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Abstract

Let V be an n-dimensional inner product space over C, let H be a subgroup of the symmetric group
on {1; : : : ;m}, and let � : H → C be an irreducible character. Denote by V m

� .H/ the symmetry
class of tensors over V associated with H and � . Let K .T / ∈ End.V m

� .H// be the operator induced
by T ∈ End.V /, and let DK .T / be the derivation operator of T . The decomposable numerical range
W ∗.DK .T // of DK .T / is a subset of the classical numerical range W .DK .T // of DK .T /. It is shown
that there is a closed star-shaped subset� of complex numbers such that

� ⊆ W ∗.DK .T // ⊆ W .DK .T // = conv� ;

where conv� denotes the convex hull of � . In many cases, the set � is convex, and thus the set
inclusions are actually equalities. Some consequences of the results and related topics are discussed.

2000 Mathematics subject classification: primary 15A69, 15A42.
Keywords and phrases: symmetry class of tensors, numerical range, induced operator, derivation,

convexity.

1. Introduction

Let V be an n-dimensional inner product space over C. Let Sm be the symmetric
group of degree m on the set {1; : : : ;m}. Each ¦ ∈ Sm gives rise to a linear operator
P.¦ / on ⊗m V :

P.¦ /.v1 ⊗ v2 ⊗ · · · ⊗ vm/ := v¦−1.1/ ⊗ v¦−1.2/ ⊗ · · · ⊗ v¦−1.m/; v1; : : : ; vm ∈ V :
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Let H be a subgroup of Sm and let � : H → C be an irreducible character of H .
The symmetrizer

S� := �.e/

|H |
∑
¦∈H

�.¦/P.¦ / ∈ End.⊗m V /

is an orthoprojector with respect to the inner product on ⊗m V induced by the inner
product on V via

.u1 ⊗ · · · ⊗ um; v1 ⊗ · · · ⊗ vm/ :=
m∏

i=1

.ui ; vi /:

The range of S�

V m
� .H/ := S�.⊗m V /

is called the symmetry class of tensors over V associated with H and � . The elements
in V m

� .H/ of the form S� .v1 ⊗· · ·⊗vm/ are called decomposable symmetrized tensors
and are denoted by v1 ∗ · · · ∗ vm .

Let T ∈ End.V /. There is a unique induced operator K .T / acting on V m
� .H/

satisfying
K .T /v1 ∗ · · · ∗ vm = T v1 ∗ · · · ∗ Tvm :

Furthermore, one can define the derivation operator DK .T / of T by

DK .T / = d

dt
K .I + tT /

∣∣∣∣
t=0

;

which acts on V m
� .H/ in the following way:

DK .T /v1 ∗ · · · ∗ vm =
m∑

j=1

v1 ∗ · · · ∗ v j−1 ∗ Tv j ∗ v j+1 ∗ · · · ∗ vm:

Clearly T �→ DK .T / is linear. See [16, 17] for general background on K .T /
and DK .T /.

Define the numerical range and the decomposable numerical range of a linear
operator L acting on V m

� .H/ by

W .L/ = {.Lx; x/ : x ∈ V m
� .H/; .x; x/ = 1};

and

W ∗.L/ = {.Lx; x/ : x ∈ V m
� .H/ is decomposable, .x; x/ = 1};

respectively. The numerical range and the decomposable numerical range are useful
concepts for studying linear operators, and they also have applications to other areas
such as quantum physics (see [2, 3, 13, 14, 15, 19]). Clearly

W ∗.L/ ⊆ W .L/:
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However, since a unit vector in V m
� .H/ need not be decomposable [16, 17, 20, 25],

one cannot expect that the above set inclusion is equality in general. Nonetheless, in
this paper we show that there is a closed star-shaped subset� of C such that

� ⊆ W ∗.DK .T // ⊆ W .DK .T // = conv� :

We give several examples for which � is actually convex so that all of the above
sets are equal. For instance, this is the case when H = Sm (see Theorem 4.2). In
particular � = conv� when � is the alternating character of Sm with m ≤ n. In
this case V m

� .H/ is the mth exterior space ∧m V , which has the special feature that
each unit decomposable vector u1 ∗ · · · ∗ um is equal to some v1 ∗ · · · ∗ vm with
v1; : : : ; vm orthonormal vectors in V . Consequently, the decomposable numerical
range W ∗.DK .T // of DK .T / is equal to the mth higher numerical range of T [19]

Wm.T / =
{

m∑
j=1

.T v j ; v j/ : {v1; : : : ; vm} is an orthonormal set in V

}
;

which is convex by a result of Berger [19].
We present some preliminaries in Section 2, and prove the set inclusion result in

Section 3. In Section 4 we discuss the situation where H is the dihedral group, the
alternating group, or the full symmetric group (or, more generally, a Young subgroup).
Some consequences are deduced in Section 5 and related results are discussed in
Section 6.

2. Preliminaries

In this section, we present some preliminary results for induced operators; see
[16, 17, 20, 25] for general background.

Let I .H/ be the set of irreducible characters of H ≤ Sm . If �; ¾ ∈ I .H/ and
� �= ¾ , then S� S¾ = 0. Moreover

∑
�∈I .H/ S� is the identity operator on ⊗m V . So we

have the orthogonal sum

⊗m V =
∑̇

�∈I .H/
V m
� .H/:

Let 0m;n be the set of sequences Þ = .Þ.1/; : : : ; Þ.m// with 1 ≤ Þ. j/ ≤ n
for j = 1; : : : ;m. Two sequences Þ and þ in 0m;n are said to be equivalent
modulo H , denoted by Þ ∼ þ, if there exists ¦ ∈ H such that þ = Þ¦ , where
Þ¦ := .Þ.¦.1//; : : : ; Þ.¦.m///. This equivalence relation partitions 0m;n into equiv-
alence classes. Let 1 be a system of representatives for the equivalence classes such
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that each sequence in 1 is first in its equivalence class relative to the lexicographic
order. Define 1̄ as the subset of 1 consisting of those sequences Þ ∈ 1 such that∑

¦∈HÞ

�.¦/ �= 0;

where HÞ := {¦ ∈ H : Þ¦ = Þ} is the stabilizer subgroup of Þ.
Let� = {e1; : : : ; en} be a basis for V . Then {e⊗

Þ := eÞ.1/ ⊗ · · · ⊗ eÞ.m/ : Þ ∈ 0m;n}
is a basis for ⊗m V . Let

e∗
Þ := S�e⊗

Þ = �.e/

|H |
∑
¦∈H

�.¦/eÞ¦−1.1/ ⊗ · · · ⊗ eÞ¦−1.m/;

for each Þ ∈ 0m;n . Then {e∗
Þ : Þ ∈ 0m;n} is a spanning set for the space V m

� .H/, but
it may not be linearly independent. Indeed some of these vectors may even be zero.
It is known that e∗

Þ �= 0 if and only if the restriction of � to HÞ contains the principal
character as an irreducible constituent [20, page 163]. Let

� := {Þ ∈ 0m;n : .�; 1/HÞ
�= 0}:

Note that 1̄ = 1 ∩� and

(2.1) � =
⋃
Þ∈1̄

{Þ¦ : ¦ ∈ H};

see [20, Equation (6.15), page 164]. The set {e∗
Þ : Þ ∈ �} consists of the nonzero

elements of {e∗
Þ : Þ ∈ 0m;n}. Moreover

(2.2) V m
� .H/ =

⊕
Þ∈1̄

OÞ;

where OÞ := 〈e∗
Þ¦ : ¦ ∈ H〉 (called an orbital subspace). Freese’s theorem [20,

page 165] asserts that

(2.3) sÞ := dim OÞ = �.e/

|HÞ|
∑
¦∈HÞ

�.¦/ = �.e/.�; 1/HÞ
:

We now construct a basis for V m
� .H/. For each Þ ∈ 1̄, we find a basis for the orbital

subspace OÞ: choose a lexicographically ordered set {Þ1; : : : ; ÞsÞ} from {Þ¦ : ¦ ∈ H}
such that {e∗

Þ1
; : : : ; e∗

ÞsÞ
} is a basis for OÞ. Execute this procedure for each � ∈ 1̄. If

{Þ; þ; : : : } is the lexicographically ordered set 1̄, take

1̂ = {Þ1; : : : ; ÞsÞ ; þ1; : : : ; þsþ ; : : : }
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to be ordered as indicated. Then {e∗
Þ : Þ ∈ 1̂} is a basis for V m

� .H/ (but the elements

of 1̂ need not be lexicographically ordered). Clearly 1̄ ⊆ 1̂ ⊆ �. Although 1̂ is
not unique, it does not depend on the basis � since 1 and 1̄ do not depend on �.
Thus if �′ = { f1; : : : ; fn} is another basis for V , then { f ∗

Þ : Þ ∈ 1̂} is still a basis
for V m

� .H/.
The inner product of V induces an inner product on V m

� .H/:

(2.4) .u∗; v∗/ = �.e/

|H |
∑
¦∈H

�.¦/

m∏
t=1

.ut ; v¦.t//:

Let� = {e1; : : : ; en} be an orthonormal basis for V . Then

.e∗
Þ; e∗

þ/ =
{

0 if Þ �∼ þ;
�.e/
|H |
∑

¦∈HÞ
�.¦/ if Þ = þ;

and thus

‖e∗
Þ‖2 = �.e/

|H |
∑
¦∈HÞ

�.¦/:

Hence (2.2) becomes V m
� .H/ = ∑̇

Þ∈1̄〈e∗
Þ¦ : ¦ ∈ H〉, an orthogonal sum. However,

those e∗
Þ’s of {e∗

Þ : Þ ∈ 1̂} belonging to the same orbital subspace need not be
orthogonal.

It is known [25, page 103], and also follows from (2.3), that 1̄ = 1̂ if and only if
� is linear. In such cases, {e∗

Þ : Þ ∈ 1̄} is an orthogonal basis for V m
� .H/.

We give several common examples of symmetry classes of tensors and induced
operators.

EXAMPLE 1. Assume 1 ≤ m ≤ n, H = Sm , and � is the alternating character, that
is, �.¦/ = sgn .¦ /. Then V m

� .H/ is the mth exterior space ∧m V , 1̄ = 1̂ = Qm;n,
the set of strictly increasing sequences in 0m;n , 1 = Gm;n , the set of nondecreasing
sequences in 0m;n , and K .T / is the mth compound of T ∈ End.V /, usually denoted
by Cm.T /.

EXAMPLE 2. Assume H = Sm and � ≡ 1, the principal character. Then V m
� .H/ is

the mth completely symmetric space over V = Cn, 1̄ = 1̂ = 1 = Gm;n , and K .T /
is the mth induced power of T ∈ End.V /, usually denoted by Pm.T /.

EXAMPLE 3 (see [13]). Assume H = {e}, where e is the identity in Sm (and � ≡ 1,
which is the only irreducible character). Then V m

� .H/ = ⊗m V , 1̄ = 1̂ = 1 = 0m;n ,
and K .T / = ⊗m T is the mth tensor power of T ∈ End.V /.

We now provide an example with nonlinear irreducible character.
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EXAMPLE 4 (see [13]). Assume H = S3 and � = �3 (notation as in [12, page 157]),
the only nonlinear irreducible character. We have �.e/ = 2, �..12// = 0,
�..123// = −1. Assume n := dim V = 2. Then

1̄ = {.1; 1; 2/; .1; 2; 2/}; 1̂ = {.1; 1; 2/; .1; 2; 1/; .1; 2; 2/; .2; 1; 2/};
see [20, page 164]. Let� = {e1; e2} be a basis for V . Then

�
∗ = {e∗

.1;1;2/; e∗
.1;2;1/; e∗

.1;2;2/; e∗
.2;1;2/}

is a basis for V m
� .H/, and (see [25, pages 98–101])

e∗
.2;1;1/ = −e∗

.1;1;2/ − e∗
.1;2;1/; e∗

.2;2;1/ = −e∗
.1;2;2/ − e∗

.2;1;2/:

Let T ∈ End.V / be defined by

[T ]� =
(

a b
c d

)
:

By direct computation,

[K .T /]�∗ =

⎛⎜⎜⎝
a2d − abc 0 abd − b2c 0

0 a2d − abc abd − b2c b2c − abd
acd − bc2 0 ad2 − bcd 0
acd − bc2 bc2 − acd 0 ad2 − bcd

⎞⎟⎟⎠
and

[DK .T /]�∗ =

⎛⎜⎜⎝
2a + d 0 b 0

0 2a + d b −b
c 0 a + 2d 0
c −c 0 a + 2d

⎞⎟⎟⎠ :
Observe that�∗ is not an orthogonal basis even if� is an orthonormal basis, since

.e∗
.1;1;2/; e∗

.1;2;1// = .e∗
.1;2;2/; e∗

.2;1;2// = −1=3:

Let m j.Þ/ denote the number of occurrences of j = 1; : : : ; n in the sequence
Þ ∈ 0m;n . The vector m.Þ/ = .m1.Þ/; : : : ;mn.Þ// is called the multiplicity vector
of Þ.

Recall that � := {Þ ∈ 0m;n : .�; 1/HÞ
�= 0}. Let m.�/ := {m.Þ/ : Þ ∈ �} ⊆ Nn

be the collection of multiplicity vectors of all Þ ∈ �. A vector k ∈ Nm is said
to be admissible if k ∈ m.�/. We claim that m.�/ is invariant under the usual
action of Sn on Nn given by k− = .k− .1/; : : : ; k− .n// for k ∈ Nn, − ∈ Sn . Let Þ ∈ �

and − ∈ Sn . With the definition −Þ = .− .Þ.1//; : : : ; − .Þ.m//, we clearly have
H−Þ = HÞ so that −� = �. One easily checks that m.Þ/− = m.−−1Þ/. Thus,
m.�/− = m.−−1�/ = m.�/, as desired.
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3. Set inclusion and convexity

Let T ∈ End.V / have eigenvalues ½1.T /; : : : ; ½n.T / and let � = {v1; : : : ; vn} be
an orthonormal basis of V . One calls� a Schur basis for T if the matrix representa-
tion A of T with respect to � is upper triangular and diag A = .½1.T /; : : : ; ½n.T //.
According to the Schur Triangularization Theorem, a Schur basis always exists no
matter how the ½i .T / are preordered.

Assume that � is a Schur basis for T . The matrix of DK .T / relative to the
basis {v∗

Þ : Þ ∈ 1̂} of V m
� .H/ is upper triangular. Moreover, the diagonal entries

of this matrix are ½Þ = ∑n
j=1 m j.Þ/½ j .T /, Þ ∈ 1̂. So, in particular, these are the

eigenvalues of DK .T /. We point out that it might not be possible to choose 1̂ for
which {v∗

Þ : Þ ∈ 1̂} is orthogonal [8, 9, 26] and thus this need not be a Schur basis for
DK .T /.

Denote by Spec.L/ the spectrum of a linear operator L . The following is an
extension of the well-known result Spec L ⊂ W .L/; see [7].

PROPOSITION 3.1. Let T ∈ End.V /. Then Spec.DK .T // ⊂ W ∗.DK .T //.

PROOF. Let x1; : : : ; xn ∈ V and let Þ ∈ �. We have

.DK .T /x
∗
Þ; x∗

Þ/ = .DK .T /xÞ.1/ ∗ · · · ∗ xÞ.m/; xÞ.1/ ∗ · · · ∗ xÞ.m//(3.1)

=
(

m∑
i=1

xÞ.1/ ∗ · · · T xÞ.i/ ∗ · · · xÞ.m/; xÞ.1/ ∗ · · · ∗ xÞ.m/

)

=
m∑

i=1

�.e/

|H |
∑
¦∈H

�.¦/.T xÞ.i/; xÞ¦.i//
∏
j �=i

.xÞ. j/; xÞ¦. j//:

Now suppose {x1; : : : ; xn} is an orthonormal basis for V . Let ¦ ∈ H and suppose
that

∏
j �=i.xÞ. j/; xÞ¦. j// �= 0. Then Þ. j/ = Þ¦. j/ for all j �= i . However since

mt.Þ/ = mt.Þ¦/ for t = 1; : : : ; n, we also have Þ.i/ = Þ¦.i/. So ¦ ∈ HÞ . Thus

.DK .T /x
∗
Þ; x∗

Þ/ =
m∑

i=1

�.e/

|H |
∑
¦∈HÞ

�.¦/.T xÞ.i/; xÞ.i//(3.2)

= �.e/

|H |
∑
¦∈HÞ

�.¦/

m∑
i=1

.T xÞ.i/; xÞ.i//

= ‖x∗
Þ‖2

n∑
t=1

mt.Þ/.T xt ; xt/:

Since ‖x∗
Þ‖2 = .�.e/=|H |/∑¦∈HÞ

�.¦/ = .�; 1/HÞ
�= 0, the desired result follows if

{x1; : : : ; xn} is a Schur basis.
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Since Re W .L/ = W .Re.L// where Re denotes the real part of a complex number
as well as the Hermitian part of an operator, the right vertical support line of W .L/
equals {¼ ∈ C : Re¼ = max Spec.Re L/}:

Given c = .c1; : : : ; cn/ ∈ Cn, the c-numerical range of T ∈ End.V / is the
following subset of C:

Wc.T / :=
{

n∑
j=1

c j.T x j ; x j/ : {x1; : : : ; xn} is an orthonormal basis for V

}
:

It is known that Wc.T / is convex if c ∈ Rn, but it can fail to be convex if c ∈ Cn;
see [27] (see [21] for another proof and [23] for a generalization in the context of
compact Lie groups).

We say that c = .c1; : : : ; cn/ ∈ Rn is majorized by d = .d1; : : : ; dn/ ∈ Rn, written
c ≺ d , if for each 1 ≤ k ≤ n the sum of the k largest entries of c is not larger than
that of d , and

∑n
j=1 c j = ∑n

j=1 d j . Majorization induces a partial order on the set
of orbits (under the entry permutation action of Sn) of those vectors in Rn having the
same entry sum. Two vectors x; y ∈ Rn are said to be comparable if either x ≺ y or
y ≺ x . Clearly not all pairs of vectors are comparable; for example, x = .4; 1; 1/ and
y = .3; 3; 0/ are not comparable.

It is known that if c is majorized by d , then Wc.T / ⊆ Wd.T /; see [1, 6].

THEOREM 3.2. The set

� :=
⋃
Þ∈�

Wm.Þ/.T / =
⋃
Þ∈1̂

Wm.Þ/.T / =
⋃
Þ∈1̄

Wm.Þ/.T /

is star-shaped with .m=n/ tr T as a star-center. Moreover,

� ⊆ W ∗.DK .T // ⊆ W .DK .T // = conv� :

All these sets are equal to Wm.Ž/.T / if there is Ž ∈ � such that m.Ž/ majorizes m.Þ/
for all Þ ∈ � (respectively, Þ ∈ 1̄).

PROOF. Recall (2.1) � = ⋃
Þ∈1̄{Þ¦ : ¦ ∈ H}. Clearly m.Þ/ = m.Þ¦/ and thus

Wm.Þ/.T / = Wm.Þ¦/.T / for any Þ ∈ 0m;n , ¦ ∈ Sm . So � := ⋃
Þ∈� Wm.Þ/.T / =⋃

Þ∈1̄ Wm.Þ/.T /. Since � ⊇ 1̂ ⊇ 1̄, we have� = ⋃
Þ∈1̂ Wm.Þ/.T / as well.

For any Þ ∈ �, we have .m=n/ tr T ∈ Wm.Þ/.T /. This is because there is an ortho-
normal basis {u1; : : : ; un} of V such that .T ui ; ui / = .1=n/ tr T for all i = 1; : : : ; n
(see [5]), and m = ∑n

t=1 mt.Þ/. Thus the set � is star-shaped with .m=n/ tr T as a
star-center by the convexity of each Wm.Þ/.T / for Þ ∈ � (also see [24]).

Each element of Wm.Þ/.T / is of the form
∑n

t=1 mt.Þ/.T xt ; xt/ for some orthonormal
basis {x1; : : : ; xn}. By (3.2),

Wm.Þ/.T / ⊆ W ∗.DK .T //:
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Hence
� ⊆ W ∗.DK .T // ⊆ W .DK .T //:

Next, we are going to prove that W .DK .T // = conv� . Since W .DK .T // is
convex [7, page 110] and contains � , we get W .DK .T // ⊇ conv� . Therefore, it
remains to prove the other inclusion, and for this it suffices to prove that every extreme
point of W .DK .T // belongs to Wm.Þ/.T / for some Þ ∈ 1̂.

First, we consider an exposed boundary point ¼ ∈ W .DK .T //. By definition, there
exists a support line of W .DK .T // intersecting W .DK .T // at the point ¼ alone. Then
there is r ∈ [0; 2³/ such that eir¼ is the only point of W .eir DK .T // = eir W .DK .T //
on the right vertical support line of W .eir DK .T //. Since T �→ DK .T / is linear,
DK .Re.eir T // = Re.eir DK .T //. By the discussion before the theorem,

Re eir¼ = max Spec.Re.eir DK .T /// = max Spec.DK .Re.eir T ///

= max
Þ∈1̂

n∑
j=1

m j.Þ/½ j.Re.eir .T ///:

Let {v1; : : : ; vn} be an orthonormal basis of eigenvectors corresponding to the eigen-
values ½1.Re.eir T // ≥ · · · ≥ ½n.Re.eir T // of the Hermitian operator Re.eir T /. Then

½ j.Re.eir T // = .Re.eir T /v j ; v j/ = Re.eir Tv j ; v j/; j = 1; : : : ; n:

So there is Þ ∈ 1̂ such that

Re eir¼ = Re
n∑

j=1

m j.Þ/.e
ir Tv j ; v j/:

Hence, the point
n∑

j=1

m j.Þ/.e
ir Tv j ; v j/ ∈ Wm.Þ/.e

ir T / ⊆ W .DK .e
ir T // = W .eir DK .T //

lies on the right vertical support line of W .eir DK .T //. Since eir¼ is the only point of
W .eir DK .T // lying on the right vertical support line, eir¼ = ∑n

j=1 m j.Þ/.eir Tv j ; v j/

and hence ¼ = ∑n
j=1 m j.Þ/.Tv j ; v j/ ∈ Wm.Þ/.T /:

Straszewicz’s Theorem [22, page 167] asserts that the set of exposed points of any
closed convex set C is a dense subset of the set of extreme points of C . The convex
hull of two circular disks in C of the same radius, but of different centers, is a simple
example for seeing how an extreme point is the limit of a sequence of exposed points.
Now Wm.Þ/.T / ⊂ C, Þ ∈ 1̂, are finitely many closed sets. So � = ⋃

Þ∈1̂ Wm.Þ/.T /
is closed and contains all the exposed points of the closed convex set W .DK .T //. We
conclude that every extreme point of W .DK .T // belongs to � .
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Finally, suppose there is Ž ∈ � such that m.Ž/ majorizes m.Þ/ for all Þ ∈ �

(respectively, Þ ∈ 1̄). Then Wm.Ž/.T / ⊇ Wm.Þ/.T / for each Þ ∈ � (respectively,
Þ ∈ 1̄), whence � = Wm.Ž/.T /. Since Wm.Ž/.T / is convex, we have conv� = �
and so the inclusions in the statement of the theorem are all equalities. The last
assertion of the theorem follows.

4. Largest multiplicity vector and convexity

A vector x ∈ m.�/ is said to be a largest vector of m.�/ if y ≺ x for all y ∈ m.�/.
A largest vector of m.�/, if it exists, is unique up to permutation of its entries.

In this section, we give examples for which the set equalities

(4.1) � = W ∗.DK .T // = W .DK .T // = conv�

hold. We establish the indicated equalities in each case by showing that either � is
empty, so that these sets are all empty as well, or m.�/ has a largest vector k, so that
these sets all equal Wk.T / by Theorem 3.2. We also give examples to illustrate that
some of these equalities can fail to hold (see Theorems 4.5 and 4.6). We point out that
in all of the examples in Section 2 there is a largest vector of m.�/, so (4.1) holds in
those cases.

Our first example was already observed in [3, Theorem 8.1].

PROPOSITION 4.1. Suppose � is the principal character of the subgroup H of Sm.
Then m.�/ has a largest vector, namely .m; 0; : : : ; 0/, and so (4.1) holds. Moreover
the sets in (4.1) all equal mW .T /.

PROOF. As observed in [3, Theorem 8.1], .m; 0; : : : ; 0/ = m.Ž/, where Ž =
.1; 1; : : : ; 1/ ∈ �, so .m; 0; : : : ; 0/ is in m.�/, and it is clearly a largest vector
of m.�/. Therefore, Theorem 3.2 states that the sets in (4.1) all equal Wm.Ž/.T / =
{m.T x; x/ : x ∈ V; .x; x/ = 1}.

THEOREM 4.2. If H = Sm, then (4.1) holds.

PROOF. Assume H = Sm and let ³� be the partition of m corresponding to � [20].
If ³� has greater than n parts, then� is empty [20, Corollary 6.38, page 169]. Assume
³� has at most n parts, so that, in particular, it is a multiplicity vector. It is known that
a multiplicity vector k ∈ Nn is admissible if and only if k is majorized by ³� [13],
[20, page 169]. It follows that ³� is a largest vector of m.�/.
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For a partition ¼ = .¼1; : : : ; ¼r/ of m, the corresponding Young subgroup of Sm

is the internal direct product S¼ = SM1 × · · · × SMr , where SMi is the subgroup of Sm

consisting of those permutations that fix every integer not contained in the set

Mi :=
{

1 ≤ k ≤ m :
i−1∑
j=1

¼ j < k ≤
i∑

j=1

¼ j

}

(an empty sum being interpreted as zero).

THEOREM 4.3. Let ¼ = .¼1; : : : ; ¼r / be a partition of m. If H = S¼ (Young
subgroup), then (4.1) holds.

PROOF. Assume H = S¼ = ∏r
i=1 SMi (notation as above). Then � = ∏r

i=1 �i

with �i an irreducible character of SMi (1 ≤ i ≤ r ).
Denoting by 0Mi ;n the set of functions from Mi to {1; : : : ; n}, we have a bijection

0m;n → ∏r
i=1 0Mi ;n given by Þ �→ .Þ1; : : : ; Þr/, where Þi denotes the restriction of Þ

to Mi . For Þ ∈ 0m;n we have HÞ = ∏r
i=1.SMi /Þi so that

.�; 1/HÞ
=

r∏
i=1

.�i ; 1/.SMi /Þi
:

Therefore, Þ ∈ � if and only if Þi ∈ �i := {þ ∈ 0Mi ;n : .�i ; 1/.SMi /þ
�= 0} for each i .

Clearly m.Þ/ = ∑
i m.Þi / (Þ ∈ 0m;n), so it follows from the observations above that

m.�/ = ∑
i m.�i /. Identifying SMi with S¼i in the natural way, we have that �i

equals �³i for some partition ³i of ¼i . If some ³i has greater than ¼i parts, then �i

is empty, whence � is empty and (4.1) holds. Assume each ³i has at most ¼i parts.
Then the proof of Theorem 4.2 shows that ³i is a largest vector of m.�i / and thus
³ := ∑

i ³i is a largest vector of m.�/.

PROPOSITION 4.4. If m ≤ 5, then (4.1) holds.

PROOF. Assume m ≤ 5. Then majorization is a total order on the set of partitions
of m. Since each vector in m.�/ lies in the orbit (under the entry permutation action
of Sn) of some partition of m, it follows that m.�/ either is empty or has a largest
vector.

In each of the examples so far, m.�/ has had a largest vector (or it has been empty).
We next give an example for which m.�/ is nonempty and has no largest vector.

Assume H = Dm (m ≥ 3), the dihedral group, which is generated by

r =
(

1 2 · · · m − 1 m
2 3 · · · m 1

)
and s =

(
1 2 3 · · · m − 1 m
1 m m − 1 · · · 3 2

)
:
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If m is even, there are 4 irreducible characters of degree 1, given by the following
table:

 1  2  3  4

rk 1 1 .−1/k .−1/k

srk 1 −1 .−1/k .−1/k+1

If m is odd, then 1 and 2 are the only irreducible characters of degree 1. The other
irreducible characters of Dm are of degree 2 and are induced by certain irreducible
characters of the cyclic subgroup Cm = 〈r〉.

THEOREM 4.5. Assume H = Dm and let the notation be as above.

(1) Assume � =  2, m > 5, and n ≥ 3. Then m.�/ contains .m −2; 1; 1; 0; : : : ; 0/
and .m −3; 3; 0; : : : ; 0/ and each vector in m.�/ is majorized by one of these vectors.
In particular, there is no largest admissible vector. In fact, there exists T ∈ End.V /
for which� is not convex and hence for which (4.1) fails to hold.
(2) If � �=  2 or m ≤ 5 or n < 3, then (4.1) holds.

PROOF. We first prove (1). We claim that .m − 1; 1; 0; : : : ; 0/ is not admissible.
Otherwise there is a � ∈ � such that m.� / = .m − 1; 1; 0; : : : ; 0/. We may assume
� = .2; 1; : : : ; 1/ since r ∈ Dm . However now

.�; 1/H�
= [�.1/+ �.s/]=2 = .1 − 1/=2 = 0;

contradicting that � ∈ �.
We next claim that .m − 2; 2; 0; : : : ; 0/ is not admissible. Otherwise there is

a þ ∈ � such that m.þ/ = .m − 2; 2; 0; : : : ; 0/. We may assume that þ =
.2; 1; : : : ; 1; 2; 1; : : : ; 1/, where the second 2 is in the i th position for some i �= 1.
Then Hþ = {e; srm−i+1} and .�; 1/Hþ

= .1 − 1/=2 = 0, a contradiction.
Let Ž = .3; 2; 1; : : : ; 1/. Then HŽ = {e} and thus .�; 1/HŽ

= 1. So .m − 2; 1;
1; 0; : : : ; 0/ = m.Ž/ is admissible.

Let ¾ = .2; 2; 1; 2; 1; : : : ; 1/. Any element of H¾ must fix 3, since this is the
only position i for which ¾i = 1 and ¾i−1 = 2 = ¾i+1 (subscripts modulo m), so that
H¾ ⊆ {e; srm−4}. However srm−4.1/ = 5, so H¾ = {e}. Thus .�; 1/H¾

= 1 and
.m − 3; 3; 0; : : : ; 0/ = m.¾/ is admissible.

Using these observations, we see that all possible admissible vectors are majorized
by either m.Ž/ or m.¾/ and, since these two vectors are admissible and not com-
parable, we conclude that there is no largest admissible vector. Moreover, since
Wc.T / ⊆ Wd.T / whenever c ≺ d , we find that

� :=
⋃
Þ∈�

Wm.Þ/.T / = Wm.Ž/.T / ∪ Wm.¾/.T /:
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Suppose T = diag.2 + i; 1/ ⊕ 0n−2. It is a normal operator acting on V = Cn . Let
t := .t1; : : : ; tn/ = .2 + i; 1; 0; : : : ; 0/. Then (for example, see [18])

Wc.T / = conv{cT
¦ t : ¦ ∈ Sn};

where c¦ = .c¦.1/; : : : ; c¦.n// for real c ∈ Rn. So

Wm.Ž/.T / = conv

{
.m − 2/tu + tv + tw

∣∣∣∣ {u; v; w} is a three-element
subset of {1; : : : ; n}

}
;

and

Wm.¾/.T / = conv

{
.m − 3/tu + 3tv

∣∣∣∣ {u; v} is a two-element
subset of {1; : : : ; n}

}
:

In particular, z1 = .2m − 3/ + .m − 2/i is a vertex of Wm.Ž/.T / and z2 = .2m − 3/
+ .m − 3/i is a vertex of Wm.¾/.T /. However z1 is the only vertex of Wm.Ž/.T / with
real part 2m − 3 and clearly 2m − 3 is the largest possible among the real parts
of vertices of Wm.Ž/.T /. A similar statement holds for z2 and Wm.¾/.T /. Therefore
.z1 + z2/=2 = .2m − 3/+ .m − 5=2/i is a point on the segment joining z1 and z2 that
does not belong to Wm.Ž/.T / ∪ Wm.¾/.T /. We conclude that� is not convex.

Now we prove (2). If m ≤ 5, then the claim follows from Proposition 4.4. Assume
� �=  2 and m > 5. We consider cases:

(a) (� is the principal character). This case is handled by Proposition 4.1.

In the remaining cases, � is empty if n = 1, in which case (4.1) holds. So we
assume n > 1.

(b) (� is of degree 2). Since � is induced from a character of the normal subgroup
Cm of H , it vanishes on the complement of Cm . Let � = .2; 1; : : : ; 1/. Then clearly
H� = {e; s} and hence .�; 1/H�

= 1. Thus .m −1; 1; 0; : : : ; 0/ = m.� / is admissible
and it is clearly a largest such vector. Our claim now follows from Theorem 3.2 as
usual.
(c) (� =  3). Let � = .2; 1; : : : ; 1/ as before. Then .�; 1/H�

= [�.1/+�.s/]=2 =
.1 + 1/=2 = 1. Thus, .m − 1; 1; 0; : : : ; 0/ = m.� / is admissible and it is a largest
such vector.
(d) (� =  4). First, .m − 1; 1; 0; : : : ; 0/ is not admissible by an argument similar

to that in the proof of (1). Let þ = .2; 2; 1; : : : ; 1/. Then Hþ = {e; srm−1} and
.�; 1/Hþ

= .1 + .−1/m/=2 = 1, using that m must be even in this case. Thus,
.m − 2; 2; 0; : : : ; 0/ = m.þ/ is a largest admissible vector.

Finally, assume n < 3, � =  2, and m > 5. Since n < 3, .m − 2; 1; 1; 0; : : : ; 0/
cannot be admissible. Therefore, in view of the proof of (1), we have that .m − 3; 3;
0; : : : ; 0/ = m.¾/ is a largest admissible vector, where ¾ = .2; 2; 1; 2; 1; : : : ; 1/. This
completes the proof.
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For the T in the proof of part (1) of the theorem, we know only that one of
the first two equalities of (4.1) fails to hold, in view of Theorem 3.2. That is, either
� �= W ∗.DK .T // or W ∗.DK .T // �= W .DK .T //. It would be interesting to determine
whether the line segment joining z1 and z2 in the above proof belongs to W ∗.DK .T //,
since an answer in the negative would imply that W ∗.DK .T // �= W .DK .T //.

Assume H = Am .m ≥ 2/, the alternating group. Suppose the irreducible char-
acter � of H is invariant under the conjugation action of Sm , that is, ¦� = � for all
¦ ∈ Sm , where ¦�.− / = �.− ¦ / = �.¦−1−¦/ (− ∈ H ). Then � Sm = �³ + �³ ′ for
some partition ³ of m (written ³ � m) with ³ ′ �= ³ , where ³ ′ denotes the conjugate
partition of ³ (see [10, (6.20), (6.17)] and [20, Theorem 4.47]).

Now suppose � is not invariant. Then � Sm = �³ for some ³ � m with ³ ′ = ³ .
Moreover, .¦�/Sm = �³ for every ¦ ∈ Sm (see [10, (6.11)] and [20, Corollary 4.48]).

In summary, there exists ³ � m such that for every ¦ ∈ Sm ,

.¦�/Sm = 2−�.�³ + �³ ′/;

where

� =
{

0; ³ ′ �= ³;

1; ³ ′ = ³:

Note that � is 0 or 1 according to whether � is or is not invariant. By Frobenius
Reciprocity, ³ may be taken to be any partition of m for which � is a constituent of
the restriction of �³ to H .

THEOREM 4.6. Assume H is the alternating group Am with n := dim V ≥ m ≥ 2,
and let ³ and ³ ′ be described as above.

(1) Then� = W³.T / ∪ W³ ′.T /.
(2) If ³ and ³ ′ are comparable, then (4.1) holds. In particular, if � is not invariant,

then (4.1) holds.

PROOF. We begin by establishing a formula. Let x � m and assume x �= [1m].
Then Sx (Young subgroup) contains an odd permutation, whence H Sx = Sm . There-
fore, Mackey’s Subgroup Theorem [10, page 74] states ..1Sx /

Sm /H = .1Sx ∩H /
H . Using

this observation together with Frobenius Reciprocity and linearity of the inner product,
we obtain for each ¦ ∈ Sm

2−�
[(
�³; .1Sx /

Sm
)

Sm
+ (
�³ ′; .1Sx /

Sm
)

Sm

]
= (

.¦�/Sm ; .1Sx /
Sm
)

Sm
= (

¦�; .1Sx /
Sm
)

H

= (
¦�; .1Sx∩H /

H
)

H
= .¦�; 1/Sx∩H :

Next, we claim that m.�/ = {x ∈ Nn : x ≺ ³ or x ≺ ³ ′}. Put

M = {x− : x � m; − ∈ Sn; and either x ≺ ³ or x ≺ ³ ′}:
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Since n ≥ m and x � m has at most m parts, one can view x as an element of Nn

so that the expression x− = .x− .1/; : : : ; x− .n// (− ∈ Sn) is defined. According to our
definition of majorization, we have M = {x ∈ Nn : x ≺ ³ or x ≺ ³ ′}. So it suffices
to show that m.�/ = M .

Let x1 ∈ m.�/. Then x1 = m.Þ1/ for someÞ1 ∈ �. Now x := x1−
−1 � m for some

− ∈ Sn. We have x = m.Þ1/−
−1 = m.−Þ1/ = m.Þ/, where Þ = −Þ1 ∈ �. Since the

stabilizer in Sm of Þ is conjugate to Sx , it follows that HÞ = .Sx/
¦ ∩ H = .Sx ∩ H/¦

for some ¦ ∈ Sm . Then

.¦�; 1/Sx ∩H = .�; 1/.Sx∩H/¦ = .�; 1/HÞ
�= 0:

If x �= [1m], then the computation above implies that either .�³; .1Sx /
Sm /Sm or

.�³ ′; .1Sx /
Sm /Sm is nonzero (because each of them is a nonnegative integer) so that

x ≺ ³ or x ≺ ³ ′; see [11]. Since [1m] ≺ ³ , it follows that in all cases x ≺ ³ or
x ≺ ³ ′. Thus x1 ∈ M .

Now let x1 ∈ M . Then x1 = x− for some x � m and − ∈ Sn with x ≺ ³ or
x ≺ ³ ′. Set Þ = .1x1; 2x2; : : : ; t xt /, where t is the length of x . Note that Þ is in
0m;n by the assumption n ≥ m and since t ≤ m. Then HÞ = Sx ∩ H . Assume
x �= [1m]. Since x ≺ ³ or x ≺ ³ ′, we see (by [11]) that the first member in the
computation above (with ¦ = 1) is nonzero. Thus .�; 1/HÞ

�= 0, implying Þ ∈ �. If
x = [1m], then Þ = .1; 2; : : : ;m/, so HÞ = {e}, whence Þ ∈ �. Thus, in all cases
x = m.Þ/ ∈ m.�/. Finally, x1 = m.Þ/− = m.−−1Þ/ ∈ m.�/ as desired.

Now we prove (1). Since Wc.T / ⊆ Wd.T / whenever c ≺ d , we have

� :=
⋃
Þ∈�

Wm.Þ/.T / = W³.T / ∪ W³ ′.T /:

Finally, we prove (2). If ³ � ³ ′, then ³ is a largest vector in m.�/ and (4.1)
follows from Theorem 3.2. The same holds with ³ and ³ ′ exchanged. Finally, if � is
not invariant, then ³ ′ = ³ , so ³ and ³ ′ are comparable and the proof is complete.

If ³ = [5; 23] � 11, then ³ ′ = [42; 13] so that ³ and ³ ′ are not comparable and
there is no largest admissible vector (see proof of theorem). It is easy to check that 11
is the least m for which there exists a partition of m not comparable to its conjugate.

5. Some consequences

Using Theorem 3.2, we extend some results on the classical numerical range to
the decomposable numerical range. The irreducible character � is said to be of
determinant type [13] if K .S/ = .det S/m=n I for all S ∈ End.V /, or equivalently,
each Þ ∈ 1̄ satisfies m1.Þ/ = · · · = mn.Þ/ (in which case each m j.Þ/ = m=n). In
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this case, DK .T / = .m=n/.tr T /I , and W ∗.DK .T // = W .DK .T // = {.m=n/.tr T /},
which does not convey much information about T . Otherwise, we have the following.

THEOREM 5.1. Suppose � is not of determinant type. Then DK .T / is scalar
(respectively, Hermitian) if and only if T is scalar (respectively, Hermitian). Conse-
quently,

(a) W ∗.DK .T // or W .DK .T // equals {¼} if and only if T = .¼=m/I ;
(b) W ∗.DK .T // or W .DK .T // is a subset of R if and only if T = T ∗.

PROOF. If T is scalar or Hermitian, then clearly DK .T / has the corresponding
property. Suppose DK .T / = ¼I . We claim that both Re T and Im T are scalar
operators. If Re T were not a scalar operator, then the spectrum of Re DK .T / =
DK .Re T /would not be a singleton set. It is because it contains

∑n
j=1 m j.Þ/½ j.Re T /,

Þ ∈ 1̂. Since � is not of determinant type, we may assume that m1.Þ/ > m2.Þ/ for
some Þ ∈ 1̂ and ½1.Re T / > ½2.Re T /. Thus

m1.Þ/½1.Re T /+ m2.Þ/½2.Re T /+
n∑

j=3

m j.Þ/½ j.Re T /

> m2.Þ/½1.Re T /+ m1.Þ/½2.Re T /+
n∑

j=3

m j.Þ/½ j.Re T /;

since .m1.Þ/− m2.Þ//.½1.Re T /− ½2.Re T // > 0. Notice that .m.Þ//.12/ is still a
multiplicity vector, where .12/ denotes the transposition in Sn. So DK .T /would have
more than one eigenvalue. Thus DK .T /would be non-scalar, which is a contradiction.
Applying the same arguments, we see that Im T is a scalar, and the result follows.

Suppose DK .T / is Hermitian. Then Im DK .T / is the zero operator. By the previous
argument, we see that Im T is a scalar and thus the zero operator.

Now, (a) and (b) follow from the fact that Spec Re eir DK .T / ⊆ W ∗.Re eir DK .T //
for any r ∈ [0; 2³/.

THEOREM 5.2. Suppose � is not of determinant type, and Þ; þ ∈ C. The following
conditions are equivalent.

(a) W ∗.DK .T // = W .DK .T // ⊆ {Þt + þ : t ∈ R}.
(b) DK .T / = Þ H̃ + þ I for some Hermitian operator H̃ .
(c) T = ÞH + .þ=m/I for some Hermitian operator H.

PROOF. The equivalence of (a) and (b) is well known. That (c) implies (b) is clear.
Suppose DK .T / = Þ H̃ + þ I for some Hermitian operator H̃ . Consider two cases.
(1) Þ �= 0. DK [.T − .þ=m/I /=Þ] = .DK .T / − þ I /=Þ = H̃ is Hermitian, since
DK .I / = m I . Thus, [T − .þ=m/I ]=Þ is Hermitian by Theorem 5.1 (b). Condition (c)
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follows. (2) Þ = 0. Then DK .T / = þ I and W .DK .T // = {þ}. By Theorem 5.1 (a),
T = þ I=m.

6. Related topics

Suppose m ≤ n. Researchers also consider

W ∗
⊥.L/ =

{
.Lv∗; v∗/

∣∣∣ v∗ = v1 ∗ · · · ∗ vm , {v1; : : : ; vm} is
an orthonormal set in V

}
:

Using (3.2) with Þ = .1; 2; : : : ;m/, so that mt.Þ/ = 1 for all t = 1; : : : ;m, we have
the following.

THEOREM 6.1. Suppose m ≤ n. Then

W ∗
⊥.DK .T // =

{
�.e/2

|H |
m∑

j=1

.Tv j ; v j/ : {v1; : : : ; vm} is an orthonormal set in V

}
:

Thus, W ∗
⊥.DK .T // is, up to a scalar, the mth numerical range of T as defined by

Halmos [7].
Another generalization is

W̃ ∗.L/ := {.L.u1 ∗ · · · ∗ um/; u1 ∗ · · · ∗ um/ : u1; : : : ; um are unit vectors in V } :
Clearly W ∗

⊥.L/ ⊆ W̃ ∗.L/.

THEOREM 6.2. Suppose 1 < m < n, H = Sm, and � is the alternating character.
Then W̃ ∗.DK .T // equals the convex hull of .1=n!/Wm.T / ∪ {0}.

PROOF. Assume 1 < m < n and put L = DK .T /. Let ¼ ∈ .1=n!/Wm.T /. By
Theorem 6.1, ¼ ∈ W ∗

⊥.L/, so ¼ = .Lx∗; x∗/where x∗ = x1 ∗ · · · ∗ xm with x1; : : : ; xm

orthonormal. Let 0 ≤ t ≤ 1. Set u1 = √
t x1 +√

1 − t x2 and u j = x j , j = 2; : : : ;m.
Then u∗ = √

t x∗ and thus t¼ = .Lu∗; u∗/ ∈ W̃ ∗.L/. Since Wm.T / is convex [7], the
convex hull of .1=n!/Wm.T / ∪ {0} is contained in W̃ ∗.L/.

Conversely, let ¼ ∈ W̃ ∗.L/. Then ¼ = .Lx∗; x∗/ with x1; : : : ; xm unit vectors.
If x1; : : : ; xm are linearly dependent, then x∗ = 0 and ¼ = 0. Assume x1; : : : ; xm ,
are linearly independent and let {u1; : : : ; um} be an orthonormal basis of the linear
span of x1; : : : ; xm . Then, for i = 1; : : : ;m, we can write xi = ∑m

j=1 ai ju j with
ai j ∈ C, and x∗ = .det A/ u∗, where A = .ai j /. So ¼ = | det A|2.Lu∗; u∗/. However
| det A|2 = det.AA∗/, which is less than or equal to 1 by the Hadamard inequality [4],
so ¼ is contained in the convex hull of W ∗

⊥.L/ ∪ {0}. Since W ∗
⊥.L/ = .1=n!/Wm.T /

by Theorem 6.1, we have the desired result.
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REMARK. As pointed out by the referee, it would be interesting to find a non-convex
example of W ∗.DK .T //.

References

[1] Y. H. Au-Yeung and N. K. Tsing, ‘Some theorems on the numerical range’, Linear Multilinear
Algebra 15 (1984), 3–11.

[2] N. Bebiano, C. K. Li and J. da Providencia, ‘Some results on the numerical range of a derivation’,
SIAM J. Matrix Anal. Appl. 14 (1993), 1084–1095.

[3] , ‘Generalized numerical ranges of permanental compounds arising from quantum systems
of bosons’, Electron. J. Linear Algebra 7 (2000), 73–91.

[4] R. Bhatia, Matrix Analysis (Springer, New York, 1997).
[5] D. Z. Djokovic and T. Y. Tam, ‘Some questions about semisimple Lie groups originating in matrix

theory’, Canad. J. Math. 46 (2003), 332–343.
[6] M. Goldberg and E. G. Straus, ‘Elementary inclusion relations for generalized numerical ranges’,

Linear Algebra and Appl. 18 (1977), 1–24.
[7] P. R. Halmos, A Hilbert Space Problem Book (Springer-Verlag, New York, 1978).
[8] R. R. Holmes, ‘Orthogonal bases of symmetrized tensor spaces’, Linear Multilinear Algebra 39

(1995), 241–243.
[9] R. R. Holmes and T. Y. Tam, ‘Symmetry classes of tensors associated with certain groups’, Linear

Multilinear Algebra 32 (1992), 21–31.
[10] I. M. Isaacs, Character Theory of Finite Groups (Academic Press, New York, 1976).
[11] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of

Mathematics and Its Applications, Volume 16 (Addison-Wesley Publishing Company, 1981).
[12] G. James and M. Liebeck, Representations and Characters of Groups, Cambridge Mathematical

Textbooks (Cambridge University Press, Cambridge, 1993).
[13] C. K. Li and T. Y. Tam, ‘Operator properties of T and K .T /’, Linear Algebra and Appl. 401

(2005), 173–191.
[14] C. K. Li and N. K. Tsing, ‘The numerical range of derivations’, Linear Algebra and Appl. 119

(1989), 97–119.
[15] C. K. Li and A. Zaharia, ‘Decomposable numerical range on orthonormal decomposable tensors’,

Linear Algebra and Appl. 308 (2000), 139–152.
[16] M. Marcus, Finite Dimensional Multilinear Algebra, Part I (Marcel Dekker, New York, 1973).
[17] , Finite Dimensional Multilinear Algebra, Part II (Marcel Dekker, New York, 1975).
[18] , ‘Some combinatorial aspects of numerical range’, Second International Conference on

Combinatorial Mathematis (New York) Ann. New York Acad. Sci. 319 (1979), 368–376.
[19] , ‘Ranges of derivations’, manuscript, 1989.
[20] R. Merris, Multilinear Algebra (Gordon and Breach Science Publishers, Amsterdam, 1997).
[21] Y. T. Poon, ‘Another proof of a result of Westwick’, Linear Multilinear Algebra 9 (1980), 35–37.
[22] R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970).
[23] T. Y. Tam, ‘Convexity of generalized numerical range associated with a compact Lie group’, J.

Austral. Math. Soc. 71 (2001), 1–10.
[24] N. K. Tsing, ‘On the shape of the generalized numerical ranges’, Linear Multilinear Algebra 10

(1981), 173–182.
[25] B. Y. Wang, Foundation of Multilinear Algebra, (in Chinese) (Beijing Normal University Press,

1985).



[19] Numerical range of derivation 343

[26] B. Y. Wang and M. P. Gong, ‘A high symmetry class of tensors with an orthogonal basis of
decomposable symmetrized tensors’, Linear Multilinear Algebra 30 (1991), 61–64.

[27] R. Westwick, ‘A theorem on numerical range’, Linear Multilinear Algebra 2 (1975), 311–315.

Department of Mathematics and Statistics
Auburn University
Auburn
Alabama 36849-5310
USA
e-mail: holmerr@auburn.edu

tamtiny@auburn.edu

Department of Mathematics
College of William and Mary
PO Box 8795, Williamsburg

Virginia 23187-8795
USA

e-mail: ckli@math.wm.edu

mailto:holmerr@auburn.edu
mailto:tamtiny@auburn.edu
mailto:ckli@math.wm.edu

