2-dimensional K G-module. It follows from a result of Alperin and Kovács [1] that
� .S.V // is finite. In Section 2, we prove the analogous result for the free metabelian
Lie algebra M.V / (see Proposition 2.1). Karagueuzian and Symonds (see [11])
generalized the aforementioned result for symmetric algebras as follows: for any finite
group G (not necessarily a p-group) and any K G-module with dimK V ≤ 3,� .S.V //
is finite. In the case of the free metabelian Lie algebra M.V /, with dimK V = 3 and
K a field of characteristic 2, the situation is different. In particular, let U3.K / be
the group of 3 × 3 upper unitriangular matrices over K and let V be the natural
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3-dimensional KU3.K /-module. Then� .M.V // is not finite (see Corollary 2.6).
In Section 3, we consider free Lie algebras. For any finite-dimensional V , the

Lie subalgebra of R.V / generated by R2.V / ⊕ R3.V / is freely generated by this
submodule, so we may denote it by L.R2.V /⊕ R3.V //. Write

Ln
grad.R

2.V /⊕ R3.V // = Rn.V / ∩ L.R2.V /⊕ R3.V //

for its nth homogeneous component in the grading it inherits from R.V /. We prove
that if K is any field of characteristic 2, G is any group, V is any 2-dimensional
K G-module, and n ≥ 3, then Ln.V / = Ln

grad.R
2.V / ⊕ R3.V //. This fact turns

out to be very useful in the case when K has more than 2 elements, G is the Klein
four-group, and C is any faithful 2-dimensional K G-module, for then it enables us to
show that� .L.C// is finite if and only if� .L.D//,� .L.B// and� .L.C ⊗C// are
finite, where D is the regular K G-module and B is the unique 3-dimensional quotient
of D. We note that Michos has given an example of a 6-dimensional decomposable
K G-module V , where K has characteristic 2 and G is the Klein four-group, such that
� .L.V // is not finite (see Example 1).

2. Free metabelian Lie algebras

Let G be any group, K an arbitrary field and V a K G-module. We identify M1.V /
with V , so that V is regarded as a subspace of M.V /. We note the standard fact
that if a1; : : : ; an ∈ M.V / and n ≥ 3, then the products [a1; : : : ; an] are symmetric
with respect to the entries a3; : : : ; an . If � is an ordered basis of V then the products
[v1; : : : ; vn], where n ≥ 1, v1; : : : ; vn ∈ � and v1 > v2 ≤ v3 ≤ · · · ≤ vn, form a
basis of M.V / (see [3, Section 4.7]) and, for each n, those of degree n form a basis of
Mn.V / which is called the standard basis of Mn.V /.

PROPOSITION 2.1. For a finite field K and a finite group G, let V be a 2-dimensional
K G-module. Then � .M.V // is finite.

PROOF. In general, M2.V / is the exterior square of V . Since the left-normed
metabelian Lie product [v1; : : : ; vn] as n-variable function V × · · · × V → Mn.V /
is multilinear, alternating in the first two variables and symmetric in the others, the
defining universal properties of exterior powers, symmetric powers and tensor prod-
ucts (see, for example, [8, Appendix B]) guarantee that there is a K G-homomorphism
M2.V /⊗ Sn−2.V / → Mn.V / whose image contains all the [v1; : : : ; vn] and is there-
fore Mn.V / itself. This much holds even if dim V > 2. Given that dim V = 2,
dimension comparison shows that the surjective homomorphism in question is in fact
an isomorphism. Further, since M2.V / is 1-dimensional, M 2.V /∗ ⊗ M2.V / (where
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M2.V /∗ denotes the contragredient of M2.V /) is the 1-dimensional trivial module,
and therefore one has both

M2.V /⊗ Sn−2.V / ∼= Mn.V / and M 2.V /∗ ⊗ Mn.V / ∼= Sn−2.V /:

It follows that X 
→ M2.V /⊗ X and Y 
→ M 2.V /∗ ⊗Y provide a bijective correspon-
dence between the set of the submodules X of Sn−2.V / and the set of the submodules Y
of Mn.V /, such that corresponding submodules are isomorphic. Thus � .M.V // is
finite if and only if � .S.V // is finite.

Suppose now that K is finite. Let 0 = GL.2; K /, 6 = SL.2; K /, and let U be
the natural module for K0. It follows from Alperin and Kovács [1] that in this case
� .S.Res6 U // is finite. Since the index |0 : 6| is prime to the characteristic of K ,
any K0-module W is a direct summand of the induced module Ind0 Res6 W (see,
for example, [2, Theorem 9.2]). In view of this, and of S.Res6U / = Res6 S.U /, the
finiteness of � .S.U // also follows.

It can be assumed without loss of generality that G acts faithfully on V ; equivalently,
that G is a subgroup of 0 and V = ResG U . Since S.V / = S.ResG U / = ResG S.U /,
we may now conclude that � .S.V // is finite, and hence so is � .M.V //.

The homomorphism from G to the trivial group {1} extends to an algebra homo-
morphism " from K G to the group algebra of {1}, which we may identify with the
group algebra K . The kernel of " is the augmentation ideal 1 of K G and so consists
of all elements

∑
Þgg of K G with

∑
Þg = 0. In particular, 1 is a submodule of K G.

Moreover, the quotient K G=1 is isomorphic with the trivial K G-module K . We
write V G = {v ∈ V : vg = v for all g ∈ G}.

LEMMA 2.2. For all n ≥ 3 there is a pair of K G-homomorphisms

�n : Mn.V / → M 3.V /⊗ Sn−3.V /;  n : M3.V /⊗ Sn−3.V / → Mn.V /

such that the composite  n�n is multiplication by n.n − 2/ on Mn.V /.

PROOF. By [9, Theorem 3.3], there is a pair of K G-homomorphisms

�n;3 : Mn.V / → A3.V /⊗ Sn−3.V /; ½n;3 : A3.V /⊗ Sn−3.V / → Mn.V /

such that the composite ½n;3�n;3 is multiplication by n.n−2/ on Mn.V /. The definition
of the second homomorphism in [9] factors through M3.V /⊗ Sn−3.V /, so the lemma
follows.

COROLLARY 2.3. If K is of characteristic 2 and n is odd, then Mn.V / is a direct
summand of M3.V /⊗ Sn−3.V /.
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LEMMA 2.4. Let {x1; : : : ; xm; f } = X ∪ { f } be a basis of V , ordered by
x1 < · · · < xm < f , and assume that f ∈ V G. Then, for all n ≥ 3, the
map u 
→ [u; f ], where u ∈ Mn−1.V /, is an injective K G-homomorphism ¼n :
Mn−1.V / → Mn.V /. Moreover, the elements

[u1; u2; : : : ; un] + Im¼n .ui ∈ X; u1 > u2 ≤ · · · ≤ un/(2.1)

and

[ f; v1; v2; : : : ; vn−1] + Im¼n .vi ∈ X; v1 ≤ v2 ≤ · · · ≤ vn−1/(2.2)

form a basis of the quotient Mn.V /= Im¼n.

PROOF. Since f is fixed by G, the map ¼n agrees with the G-actions, and hence
it is a K G-homomorphism. Moreover, ¼n maps the standard basis of Mn−1.V / onto
part of the standard basis of Mn.V /, and the remaining elements of the standard basis
of Mn.V / are precisely the ones listed in (2.1) and (2.2).

Now let K be of characteristic 2, G = 〈Þ; þ | Þ2 = þ2 = .Þþ/2 = 1〉, V = 1,
and let Bn−1 denote the .2n −1/-dimensional indecomposable K G-module with basis
y1; : : : ; yn−1; z0; z1; : : : ; zn−1 and G-action given by ziÞ = ziþ = zi , 0 ≤ i ≤ n − 1,
yiÞ = yi + zi−1 and yiþ = yi + zi , 1 ≤ i ≤ n − 1. Recall that 1 is the unique
3-dimensional indecomposable submodule of the regular K G-module.

THEOREM 2.5. For all odd n, with n ≥ 3, Mn.1/ is a free K G-module. For
all even n, Mn.1/ is isomorphic to a direct sum of (one copy of ) Bn−1 and a free
K G-module.

PROOF. The elements u = 1 + Þ, v = 1 + þ and f = 1 + Þ+ þ+ Þþ form a basis
of the module 1, and the action of G on these basis elements is given by uÞ = u,
uþ = u + f , vÞ = v + f , vþ = v and f Þ = fþ = f . By Lemma 2.4, applied to
Mn.1/ and the basis {v; u; f } of 1 with v < u < f , the quotient M n.1/= Im¼n has
a basis consisting of the elements

yi = [u; v; : : : ; v︸ ︷︷ ︸
i

; u; : : : ; u︸ ︷︷ ︸
n−i−1

] + Im¼n .i = 1; : : : ; n − 1/

and

zi = [ f; v; : : : ; v︸ ︷︷ ︸
i

; u; : : : ; u︸ ︷︷ ︸
n−i−1

] + Im¼n .i = 0; : : : ; n − 1/:

An easy calculation shows that in Mn.1/= Im¼n the elements z0; : : : ; zn−1 are fixed
by G, while yiÞ = yi + zi−1 and yiþ = yi + zi (1 ≤ i ≤ n − 1). Consequently,

Mn.1/= Im¼n
∼= Bn−1(2.3)
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for all n ≥ 3. One easily calculates that M2.1/ ∼= B1 and M3.1/ is free of rank 2.
Since M3.1/ is free, so is the tensor product M 3.1/⊗ Sn−3.1/. By Corollary 2.3, for
odd n, Mn.1/ is a direct summand of M 3.1/⊗Sn−3.1/, and hence it is also free. This
proves the first part of the theorem. If n ≥ 4 is even, then Im¼n

∼= Mn−1.1/ is free,
and since any free module is injective, (2.3) gives the second part of the theorem.

COROLLARY 2.6. Let K be a finite field of characteristic 2, U3.K / the group
of 3 × 3 upper unitriangular matrices over K and V the natural 3-dimensional
KU3.K /-module. Then � .M.V // is not finite.

PROOF. Let g = .gi j/ and h = .hi j / be the elements of U3.K / for which g12 =
g23 = 0 and g13 = 1, while h12 = h13 = 0 and h23 = 1. It is easily seen that G = 〈g; h〉
is a Klein four-group such that ResG V ∼= 1. Of course ResG M.V / = M.ResG V /,
so if� .M.V //were finite, then so would be� .M.ResG V // = � .M.1//, contrary
to Theorem 2.5.

3. Free Lie algebras

Let G be any group and K any field. A graded K -space is a K -space with a
distinguished decomposition V = V1 ⊕ V2 ⊕ · · · where each Vn is finite-dimensional.
For each positive integer n, Ln

grad.V / denotes the subspace of L.V / spanned by all
products [v1; v2; : : : ; vk], with k ≥ 1, such that, for i = 1; : : : ; k, vi ∈ Vn.i/ for some
n.i/ ≥ 1 with n.1/+ · · · + n.k/ = n. In this way L.V / becomes a graded K -space:

L.V / = L1
grad.V /⊕ L2

grad.V /⊕ · · · :
If V is a finite-dimensional K -space regarded as a graded K -space with decomposition
V = V ⊕0⊕0⊕· · · , then Ln

grad.V / = Ln.V / for all n. A graded K G-module is a K G-
module V with a distinguished decomposition V = V1 ⊕ V2 ⊕ · · · where each Vn is a
finite-dimensional K G-module. The homogeneous components Ln

grad.V /, as defined
previously, are easily seen to be K G-submodules of L.V /. Thus L.V / becomes a
graded K G-module in the natural grading. We write Lgrad.V / instead of L.V / when
we work with a graded K G-module V .

Let {I½ : ½ ∈ 3} be a set consisting of one representative I½ from each isomor-
phism class of finite-dimensional indecomposable K G-modules, and consider a vector
space �K G over the complex field C with this set as basis. For each finite-dimensional
K G-module V , write [V ] for the element

∑
Þ½ I½ of �K G where each coefficient Þ½ is

the number of summands isomorphic to I½ in an unrefinable direct sum decomposition
of V . Define a multiplication on �K G as the linear extension of I½ I¼ = [I½ ⊗ I¼].
Then �K G becomes a C-algebra known as the Green algebra of G.
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We write �K G[[t]] for the algebra of all formal power series in an indeterminate t
with coefficients from �K G , and �K G[[t]]◦ for the ideal consisting of the power series
with zero constant terms. For any graded K G-module V , we write

[[V ]] =
∑
n≥1

[Vn]tn:

This gives a convenient way of describing the graded isomorphism type of V . The
map V 
→ [[V ]] intertwines direct sums and tensor products of graded modules
with addition and multiplication in �K G[[t]], and [[Lgrad.V /]] = ∑

n≥1[Ln
grad.V /]t n .

Bryant (see [4]) studied functions �K G[[t]]◦ → �K G[[t]]◦ that always take [[V ]] to
[[Lgrad.V /]]. To be able to quote one of his results, we need yet another definition.

For positive integers r; s, we define w.r; s/ by

w.r; s/ = 1

r + s

∑
d|.r;s/

¼.d/

(
.r + s/=d

r=d

)
;

where ¼ is the Möbius function and the sum is over all positive integers d , which
divide both r and s. Note that the w.r; s/ are positive integers, because by Witt’s
formulae ([4, equation (3.6)]) they are dimensions of homogeneous components in
free Lie algebras.

For the proof of the following result, we refer to [4, Theorem 2.4 and Theorem 4.2].

LEMMA 3.1. There is a function �K G : �K G[[t]]◦ → �K G[[t]]◦ such that

.I/ for every graded K G-module V ,

�K G.[[V ]]/ = [[Lgrad.V /]];
.II/ whenever f1; f2 ∈ �K G[[t]]◦,

�K G. f1 + f2/ = �K G. f1/+�K G. f2/+
∑

w.r; s/�K G. f r
1 f s

2 /

where the summation is taken over all positive integers r; s.

Let U and V be any finite-dimensional K G-modules. For positive integers r and s,
we write Ur V s for the tensor product U ⊗ · · · ⊗ U ⊗ V ⊗ · · · ⊗ V where U and V
are repeated r and s times, respectively. We write

f1 = [[U ]] = [U ]t and f2 = [[V ]] = [V ]t:
Note that [Ln.U /] and [Ln.V /] are the coefficients of t n in �K G. f1/ and �K G. f2/,
respectively. For a positive integer k, let ðk : �K G[[t]]◦ → �K G[[t]]◦ be the substi-
tution of t k for t . It has been noted in [4, page 181] that ðk ◦�K G = �K G ◦ðk for
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k ≥ 1. It is now easy to see that

�K G. f r
1 f s

2 / = ðr+s.�K G.[Ur V s]t// =
∑
n≥1

[Ln.Ur V s/]tn.r+s/:(3.1)

By Lemma 3.1 and equation (3.1), we obtain that

L.U ⊕ V / ∼= L.U /⊕ L.V /⊕
⊕

T

L.T /;(3.2)

where T ranges through all tensor products U r V s with r; s positive integers, taking
each such value at least once, but many of them more than once. We write � for the
set of the aforementioned tensor products. The following result has been proved in
[6, Theorem 4.1].

LEMMA 3.2. Let G be any group, K any field and V any finite-dimensional
K G-module. Then for any positive integer n, Ln.V / is isomorphic to a direct sum
of modules, each of which has the form Lk.W / for some divisor k of n and some
indecomposable direct summand W of An=k.V /.

If T is an element of � , then so is each tensor power An=k.T / of T . Thus if W is
an indecomposable direct summand of some An=k.T /, then W is a direct summand of
some element of � . By Lemma 3.2, we conclude that

⋃
T∈�

� .L.T // ⊆
⋃

W∈�
� .L.W //;

where� = ⋃
T ∈� � .T /. Conversely, the Elimination Theorem (see [5, Lemma 2.2])

shows that if W ∈ � .T / then L.W / is a direct summand of L.T /, and so� .L.W // ⊆
� .L.T //. Therefore, by (3.2), we obtain that

� .L.U ⊕ V // = � .L.U // ∪� .L.V // ∪
⋃

W∈�
� .L.W //:(3.3)

Suppose now that U and V are graded modules that are concentrated in degrees k
and `, respectively (so U = Uk while Ui = 0 if i �= k, and V = V` while Vj = 0 if
j �= `). Repeating the previous argument with f1 = [[U ]] = [U ]tk and f2 = [[V ]] =
[V ]t ` yields first a version of (3.1) in which both occurrences of r + s are replaced
by rk+s`, but then proceeds as before; the only change being required in (3.2) and (3.3)
is to replace each L by Lgrad. On the right hand side of the version of (3.3) so obtained,
we prefer to retain ‘the other’ gradings. To this end, we note that Lr.U / = Lrk

grad.U /,

and so on: if W is a direct summand of U r V s , then Lm.W / = Lm.rk+s`/
grad .W /. In these

terms, the conclusions may be put as follows.
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PROPOSITION 3.3. Let K be any field, G any group, and U; V graded K G-modules
concentrated in degrees k; `, respectively. For each positive integer q,

� .Lq
grad.U ⊕ V // = � .Lq=k.U // ∪� .Lq=`.V // ∪

⋃
d|q

⋃
W

� .Lq=d.W //;

where Lie powers to non-integers are read as 0, the range of d is the set of positive
divisors of q, and W runs over the union of the� .U r V s/with r; s ≥ 1 and rk+s` = d.

For the proof of the following result, we refer to [12, Section 2].

LEMMA 3.4. Let K be a field of characteristic 2 and V any 2-dimensional K -
space. Let {x; y} be a K -basis of V and let � be the subset of R.V / defined by
� = {x2; [x; y]; y2; [x; y; x]; [x; y; y]}. Then the restricted Lie subalgebra E∗ of
R.V / generated by � is free on � .

Let E be the Lie subalgebra of E∗ generated by � . It is a direct consequence of
Lemma 3.4 that E is freely generated by � . Since � is a K -basis of R2.V /⊕ R3.V /,
we may write E = L.R2.V /⊕ R3.V //.

THEOREM 3.5. Let K be a field of characteristic 2, G any group and V any
2-dimensional K G-module. Then Ln.V / = Ln

grad.R
2.V /⊕ R3.V // for n ≥ 3.

PROOF. Since [a; b2] = [a; b; b] for all a; b ∈ A.V /, we obtain that [a; b2] ∈ L.V /
for all a; b ∈ R.V / and so it is easily verified that

Ln
grad.R

2.V /⊕ R3.V /// ⊆ Ln.V / for all n ≥ 3:(3.4)

Next, we shall use induction on n to show that

Ln.V / ⊆ Ln
grad.R

2.V /⊕ R3.V // for all n ≥ 2:(3.5)

For n = 2 and n = 3, our claim is trivially true, so we may assume that n ≥ 4. Let
{x; y} be a K -basis of V . To prove our claim, it is enough to show that [x1; : : : ; xn] ∈
Ln

grad.R
2.V / ⊕ R3.V // whenever x1 = x , x2 = y and x3; : : : ; xn ∈ {x; y}. Our

inductive hypothesis implies that Ln.V / ∩ L.V /′′ ⊆ Ln
grad.R

2.V / ⊕ R3.V // and so,
working modulo Ln.V / ∩ L.V /′′, we obtain that

[x1; : : : ; xn] = [x; y; y; : : : ; y︸ ︷︷ ︸
r

; x; : : : ; x︸ ︷︷ ︸
s

] + w

for some w ∈ Ln.V / ∩ L.V /′′ and some r; s with r + s = n − 2. Since K has
characteristic 2, we have

[a; b; : : : ; b︸ ︷︷ ︸
2m

] = [a; b2; : : : ; b2︸ ︷︷ ︸
m

]
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for all non-negative integers m and all a; b ∈ A.V /. Using this repeatedly, we see that

[x; y; y; : : : ; y︸ ︷︷ ︸
2k

; x; : : : ; x︸ ︷︷ ︸
2`

] = [[x; y]; y2; : : : ; y2︸ ︷︷ ︸
k

; x2; : : : ; x2︸ ︷︷ ︸
`

] +w1;

[x; y; y; : : : ; y︸ ︷︷ ︸
2k

; x; : : : ; x︸ ︷︷ ︸
2`+1

] = [[x2; y]; y2; : : : ; y2︸ ︷︷ ︸
k

; x2; : : : ; x2︸ ︷︷ ︸
`

] +w2;

[x; y; y; : : : ; y︸ ︷︷ ︸
2k+1

; x; : : : ; x︸ ︷︷ ︸
2`

] = [[x; y2]; y2; : : : ; y2︸ ︷︷ ︸
k

; x2; : : : ; x2︸ ︷︷ ︸
`

] +w3;

[x; y; y; : : : ; y︸ ︷︷ ︸
2k+1

; x; : : : ; x︸ ︷︷ ︸
2`+1

] = [[x2; y2]; y2; : : : ; y2︸ ︷︷ ︸
k

; x2; : : : ; x2︸ ︷︷ ︸
`

] +w4;

wherew1; : : : ; w4 lie in Ln.V /∩L.V /′′ and hence are contained in L.R2.V /⊕R3.V //.
This proves statement (3.5) and so completes the proof of the theorem.

Let G be the Klein four-group and C a faithful 2-dimensional K G-module, with K a
field of characteristic 2. For such a module to exist, K must have more than 2 elements:
one can see from Conlon [7] that there exists precisely one isomorphism type for each
element of K different from 0 and 1. Let D be the regular K G-module, B the unique
3-dimensional quotient of D, and A the 1-dimensional trivial K G-module. It is easy
to see that L2.C/ ∼= A, R2.C/ ∼= B and L3.C/ = R3.C/ ∼= C . The multiplication
rules given by Conlon [7, page 89] yield that, for m; n ≥ 1,� .BmCn/ is either {C; D}
or {C ⊗ C; D}, depending on whether n is odd or even. From Theorem 3.5 and
Proposition 3.3 we now get that, for q ≥ 4,

� .Lq.C// = � .Lq=2.B// ∪� .Lq=3.C// ∪
⋃
d|q

⋃
W

� .Lq|d.W //

where the range of W is the union of the � .BmCn/ with m; n ≥ 1 and 2m + 3n = d .
This range is readily seen to be empty when d ≤ 4 or d = 6, it is {C; D} when d is
an odd number greater than 3, and it is {C ⊗ C; D} when d is an even number greater
than 6. Equivalently, if q ≥ 4, then

� .Lq.C// = � .Lq=2.B// ∪
⋃

r

� .Lq=r.C//(3.6)

∪
⋃

s

� .Lq=s.C ⊗ C// ∪
⋃

t

� .Lq=t.D//;

where r is odd and r ≥ 3, s is even and s ≥ 8, and either t = 5 or t ≥ 7, and r; s; t
range through the divisors of q subject only to these conditions. It follows immediately
that� .L.C// ⊇ � .L.B/′/∪� .L.C ⊗ C//∪� .L.D//, where L.B/′ is the derived
algebra of L.B/. Let X be any indecomposable in � .L.C//, and choose q minimal
with respect to X ∈ � .Lq.C//. If q ≥ 4, we may apply (3.6); by the minimality of q,
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no� .Lq=r.C// can contain X , so X must lie in� .L.B/′/∪� .L.C⊗C//∪� .L.D//.
In view of L3.C/ ∼= L1.C/ = C and L2.C/ ∼= A, we have proved the following
relation � .L.C// = {A;C} ∪� .L.B/′/ ∪� .L.C ⊗ C// ∪� .L.D//.

THEOREM 3.6. Let G be the Klein four-group, K a field of characteristic 2 con-
taining more than two elements and C any faithful 2-dimensional K G-module. Let
D be the regular K G-module, B the unique 3-dimensional quotient of D and A the
1-dimensional trivial K G-module. Then, � .L.C// is finite if and only if � .L.B//,
� .L.D// and � .L.C ⊗ C// are finite.

EXAMPLE 1 (Michos). Let K be a field of characteristic 2 and G a Klein four-group.
Conlon [7] described an infinite sequence A1; A2; : : : of indecomposable K G-modules
such that A1 is the augmentation ideal of K G, dim An = 2n + 1, and Ar+s is a direct
summand of Ar ⊗ As . An easy induction on n shows that therefore An is a direct
summand of the n-fold tensor power of A1. By (3.2) with U = V = A1, it follows
that each An is a direct summand of L.A1 ⊕ A1/, and so � .L.A1 ⊕ A1// is infinite.
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[1] J. Alperin and L. G. Kovács, ‘Periodicity of Weyl modules for SL.2;q/’, J. Algebra 74 (1982),
52–54.

[2] J. L. Alperin, Local representation theory, Cambridge Studies in Advanced Mathematics 11
(Cambridge University Press, Cambridge, 1993).

[3] Yu. A. Bakhturin, Identical relations in Lie algebras (Nauka, Moscow, 1985), in Russian; English
translation: (VNU Science Press, Utrecht, 1987).

[4] R. M. Bryant, ‘Free Lie algebras and formal power series’, J. Algebra 253 (2002), 167–188.
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