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Abstract

The concept of semi-bounded generalized hypergroups (SBG hypergroups) is developed. These hyper-
groups are more special than generalized hypergroups introduced by Obata and Wildberger and more
general than discrete hypergroups or even discrete signed hypergroups. The convolution of measures and
functions is studied. In the case of commutativity we define the dual objects and prove some basic theo-
rems of Fourier analysis. Furthermore, we investigate the relationship between orthogonal polynomials
and generalized hypergroups. We discuss the Jacobi polynomials as an example.

2000 Mathematics subject classification: primary 43A62, 43A99, 46J10, 05E35, 33C80.
Keywords and phrases: generalized hypergroup, semi-bounded generalized hypergroup, bounded

generalized hypergroups, signed hypergroup, discrete hypergroup, convolution, dual object, Fourier
transform, orthogonal polynomials, Jacobi polynomials.

1. Introduction

Locally compact hypergroups were independently introduced around the 1970’s by
Dunkl [4], Jewett [7] and Spector [14]. They generalized the concepts of locally
compact groups with the purpose of doing standard harmonic analysis. Similar
structures had been studied earlier, in the 1950s, by Berezansky and colleagues, and
even earlier in works of Delsarte and Levitan.

Later on, results of harmonic analysis on hypergroups were transferred to different
applications. For example, a Bochner theorem is used essentially in the context of
weakly stationary processes indexed by hypergroups, see [9] and [11]. Hypergroup
structure is also heavily used in probability theory, see the monograph [2], and in
approximation with respect to orthogonal polynomial sequences, see [5] and [10].
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However, the whole set of axioms (see [2]) is not used in these application areas.
Concentrating on orthogonal polynomials, Obata and Wildberger [12] studied a very
general concept called ‘generalized hypergroups’. The purpose of the present paper
is to derive results of harmonic analysis for generalized hypergroups in more detail.
Our main interest is to include all orthogonal polynomial systems with respect to a
compactly supported orthogonalization measure in our investigations.

2. Semi-bounded generalized hypergroups

The discrete structure of a generalized hypergroup was introduced by Obata and
Wildberger in [12]. Let us recall the basic definitions.

DEFINITION 2.1. A generalized hypergroup is a pair .K;A0/, where A0 is a
∗-algebra over C with unit c0 and K = {ck; k ∈ K } is a countable subset of A0

containing c0 that satisfies the following axioms.

(A1) K∗ = K.

(A2) K is a linear basis of A0, that is, every a ∈ A0 admits a unique expression of
the form a = ∑

n Þncn with only finitely many nonzero Þi ∈ C.

(A3) The structure constants or linearization coefficients g.n;m; k/ ∈ C, which are
defined by cncm = ∑

k g.n;m; k/ck, satisfy the condition

g.n;m; 0/

{
> 0 if c∗

n = cm;

= 0 if c∗
n �= cm :

A generalized hypergroup is called hermitian if c∗
n = cn, commutative if cncm = cmcn,

real if g.n;m; k/ ∈ R, positive if g.n;m; k/ ≥ 0, and normalized if
∑

j g.n;m; j/ = 1
for all n;m; k.

A bijection ˜ on K is defined by

cñ = c∗
n:(2.1)

Further, let

h.n/ = g.ñ; n; 0/−1:(2.2)

Due to (A3) we have h.n/ > 0 for all n and h.0/ = 1. If K is hermitian or
commutative, then h.n/ = h.ñ/. In the following lemma some useful properties of
the structure constants are summarized.
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LEMMA 2.2. The structure constants fulfill the following equalities:

g.n; 0; k/ = g.0; n; k/ = Žnk;(2.3)

g.n;m; k/ = g.m̃; ñ; k̃/;(2.4)

h.m/g.n;m; k/ = h.k/g.k̃; n; m̃/; and(2.5) ∑
k

g.n;m; k/g.k; l; j/=
∑

k

g.n; k; j/g.m; l; k/ for all n;m; l; j:(2.6)

PROOF. For (2.3)–(2.5) see [12, Lemma 1.1]. Now, on the one hand we have
.cncm/cl = ∑

k; j g.n;m; k/g.k; l; j/c j and on the other hand we have cn.cmcl/ =∑
k; j g.m; l; k/g.n; k; j/c j. From the associativity of A0 and the linear independence

of the set K, (2.6) follows.

We define translation operators Ln , Ln for complex valued functions f on K by

Ln f .m/ =
∑

k

g.n;m; k/ f .k/ and Ln f .m/ =
∑

k

g.n;m; k/ f .k/:

Given f , the function f̃ is defined by f̃ .n/ = f .ñ/.

LEMMA 2.3. For f; g with finite support and all n ∈ K ,∑
m

Ln f .m/g.m/h.m/ =
∑

m

f .m/Lm̃ g̃.n/h.m/ =
∑

m

f .m/.Lñg/.m/h.m/:(2.7)

PROOF. We use (2.4) and (2.5) to obtain∑
m

.Ln f /.m/g.m/h.m/ =
∑
m;k

g.k̃; n; m̃/h.k/ f .k/g.m/

=
∑

k

f .k/Lk̃ g̃.n/h.k/

=
∑
k;m

f .k/g.ñ; k;m/g.m/h.k/

=
∑

k

f .k/.Lñg/.k/h.k/:

We write ¹.k/ = ¹.{k}/ for a discrete measure ¹ on K . Let žn denote the Dirac-
measure at n ∈ K , that is, žn.k/ = 1 if k = n and žn.k/ = 0 otherwise.

DEFINITION 2.4. A positive discrete measure ! �= 0 on K is called (left) Haar
measure if, for all f with finite support and all n ∈ K ,∑

m

Ln f .m/!.m/ =
∑

m

f .m/!.m/:
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THEOREM 2.5. A Haar measure exists if and only if K is normalized. In that case
all Haar measures ! are determined by ! = Þh, Þ > 0.

PROOF. Let us assume that there exists a Haar measure !. Due to (A3) we get

h.n/−1!.n/ =
∑

m

g.ñ;m; 0/!.m/ =
∑

m

Lñž0.m/!.m/

=
∑

m

ž0.m/!.m/ = !.0/;

which yields !.n/ = !.0/h.n/. Now let ! = Þh. It suffices to consider f = žk . By
(2.5), we find∑

m

Lnžk.m/!.m/ =
∑

m

!.k/g.k̃; n; m̃/ =
∑

m

žk.m/!.m/
∑

m

g.k̃; n;m/:

Hence, ! is a Haar measure if and only if K is normalized.

In order to develop their theory further, Obata and Wildberger took care of the
functional �0 : A0 → C defined by �0

(∑
n Þncn

) = Þ0, and focused on the following
property. A generalized hypergroup .K;A0/ is said to satisfy property (B) if for all n
there exists �.n/ ≥ 0 such that |�0.b∗cnb/| ≤ �.n/�0.b∗b/ for all b ∈ A0. We focus
on a stronger property than Obata and Wildberger.

DEFINITION 2.6. A generalized hypergroup .K;A0/ is called a semi-bounded
generalized hypergroup (SBG hypergroup) if, additionally, the following axiom is
valid.

(A4) For the structure constants, it is true that

� .n/ = sup
m

∑
k

|g.n;m; k/| < ∞ for all n:(2.8)

A generalized hypergroup is called bounded if it is semi-bounded and � is bounded.

An SBG hypergroup satisfies property (B) with�.n/ = � .n/, see [12, Theorem 4.1].
Then � .n/ ≥ max.h.ñ/−1; 1/. By straightforward arguments we have that

� .m̃/ = sup
n

∑
k

|g.n;m; k/|:(2.9)

If K is hermitian or commutative, then � .ñ/ = � .n/. If K is positive and normalized,
then � .n/ = 1 for all n.
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3. Convolution of measures and functions

Clearly, both measures and functions on K can be identified with sequences indexed
by K . However, we make a distinction anyway, since the natural definition of a
convolution is different for measures and functions.

For discrete complex measures ¼; ¹ on K , we define a convolution by

.¼ ∗ ¹/.k/ =
∑
n;m

g.n;m; k/¼.n/¹.m/(3.1)

whenever the sum on the right-hand side is finite for all k. A short calculation shows
ž0 ∗¼ = ¼ ∗ ž0 = ¼, that is, ž0 is the unit element for this convolution. For two Dirac
measures we get žn ∗ žm = ∑

k g.n;m; k/žk, and supp žn ∗ žm is finite.
In order to investigate the convergence of the sum in (3.1) we introduce the spaces

M.K / = {
¼ measure on K ; |¼|.K / = ∑

n |¼.n/| < ∞}
; ‖¼‖ = |¼|.K /;

M� .K / = {
¼ ∈ M.K /; |�¼|.K / = ∑

n |¼.n/|� .n/ < ∞}
; ‖¼‖� = |�¼|.K /:

The space M�̃ .K / and the norm ‖¼‖�̃ is defined analogously.

LEMMA 3.1. (i) If ¼ ∈ M� .K / and ¹ ∈ M.K /, then ¼ ∗ ¹ ∈ M.K / and
‖¼ ∗ ¹‖ ≤ ‖¼‖�‖¹‖:

(ii) If ¼ ∈ M.K / and ¹ ∈ M�̃ .K /, then ¼ ∗ ¹ ∈ M.K / and ‖¼ ∗ ¹‖ ≤ ‖¼‖‖¹‖�̃ .

PROOF. (i) By Fubini,

‖¼ ∗ ¹‖ ≤
∑
n;m

∑
k

|g.n;m; k/||¼.n/||¹.m/| ≤
∑
n;m

� .n/|¼.n/||¹.m/| = ‖¼‖�‖¹‖:

The proof of (ii) is analogous using (2.9).

LEMMA 3.2. The convolution ∗ is associative, that is, .¼ ∗ ¹/ ∗ ² = ¼ ∗ .¹ ∗ ²/
whenever both expressions exist in the sense of Lemma 3.1.

PROOF. It suffices to prove the associativity for Dirac measures .žn ∗ žm/ ∗ žl =
žn ∗ .žm ∗ žl/ For that purpose we use (2.6).

LEMMA 3.3. (i) It holds that .žn ∗ žm /̃ = žm̃ ∗ žñ .
(ii) It holds that 0 ∈ supp žn ∗ žm̃ if and only if n = m̃

(iii) If K is normalized, then žn ∗ žm.K / = 1 for all n;m.
(iv) It holds that žn ∗ žñ.0/ = h.ñ/−1 > 0.
(v) It holds that ‖žn ∗ žm‖ ≤ min.� .n/; � .m̃//.
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PROOF. Using (2.5) we obtain (i), and application of axiom (A3) gives (ii). For (v)
we have by definition ‖žn ∗ žm‖ = ∑

k |g.n;m; k/| ≤ � .n/. The second inequality is
achieved analogously, using (2.9). The assertions (iii) and (iv) are clear.

Now, we are able to compare the concept of an SBG hypergroup with that of a
discrete hypergroup, see for example [5], or a discrete signed hypergroup, see [13].
Our previous results yield the following theorem.

THEOREM 3.4. (i) If K is a real, normalized and bounded generalized hyper-
group, then its index set K with convolution ∗ as defined in (3.1) and involution ˜ as
defined in (2.1) is a discrete signed hypergroup.

(ii) If K is a positive and normalized SBG hypergroup, then its index set K with
convolution ∗ and involution ˜ is a discrete hypergroup.

(iii) Let .K ; ?; ˜ / be a discrete signed hypergroup. Put K = {žk; k ∈ K } and let
A0 be the vector space of all finite linear combinations of Dirac measures žk ∈ K.
Further, let ? be the multiplication in A0 and put ž∗

k = žk̃ as involution on K, which is
linearly extended to A0. Then .K;A0/ is a real, bounded and normalized generalized
hypergroup.

(iv) If .K ; ∗; ˜ / is a discrete hypergroup, then the construction in (iii) yields a
positive and normalized SBG hypergroup.

Next let us introduce the convolution of functions.

DEFINITION 3.5. Let f and g be functions on K with finite support. The convolution
of f and g is defined by

. f ? g/.m/ =
∑

n

f .n/.Lñg/.m/h.n/:(3.2)

LEMMA 3.6. If f and g have finite support, then f ? g has finite support.

PROOF. By definition . f ? g/.m/ = ∑
n;k f .n/g.ñ;m; k/g.k/h.n/. Hence,

supp f ? g ⊂
⋃

n∈supp f
k∈supp g

Mñ;k;

with Mn;k = {m; g.n;m; k/ �= 0}. By [12, Lemma 1.2], the set Mn;k is finite for
all n; k.

For a function a and a discrete measure ¼ on K we denote the application of ¼ to a
by ¼.a/ = ∑

k a.k/¼.k/whenever the sum exists. Furthermore, for a function f and
a measure ¼ we form the measure f ¼ by f ¼.a/ = ¼. f a/ for all functions a on K .
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THEOREM 3.7. If f; g are functions on K with finite support, then . f ? g/h =
. f h/ ∗ .gh/.

PROOF. Let a be an arbitrary function on K . Application of Lemma 2.3 yields

. f ? g/h.a/ =
∑

m

a.m/. f ? g/.m/h.m/

=
∑

m

∑
n

a.m/ f .n/.Lñg/.m/h.m/h.n/

=
∑

n

∑
m

f .n/.Lna/.m/g.m/h.m/h.n/

=
∑

k

∑
m;n

g.n;m; k/ f .n/h.n/g.m/h.m/a.k/

=
∑

k

. f h/ ∗ .gh/.k/a.k/ = . f h/ ∗ .gh/.a/:

If K is commutative, then ∗ is commutative and by the last lemma we see that ? is
then also commutative.

For a positive discrete measure ¦ on K and 1 ≤ p < ∞, we introduce the Banach
spaces

l p.¦ /=
{

f : K →C;
∑

n

| f .n/|p¦.n/<∞
}
; ‖ f ‖p;¦ =

(∑
n

| f .n/|p¦.n/

)1=p

;

l∞ =
{

f : K →C; sup
n

| f .n/|<∞
}
; ‖ f ‖∞ = sup

n
| f .n/|:

LEMMA 3.8. If f ∈ l∞, then Ln f ∈ l∞ for all n and ‖Ln f ‖∞ ≤ � .n/‖ f ‖∞.

PROOF. For all n;m,

|Ln f .m/| =
∣∣∣∣∣∑

k

g.n;m; k/ f .k/

∣∣∣∣∣ ≤
∑

k

|g.n;m; k/|| f .k/| ≤ � .n/‖ f ‖∞ :

We now see that the sums in (2.7) converge if f ∈ l1.h/, g ∈ l∞ or f ∈ l∞,
g ∈ l1.h/, respectively, and Lemma 2.3 extends to these spaces.

THEOREM 3.9. The convolution ? in (3.2) extends to l1.� h/×l1.h/ and ‖ f ?g‖1;h ≤
‖ f ‖1;� h‖g‖1;h.

PROOF. First, assume f; g have finite support and a is such that

a.k/. f ? g/.k/ = |. f ? g/.k/|:
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Theorem 3.7 yields

‖. f ? g/‖1;h =
∑

k

|. f ? g/.k/|h.k/ = . f ? g/h.a/ = |. f h/ ∗ .gh/.a/|

≤
∑
n;m

� .n/|g.m/|| f .n/|h.n/h.m/ = ‖ f ‖1;� h‖g‖1;h:

Hence, ? is continuous on a dense subspace of l1.� h/ × l1.h/. Therefore, it can be
uniquely continued.

Using (2.9), the convolution extends analogously to l1.h/×l1.�̃ h/with ‖ f ?g‖1;h ≤
‖ f ‖1;h‖g‖1;�̃h. If K is bounded, that is, � .n/ ≤ M for all n, then the last theorem
gives ‖ f ? g‖1;h ≤ M‖ f ‖1;h‖g‖1;h. For f ∈ l1.h/, define L f g = f ? g. Clearly, L f

is a bounded operator on l1.h/ and ‖L f ‖ ≤ M‖ f ‖1;h. With the norm ‖ f ‖′ = ‖L f ‖,
it holds that ‖ f ? g‖′ ≤ ‖ f ‖′‖g‖′. Hence, if K is bounded, then .l1.h/; ‖ · ‖′; ?/ is a
Banach algebra.

LEMMA 3.10. For all f ∈ l1.h/ and all m; n ∈ K ,

.Ln f /.m/ = h.ñ/−1.žñ ? f /.m/(3.3)

and ‖Ln f ‖1;h ≤ � .ñ/‖ f ‖1;h.

PROOF. Since f ∈ l1.h/, the right-hand side of (3.3) exists by Theorem 3.9 and

h.ñ/−1.žñ ? f /.m/ = h.ñ/−1
∑

k

žñ.k/.Lk̃ f /.m/h.k/ = .Ln f /.m/:

By Theorem 3.9, we further deduce that

‖Ln f ‖1;h = h.ñ/−1
∥∥∥žñ ? f

∥∥∥
1;h

≤ h.ñ/−1‖žñ‖1;� h‖ f ‖1;h

= h.ñ/−1
∑

k

žñ.k/� .k/h.k/‖ f ‖1;h = � .ñ/‖ f ‖1;h:

THEOREM 3.11. The convolution ? in (3.2) extends to l1.�̃ h/× l∞, and

‖ f ? g‖∞ ≤ ‖ f ‖1;�̃ h‖g‖∞:

PROOF. Assume f; g have finite support. By Lemma 3.8, we obtain

|. f ? g/.m/| =
∣∣∣∣∣∑

n

f .n/.Lñg/.m/h.n/

∣∣∣∣∣
≤
∑

n

| f .n/|� .ñ/h.n/‖g‖∞ = ‖ f ‖1;�̃ h‖g‖∞:

Hence, ? is bounded on a dense subspace of l1.�̃ h/× l∞ and can be extended.
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By . f ?g/.m/ = ∑
n.Lñ f̃ /.m/g̃.n/h.n/, we prove analogously that the convolution

extends to l∞ × l1.� h̃/ with ‖ f ? g‖∞ ≤ ‖ f ‖∞‖g‖1;� h̃.

THEOREM 3.12. For 1 ≤ p ≤ ∞, the convolution ? in (3.2) extends to .l1.� h/ ∩
l1.�̃ h//× l p.h/. With 1=p + 1=q = 1,

‖ f ? g‖p;h ≤ ‖ f ‖1=p
1;� h‖ f ‖1=q

1;�̃ h‖g‖p;h:(3.4)

If K is hermitian or commutative, then (3.4) simplifies to ‖ f ? g‖p;h ≤ ‖ f ‖1;� h‖g‖p;h.

PROOF. For f ∈ l1.� h/∩ l1.�̃ h/ put L f g = f ? g. By Theorem 3.9, ‖L f ‖B.l1.h// ≤
‖ f ‖1;� h where B.l1.h// denotes the Banach space of bounded operators from l1.h/
into l1.h/. Furthermore, by Theorem 3.11 we have ‖L f ‖B.l∞/ ≤ ‖ f ‖1;�̃ h . Hence,
inequality (3.4) is a consequence of the Riesz-Thorin interpolation theorem, see for
example [16, page 72]. If K is commutative, then h = h̃ and � = �̃ .

By defining an operator Rg f = f ? g, we derive analogously that the convolution
? extends to l p.h/× .l1.�̃ h/ ∩ l1.� h̃// with ‖ f ? g‖p;h ≤ ‖ f ‖p;h‖g‖1=p

1;�̃h‖g‖1=q

1;� h̃
.

LEMMA 3.13. For 1 ≤ p ≤ ∞ and .1=p + 1=q = 1/,

‖Ln f ‖p;h ≤ � .ñ/1=p� .n/1=q‖ f ‖p;h:

PROOF. The proof uses (3.3) and Theorem 3.12.

THEOREM 3.14. Let 1=p + 1=q = 1. For f ∈ l p.h/, g ∈ lq.h/,

|. f ? g/.m/| ≤ � .m̃/1=p� .m/1=q‖ f ‖p;h‖g̃‖q;h:(3.5)

PROOF. Applying Hölder’s inequality in the second equation yields

|. f ? g/.m/| =
∣∣∣∣∣∑

n

f .n/Lm̃ g̃.n/h.n/

∣∣∣∣∣ = ‖ f ‖p;h‖Lm̃ g̃‖q;h

≤ � .m̃/1=p� .m/1=q‖ f ‖p;h‖g̃‖q;h :

If K is hermitian or commutative, inequality (3.5) becomes |. f ? g/.m/| ≤
� .m/‖ f ‖p;h‖g‖q;h. In this case we introduce the Banach space

l∞.� / =
{

f : K → C; sup
n

| f .n/|
� .n/

< ∞
}
; ‖ f ‖∞;� = sup

n

| f .n/|
� .n/

:(3.6)

Now, (3.5) becomes ‖ f ∗ g‖∞;� ≤ ‖ f ‖p;h‖g‖q;h.
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4. Dual objects

We say that a generalized hypergroup .K′;A′
0/ is a function realization, if A′

0

is a dense subalgebra of the space C.S/, where S is a compact Hausdorff space.
Using Gelfand theory, Obata and Wildberger proved that, for commutative generalized
hypergroups .K;A0/ satisfying (B), there is an isomorphism a → a ′ onto a function
realization .K′;A′

0/. Moreover, there is a positive Radon measure ¼ on S with
supp¼ = S, ¼.S/ = 1 and

�0.a/ =
∫
S

a′.x/d¼.x/ for all a ∈ A0;

and K′ is a complete orthogonal set for L2.S; ¼/, see [12, Theorem 5.1].
From now on, we assume .K;A0/ to be commutative and A0 to be a dense sub-

algebra of C.S/ for some compact Hausdorff space S . Condition (B) now reads∣∣∣∣∫S cn.x/|b.x/|2d¼.x/

∣∣∣∣ ≤ �.n/
∫
S

|b.x/|2d¼.x/ = �.n/‖b‖2
L2.S;¼/

for all b ∈ C.S/, and therefore, with �.n/ = ‖cn‖∞ = supx∈S |cn.x/| < ∞, condi-
tion (B) is satisfied. The next lemma states that �.n/ cannot be chosen smaller.

LEMMA 4.1. Let .K;A0/ satisfy condition (B) with constants �.n/. Then

sup
x∈S

|cn.x/| ≤ �.n/ for all n ∈ K :

In particular, supx∈S |cn.x/| ≤ � .n/.

PROOF. Let us first remark that L2.S; ¼/ is the completion of A0 with respect to
‖ · ‖2;¼, since K is a complete orthogonal set for L2.S; ¼/. The inequality∣∣∣∣∫S cn.x/|b.x/|2d¼.x/

∣∣∣∣ ≤ �.n/
∫
S

|b.x/|2d¼.x/(4.1)

is hence valid even for all b ∈ L2.S; ¼/. Now, let x0 ∈ S and choose a family of neigh-
borhoods .Vi/i∈I of x0 such that Vi → {x0}. Further, let bi = �Vi=‖�Vi ‖2;¼ where �Vi

denotes the characteristic function of the set Vi . Clearly limi

∫
S cn.x/|bi .x/|2d¼.x/ =

cn.x0/. Since, x0 ∈ S is arbitrarily chosen, inserting into (4.1) gives the assertion.
Further, �.n/ = � .n/ is a valid choice by [12, Theorem 4.1].

Let us now consider dual objects of commutative generalized hypergroups. Obata
and Wildberger already have defined characters [12, page 74], but their definition
seems to be too weak in order to develop harmonic analysis.



[11] Generalized hypergroups and orthogonal polynomials 379

DEFINITION 4.2. We define two dual spaces by

X b.K / = {
Þ ∈ l∞.� /; Þ �= 0; LnÞ.m/ = Þ.n/Þ.m/

}
;

K̂ = {
Þ ∈ X b.K /; Þ.ñ/ = Þ.n/

}
:

The elements of X b.K / are called characters and the elements of K̂ hermitian char-
acters.

Consider an element x of S . It can be seen that Þx.n/ = cn.x/ defines an element
of K̂ . Hence K̂ �= ∅. Since A0 is dense in C.S/ and S is a compact Hausdorff
space, it follows that for different x; y ∈ S we obtain different characters Þx �= Þy ,
see also [12, Theorem 6.4]. Thus, we can identify S with a subset of K̂ and we get
the inclusion relations

S ⊂ K̂ ⊂ X b.K / :(4.2)

The latter relation is well known for hypergroups and signed hypergroups. In contrast
to the group case, these inclusions may be proper, as is illustrated by some known
examples for hypergroups.

From Þ.n/ = L0Þ.n/ = Þ.0/Þ.n/, it follows that Þ.0/ = 1. Furthermore, since
� .0/ = 1, ‖Þ‖∞;� ≥ 1. By Lemma 4.1, |cn.x/| ≤ � .n/, which implies ‖Þx‖∞;� = 1
for all x ∈ S . For r ≥ 1 let us define the following subsets of the duals

X b
r .K / = {

Þ ∈ X b.K /; ‖Þ‖∞;� ≤ r
}
; K̂r =

{
Þ ∈ K̂ ; ‖Þ‖∞;� ≤ r

}
:

If K is bounded, then X b.K / = X b
R.K / and K̂ = K̂ R , where R = supn � .n/ ≤ ∞.

In fact, in that case l∞.� / = l∞ setwise and for a character Þ ∈ l∞,

|Þ.n/|2 = |Þ.n/Þ.n/| = |LnÞ.n/| ≤ � .n/‖Þ‖∞ :(4.3)

Taking the supremum over all n ∈ K yields ‖Þ‖∞ ≤ supn � .n/. Since � .n/ ≥ 1, we
further deduce that

1 ≤ ‖Þ‖∞;� ≤ ‖Þ‖∞ ≤ R:(4.4)

We equipX b.K /with the topology of pointwise convergence and subsets ofX b.K /
with the induced topologies. With these topologies the functions sn : X b.K / → C,
sn.Þ/ = Þ.n/ and their restrictions to the other duals are continuous. We state without
proof that the Gelfand topology on S is the topology induced by X b.K /, that is, the
topology of pointwise convergence.
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5. Fourier transform

Due to our dual objects, we are able to perform some Fourier analysis in the context
of commutative SBG hypergroups.

DEFINITION 5.1. For ¼ ∈ M� .K / we introduce the following two versions of the
Fourier-Stieltjes-transform

¼̂.Þ/ =
∑

n

Þ.n/¼.n/ for Þ ∈ K̂ ;

F.¼/.Þ/ =
∑

n

Þ.n/¼.n/ for Þ ∈ X b.K /:

For x ∈ S ⊂ K̂ , we write ¼̂.x/ = ¼̂.Þx/ = ∑
n cn.x/¼.n/.

The following lemma states that our definition makes sense.

LEMMA 5.2. If Þ ∈ X b
r .K /, then |F.¼/.Þ/| ≤ r‖¼‖� and F.¼/ is a continuous

function from X b
r .K / into C.

PROOF. Let Þ ∈ X b
r .K /, that is, |Þ.n/| ≤ r� .n/ for all n. We obtain

|F.¼/.Þ/| ≤
∑

n

|Þ.n/||¼.n/| ≤ r
∑

n

|� .n/||¼.n/| = r‖¼‖� :

Since the functions sn.Þ/ = Þ.n/ are continuous on X b
r .K / for fixed n, it follows that

F.¼/ is continuous on X b
r .K /.

DEFINITION 5.3. For f ∈ l1.� h/ we define two versions of the Fourier transform
by

f̂ .Þ/ =�. f h/.Þ/ =
∑

n

f .n/Þ.n/h.n/ for Þ ∈ K̂ ;

F. f /.Þ/ = F. f h/.Þ/ =
∑

n

f .n/Þ.n/h.n/ for Þ ∈ X b.K /:

For x ∈ S , we write f̂ .x/ = f̂ .Þx/ = ∑
n f .n/cn.x/h.n/.

By interpreting measures on K as functions on K we clearly have l1.� h/ =
{ f; f h ∈ M� .K /} and hence, Lemma 5.2 immediately implies that the Fourier trans-
form is continuous on X b

r .K / for all r ≥ 1 and that for Þ ∈ X b
r .K /,

| f̂ .Þ/| ≤ ‖ f ‖1;� h :(5.1)
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In order to define the Fourier transform for f ∈ l2.h/we note that {√h.n/cn; n ∈ K }
is a complete orthonormal set for L2.S; ¼/, see [12, Corollary 3.4]. Therefore, the
series

∑
n f .n/cnh.n/ converges in L2.S; ¼/ by Parseval’s identity

∫
S

∣∣∣∣∣∑
n

f .n/cn.x/h.n/

∣∣∣∣∣
2

d¼.x/ =
∥∥∥∥∥∑

n

f .n/cnh.n/

∥∥∥∥∥
2

2;¼

(5.2)

=
∑

n

| f .n/|2h.n/ = ‖ f ‖2
2;h:

Hence, we define the Fourier transform of f ∈ l2.h/ by f̂ = ∑
n f .n/cnh.n/, where

convergence of the sum is understood in L2.S; ¼/. In (5.2) we already proved
Plancherel’s theorem.

THEOREM 5.4. The Fourier transform is an isometric isomorphism from l2.h/ into
L2.S; ¼/. In particular, for f ∈ l2.h/, ‖ f̂ ‖2;¼ = ‖ f ‖2;h.

As a consequence of Plancherel’s theorem we obtain a uniqueness theorem for the
Fourier transform on l1.� h/.

THEOREM 5.5. If f ∈ l1.� h/ and F. f /|S = 0, then f = 0.

PROOF. Let f ∈ l1.� h/. Since � .n/ ≥ 1 we have f ∈ l1.h/. Set N = {n ∈ K ;
| f .n/| ≥ 1}. Since � .n/ ≥ h.n/−1, this set is finite. We obtain∑

n∈K

| f .n/|2h.n/ ≤
∑
n∈N

| f .n/|2h.n/+ ‖ f ‖1;h < ∞;

which means f ∈ l2.h/. The Fourier transform on l1.� h/ coincides with the one on
l2.h/ ¼-almost everywhere and by Plancherel’s theorem

‖ f ‖2;h = ‖ f̂ ‖2;¼ = ‖F. f /|S‖2;¼ = 0:

We therefore obtain f = 0.

Let us turn our attention now to the relation of Fourier transform and convolution.

THEOREM 5.6. If f; g ∈ l1.� h/ such that f ? g ∈ l1.� h/, then

F. f ? g/.Þ/ = F. f /.Þ/F.g/.Þ/ for all Þ ∈ X b.K / :(5.3)
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PROOF. We use Lemma 2.3 and Fubini’s theorem to obtain

F. f ? g/.Þ/ =
∑

n

. f ? g/.n/Þ.n/h.n/

=
∑

n

∑
m

f .m/.Lm̃g/.n/h.m/Þ.n/h.n/

=
∑

m

∑
n

.LmÞ/.n/g.n/h.n/ f .m/h.m/

=
∑

m

∑
n

g.n/Þ.n/h.n/ f .m/Þ.m/h.m/

=
∑

n

g.n/Þ.n/h.n/
∑

m

f .m/Þ.m/h.m/

= F. f /.Þ/F.g/.Þ/:
COROLLARY 5.7. The convolution ? extends to l1.� h/ × l1.� h/ → l2.h/. It holds

that

‖ f ? g‖2;h ≤ ‖ f ‖1;� h‖g‖1;� h:(5.4)

PROOF. First suppose f; g ∈ l1.� h/ such that f ? g ∈ l1.� h/. Using Plancherel’s
Theorem 5.4, Theorem 5.6 and (5.1), we obtain

‖ f ? g‖2;h = ‖�f ? g‖2;¼ = ‖ f̂ ĝ‖2;¼ ≤ ‖ f̂ ‖∞;S‖ĝ‖∞;S ≤ ‖ f ‖1;� h‖g‖1;� h:

Hence, the convolution is continuous on C = {. f; g/; f; g ∈ l1.� h/; f ? g ∈ l1.� h/}.
Since functions of finite support are dense in l1.� h/ and the convolution of two such
functions has again finite support, we see that C is dense in l1.� h/× l1.� h/. Thus ?
uniquely extends to l1.� h/× l1.� h/ and (5.4) holds.

Implicitly we used the commutativity of K in this proof. Immediately, we obtain
that the convolution Theorem 5.6 holds for all f; g ∈ l1.� h/with the slight adjustment
that in general (5.3) holds only for ¼-almost all Þ ∈ X b.K /.

An involution on l1.h/ is given by f ∗.n/ = f .ñ/, which is preserved by the Fourier
transform on K̂ , that is,

f̂ ∗.Þ/ =
∑

n

f .ñ/Þ.n/h.n/ =
∑

n

f .ñ/Þ.ñ/h.n/ = f̂ .n/ for all Þ ∈ K̂ :

The inverse Fourier transform for F ∈ L1.S; ¼/ is defined by

F̌.n/ =
∫
S

F.x/cn.x/d¼.x/; for all n ∈ K :
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We can even extend this definition to a larger space. Let M.S/ denote the space
of complex bounded Radon measures on S with the total variation as norm. For
² ∈ M.S/ we define the inverse Fourier-Stieltjes transform by

²̌.n/ =
∫
S

cn.x/d².x/; for all n ∈ K :

Clearly, .F¼/̌ = F̌ . Parseval’s identity immediately gives the following inversion
theorem.

THEOREM 5.8. (i) If f ∈ l2.h/, then . f̂ /̌ = f .

(ii) If F ∈ L2.S; ¼/, then .̂F̌/ = F ¼-almost everywhere.

THEOREM 5.9. For the inverse Fourier-Stieltjes transform the following are true.

(i) For ² ∈ M.S/ we have ²̌ ∈ l∞.� / and ‖²̌‖∞;� ≤ ‖²‖.
(ii) For F ∈ L1.S; ¼/ it holds that ‖F̌‖∞;� ≤ ‖F‖1;¼.

(iii) For F ∈ L1.S; ¼/ we have F̌ ∈ c0.� / where c0.� / denotes the closure with
respect to ‖ · ‖∞;� of the set of all functions with finite support. Furthermore, the
image of the inverse Fourier transform of L1.S; ¼/ is dense in c0.� /.

PROOF. (i) For ² ∈ M.S/ and n ∈ K we have

|²̌.n/| =
∣∣∣∣∫S cn.x/ d².x/

∣∣∣∣ ≤ ‖cn‖∞;S‖²‖ ≤ � .n/‖²‖:

Statement (ii) is a consequence of (i) by observing .F¼/̌ = F̌ and ‖F‖1;¼ = ‖F¼‖.
(iii) Let ž > 0 and choose G ∈ C.S/ such that ‖F − G‖1;¼ ≤ ž=2. Since

C.S/ ⊂ L2.S; ¼/, it holds that Ǧ ∈ l2.h/. Hence, there exists � with | supp�| < ∞
such that ‖Ǧ − �‖2;h ≤ ž=2. Using � .n/ ≥ max{1; h.n/−1} we deduce, for arbitrary
f ∈ l2.h/, that

| f .n/|2

� .n/2
≤ | f .n/|2

� .n/
≤ | f .n/|2h.n/ ≤

∑
n

| f .n/|2h.n/ = ‖ f ‖2
2;h ;

yielding ‖ f ‖∞;� ≤ ‖ f ‖2;h. We hereby derived l2.h/ ⊂ l∞.� /. Now, using this
estimation, we obtain ‖Ǧ − �‖∞;� ≤ ‖Ǧ − �‖2;h ≤ ž=2 and further

|F̌.k/− �.k/| ≤ |F̌.k/− Ǧ.k/| + |Ǧ.k/− �.k/|
≤ � .k/.‖F − G‖1;¼ + ž=2/ ≤ ž� .k/ ;

which is equivalent to ‖F̌ − �‖∞;� ≤ ž. Hence, F̌ can be approximated with respect
to ‖ · ‖∞;� by functions with finite support. Since all function with finite support are
contained in the image of the inverse Fourier transform of L1.S; ¼/, the image of
L1.S; ¼/ is dense in c0.� /.
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The last result generalizes the Riemann-Lebesgue lemma. We also have a unique-
ness theorem for the inverse Fourier transform.

THEOREM 5.10. Let ² ∈ M.S/. If ²̌ = 0, then ² = 0.

PROOF. Assume that ² �= 0, but ²̌ = 0. By [12, Theorem 5.1]

A0 =
{

f̂|S ; | supp f | < ∞
}

is a dense subalgebra of C.S/. Hence, there is some f with finite support such that∫
S f̂ .x/ d².x/ �= 0. However, we have∫

S
f̂ .x/ d².x/ =

∑
n

f .n/
∫
S

cñ.x/ d².x/h.n/ =
∑

n

f .n/²̌.ñ/h.n/ = 0:

Denoting pn.x/ = žn.x/=h.n/, we have p̂n.x/ = cn.x/ and . p̂n /̌ = pn yielding

¼̌.n/ =
∫
S

cn.x/ d¼.x/ = pñ.0/ = ž0.ñ/;

that is, ¼̌ = ž0. Another important property was shown in the proof of Theorem 5.10
above. Suppose f has finite support and ² ∈ M.S/. Then∫

S
f̂ .x/ d².x/ =

∑
n

f .n/²̌.ñ/h.n/:(5.5)

We can extend the uniqueness theorem to the following result.

THEOREM 5.11. Let f ∈ l1.� h/ and ² ∈ M.S/. Then ²̌ = f if and only if
² = f̂ ¼.

PROOF. For ² = f̂ ¼ we already know by Theorem 5.8 that ²̌ = . f̂ /̌ = f . Now
suppose f = ²̌ and let g have finite support. With (5.5) and .ĝ/̌ = g we obtain∫

S
ĝ.x/ f̂ .x/ d¼.x/ =

∫
S

ĝ.x/
∑

n

f .n/cn.x/h.n/ d¼.x/

=
∑

n

f .n/
∫
S

ĝ.x/cn.x/ d¼.x/h.n/

=
∑

n

f .n/
∫
S

ĝ.x/cñ.x/ d¼.x/h.n/

=
∑

n

f .n/g.ñ/h.n/ =
∑

n

g.n/²̌.ñ/h.n/ =
∫
S

ĝ.x/d².x/:

Since {ĝ|S; | supp g| < ∞} is dense in C.S/, we see that ² = f̂ ¼.
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A rewriting of the last result gives the inversion theorem.

THEOREM 5.12. The following two inversion formulae hold.

(i) Let f ∈ l1.� h/. Then for every n ∈ K , f .n/ = ∫
S f̂ .x/cn.x/ d¼.x/.

(ii) Let F ∈ L1.S; ¼/ such that F̌ ∈ l1.� h/. Then for ¼-almost every x ∈ S ,

F.x/ =
∑

n

F̌.n/cn.x/h.n/:(5.6)

If in addition F is continuous, then (5.6) holds for all x ∈ S .

PROOF. (i) follows by Theorem 5.8 (i). For (ii) put ² = F¼. Then ²̌ = F̌ ∈ l1.� h/.
By Theorem 5.11, we have ² = .F̌ /̂¼, which is equivalent to F = .F̌ /̂ in L1.S; ¼/.
Since the right-hand side of (5.6) is continuous, equality holds for all x ∈ S if F is
continuous.

6. Orthogonal polynomials on the real line

Let ¼ be a probability measure on the real line. We denote the support of ¼ by S
and assume card.S/ = ∞. Furthermore, let .Pn/

∞
n=0 denote an orthogonal polynomial

sequence with respect to ¼, that is
∫

Pn Pm d¼ �= 0 if and only if n = m. The
polynomials Pn are assumed to have real coefficients with deg.Pn/ = n and P0 = 1.
It is well-known that the sequence .Pn/n∈N0 satisfies a three term recurrence relation
of the following type

(6.1) P1.x/Pn.x/ = an Pn+1.x/+ bn Pn.x/+ cn Pn−1.x/; n ≥ 1;

with P0.x/ = 1 and P1.x/ = .x − b/=a, where the coefficients are real numbers with
c1 > 0, cnan−1 > 0, n > 1. Conversely, if we define .Pn/

∞
n=0 by (6.1), there is a

measure ¼ with the assumed properties, see [3].
The linearization coefficients g.n;m; k/ are uniquely defined by

(6.2) Pn Pm =
∞∑

k=0

g.n;m; k/Pk =
n+m∑

k=|n−m|
g.n;m; k/Pk:

The linearization coefficients are obtained recursively based on the coefficients of the
three term recurrence relation. The corresponding formulae are written down in the
following lemma for ease of reference.

LEMMA 6.1. We have g.0;m;m/ = 1. In case m ≥ 1, g.1;m;m − 1/ = cm,
g.1;m;m/ = bm and g.1;m;m +1/ = am. In case m ≥ n ≥ 2, we get the recurrence
relation:
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(i)

g.n;m; n + m/ = g.n − 1;m; n + m − 1/
an+m−1

an−1
= amam+1 · · · an+m−1

a1a2 · · · an−1
;(6.3)

g.n;m;m − n/ = g.n − 1;m;m − n + 1/
cm−n+1

an−1
= cmcm−1 · · · cm−n+1

a1a2 · · · an−1
;(6.4)

(ii) g.n;m; n + m − 1/ = g.n − 1;m; n + m − 1/
bn+m−1 − bn−1

an−1

+ g.n − 1;m; n + m − 2/
an+m−2

an−1
;

g.n;m;m − n + 1/ = g.n − 1;m;m − n + 1/
bm−n+1 − bn−1

an−1

+ g.n − 1;m;m − n + 2/
cm−n+2

an−1
;

(iii) For k = 2; 3; : : : ; 2n − 2,

g.n;m;m − n + k/ = g.n − 1;m;m − n + k − 1/
am−n+k−1

an−1

+ g.n − 1;m;m − n + k/
bm−n+k − bn−1

an−1

+ g.n − 1;m;m − n + k + 1/
cm−n+k+1

an−1

− g.n − 2;m;m − n + k/
cn−1

an−1
:

PROOF. In case m ≥ n ≥ 2, we have

Pn = 1

an−1
P1 Pn−1 − bn−1

an−1
Pn−1 − cn−1

an−1
Pn−2:

So

Pn Pm =
m+n−1∑

k=m−n+1

g.n − 1;m; k/

(
ak

an−1
Pk+1 + bk

an−1
Pk + ck

an−1
Pk−1

)

− bn−1

an−1

m+n−1∑
m−n+1

g.n − 1;m; k/Pk − cn−1

an−1

m+n−2∑
m−n+2

g.n − 2;m; k/Pk;

which implies the recurrence formulae (i)–(iii). The second equations in (i) are proven
by induction.

We easily derive

(6.5) h.n/ = g.n; n; 0/−1 =
(∫

P2
n .x/ d¼.x/

)−1

=
∏n−1

i=1 ai∏n
i=1 ci

:
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Let K = {Pn; n ∈ N0}, A0 be the set of polynomials with complex coefficients in
one real variable and ∗ be the complex conjugation�.

THEOREM 6.2. We have the following classification.

(i) .K;A0/ is a hermitian and commutative generalized hypergroup.
(ii) .K;A0/ satisfies property (B) if and only if S is compact. S is compact if and

only if the sequences .cnan−1/ and .bn/ are bounded.
(iii) .K;A0/ is an SBG hypergroup if and only if the sequences .an/, .bn/ and .cn/

are bounded.

PROOF. For (i) and (ii) see [3] and [12].
If K is semi-bounded, then there is a bound for g.1; n; n +1/ = an , g.1; n; n/ = bn

and g.1; n; n−1/ = cn . Let |an|; |bn|; |cn| < B. It is sufficient to prove |g.n;m; k/| <
Mn for all m; k ∈ N0, which implies

∑n+m
k=|n−m| |g.n;m; k/| ≤ .2n + 1/Mn for all

m ∈ N0. Then M0 = 1 and M1 = B is a proper choice. Now let us assume that for
n ≥ 2 there exist proper M0;M1; : : : ;Mn−1. According to the recurrence relation of
the linearization coefficients, see Lemma 6.1, we get

|g.n;m; k/| ≤ 4B

|an−1| Mn−1 + B

|an−1| Mn−2 = Mn:

Therefore we call K a generalized polynomial hypergroup or an SBG polynomial
hypergroup, respectively. In order to get normalized generalized hypergroups, Obata
and Wildberger have investigated renormalizations in [12]. The following lemma
shows that there always exists a renormalization of a generalized polynomial hyper-
group K = {Pn; n ∈ N0} with property (B), which is semi-bounded.

LEMMA 6.3. Suppose ¼ has compact support S . Then the monic polynomials Qn

and the orthonormal polynomials pn = √
h.n/Pn with respect to ¼ constitute an SBG

polynomial hypergroup.

PROOF. Let the monic polynomials be defined by Q0 = 1, Q1.x/ = x − b′ and
Q1 Qn = Qn+1 + b′

n Qn + c′
n Qn−1, n ≥ 1, where c′

n > 0. Since ¼ has compact sup-
port, .b′

n/ and .c′
n/ are bounded sequences. By Theorem 6.2 (iii), the corresponding

generalized hypergroup is semi-bounded. Now, it is simple to derive that the corre-
sponding orthonormal polynomials are defined by p0 = 1, p1 = .x − b′/=

√
c′

1 and
p1 pn = a′′

n pn+1 +b′
n=
√

c′
1 pn +a′′

n−1 pn−1, where a′′
n = √

c′
n+1=c

′
1. Since .c′

n/ is bounded,
by Theorem 6.2 (iii), the corresponding generalized hypergroup is semi-bounded.

Now, we are looking for an OPS .Rn/n∈N0 with
∑

k gR.n;m; k/ = 1 for all n;m ∈
N0, which is equivalent to the existence of x0 ∈ R with Rn.x0/ = 1 for all n ∈ N0.
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THEOREM 6.4. Suppose ¼ has compact support and let .Pn/n∈N0 be an arbitrary
orthogonal polynomial sequence with respect to ¼. Denote by [d; e] the smallest
interval containing S . Choose x0 ∈ R \ .d; e/ and define Rn.x/ = Pn.x/=Pn.x0/,
n ∈ N0. Then K = {Rk; k ∈ N0} is a normalized SBG hypergroup.

PROOF. Let .Qn/n∈N0 be the monic orthogonal polynomials with respect to ¼ as in
the proof of Lemma 6.3. Then

R1 Rn = Qn+1.x0/

Q1.x0/Qn.x0/
Rn+1 + b′

n

Q1.x0/
Rn + c′

n Qn−1.x0/

Q1.x0/Qn.x0/
Rn−1; n ≥ 1:

Let

a′′′
n = Qn+1.x0/

Q1.x0/Qn.x0/
; b′′′

n = b′
n

Q1.x0/
and c′′′

n = c′
n Qn−1.x0/

Q1.x0/Qn.x0/
:

Since .b′
n/ is bounded, .b′′′

n /n∈N is bounded, too. By [3, page 110, Theorem 2.4], for
x0 =∈ .d; e/, we have

0 <
Qn+1.x0/

.x0 − b′
n − b′/Qn.x0/

≤ 1; n ≥ 0:

Hence, |a′′′
n | < |.x0 −b′

n −b′/=Q1.x0/|, which shows the boundedness of .a ′′′
n /. Finally,

a′′′
n + b′′′

n + c′′′
n = 1 yields the boundedness of .c′′′

n /. By Theorem 6.2 (iii), the proof is
complete.

Now, let us examine the duals of an SBG polynomial hypergroup. We define the
sets

Dr = {
z ∈ C; |Pn.z/| ≤ r� .n/ for all n ∈ N0

}
; D =

⋃
r≥1

Dr ;(6.6)

Ds
r = Dr ∩ R; and Ds =

⋃
r≥1

Ds
r :(6.7)

Furthermore we define for some z ∈ C the function Þz.n/ = Pn.z/ for all n ∈ N0.
Then the following theorem holds.

THEOREM 6.5. Let K = {Pn; n ∈ N0} be an SBG polynomial hypergroup.

(i) It holds that X b.N0/ = {Þz; z ∈ D} and N̂0 = {Þx; x ∈ Ds}.
(ii) The mappings

D → X b.N0/; z �→ Þz and Ds → N̂0; x �→ Þx

are homeomorphisms.
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(iii) X b.N0/ and N̂0 are bounded.

PROOF. (i) For z ∈ Dr it holds that ‖Þz‖∞;� ≤ r , Þz �= 0, see [3, Chapter I,
Theorem 5.3], and LnÞz.m/ = Þz.n/Þz.m/; hence {Þz; z ∈ Dr } ⊂ X b

r .N0/.
Now suppose Þ ∈ X b

r .N0/ and put z = a0Þ.1/ + b0. We obtain Þ.1/Þ.n/ =
L1Þ.n/ = anÞ.n +1/+bnÞ.n/+cnÞ.n −1/: Since Þ.0/ = 1 and Þ.1/ = .z −b0/=a0,
Þ.n/ satisfies the same recurrence relation as Pn.z/, hence they must be equal. This
yields X b

r .N0/ ⊂ {Þz; z ∈ Dr }. Note that Pn.z/ = Pn.z/ for all n ∈ N0 implies z ∈ R.
(ii) Let V .Þz0; ž; n1; : : : ; nk/ = {

Þ ∈ X b.K /; |Þ.ni/−Þz0.ni /| < ž; i = 1; : : : ; k
}
:

Clearly, its inverse under the mapping z �→ Þz is the set

k⋂
i=1

{
z ∈ D; |Pni .z/− Pni .z0/| < ž

}
;

which is open. Since X b.N0/ is equipped with the topology of pointwise convergence
the mapping X b.N0/ → D, Þz �→ a0Þz.1/ + b0 is continuous, too. The second
statement follows since N̂0 bears the induced topology.

(iii) Let B denote the bound of .|an|/, .|bn|/ and .|cn|/, and choose M > 0 such
that the zeros zn;1; zn;2; : : : ; zn;n of any Pn are elements of the interval [−M;M].
We have Pn.z/ = Þn

∏n
i=1.z − zn;i / with Þn = (

an
∏n−1

i=1 ai

)−1
. Choose z ∈ D and

assume |z| > M . Then there exists r ≥ 1 such that |Þn|∏n
i=1 |z − zn;i | ≤ r� .n/.

Since |z − zn;i | ≥ |z| − M we get .|z| − M/n ≤ r� .n/=Þn . By Lemma 6.1, we are
able to deduce � .n/ = O.n.|a|B/n|Þn|/. Therefore there exists C > 0 such that
|z| − M ≤ |a|B n

√
rCn for all n ∈ N, which implies |z| ≤ M + |a|B.

We would like to mention the question of whether the dual of an SBG polynomial
hypergroup that is compact is still open.

7. Jacobi polynomials

The Jacobi polynomials P .Þ;þ/
n are orthogonal with respect to the measure

³.x/ = .1 − x/Þ.1 + x/þ dx; for all Þ; þ > −1;

with supp³ = [−1; 1] = S . According to Theorem 6.4 they form a normalized SBG
polynomial hypergroup when normalizing at a point x0 =∈ .−1; 1/.

In case x0 = 1, the three term recurrence relation coefficients are given by

a = 2.Þ + 1/

Þ + þ + 2
; b = þ − Þ

Þ + þ + 2
;
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an = .n + Þ + þ + 1/.n + Þ + 1/.Þ + þ + 2/

.2n + Þ + þ + 2/.2n + Þ + þ + 1/.Þ + 1/
;

bn = Þ − þ

2.Þ + 1/

[
1 − .Þ + þ + 2/.Þ + þ/

.2n + Þ + þ + 2/.2n + Þ + þ/

]
;

cn = n.n + þ/.Þ + þ + 2/

.2n + Þ + þ + 1/.2n + Þ + þ/.Þ + 1/
;

see [8]. The corresponding normalized polynomials are denoted by R.Þ;þ/
n and we

compute

h.0/ = 1;

h.n/ = .2n+Þ+þ+1/0.Þ+þ+n+1/0.Þ+n+1/0.þ+n+1/

.n+1/0.Þ+þ+2/0.Þ+1/0.þ+1/
; n ∈N:

By using Stirling’s formula we get

h.n/ = O.n2Þ+1/:(7.1)

If .Þ; þ/ ∈ V = {.Þ; þ/; Þ ≥ þ > −1; Þ ≥ −1=2} then � is bounded, see [1,
Theorem 1], that is, .R.Þ;þ/

n /n∈N0 constitutes a discrete signed hypergroup. Furthermore,
if

.Þ; þ/ ∈ W = {
.Þ; þ/; Þ ≥ þ; a.a + 5/.a + 3/2 ≥ .a2 − 7a − 24/b2

}
⊃ {

.Þ; þ/; Þ ≥ þ > −1; Þ + þ + 1 ≥ 0
}
;

where a = Þ+þ+1 and b = Þ−þ, then .R.Þ;þ/
n /n∈N0 constitutes a discrete hypergroup,

see [6, Theorem 1].
By switching the normalization point x0 to −1 and denoting the corresponding

polynomials by S.Þ;þ/n , we have S.Þ;þ/n .x/ = R.þ;Þ/
n .−x/, see also [6, page 585]. Hence,

when .þ; Þ/ ∈ V , then S.Þ;þ/n constitute a discrete signed hypergroup and when
.þ; Þ/ ∈ W they form a discrete hypergroup.

The remaining region is G = {.Þ; þ/;−1 < Þ; þ < −1=2}. Making use of
Theorem 6.4, (7.1) and � .n/ ≥ max.h.n/−1; 1/ we deduce for .Þ; þ/ ∈ G that both
{R.Þ;þ/

n ; n ∈ N0} and {S.Þ;þ/n ; n ∈ N0} form an SBG polynomial hypergroup which is
not bounded.

For the ultraspherical polynomials, that is, Þ = þ, we will determine � .n/ explicitly
for −1 < Þ < −1=2.

THEOREM 7.1. Let −1 < Þ < −1=2. For � corresponding with R.Þ;Þ/
n it holds that

� .0/ = � .1/ = 1 and for n ≥ 2

� .n/ =
∑

k

|g.n; n; k/| = 2∏n−1
k=1 ak

(
2n−1∏
k=n

ak +
n∏

k=1

ck

)
− 1 < 4h.n/−1 − 1:
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In particular, there exist constants C1;C2 > 0 such that

C1n−2Þ−1 ≤ � .n/ ≤ C2n−2Þ−1:(7.2)

PROOF. We make use of Theorem 6.4, (7.1) and � .n/ ≥ max.h.n/−1; 1/ to show
the correspondence with an SBG hypergroup which is not bounded.

It is clear that � .0/ = � .1/ = 1. We use Lemma 6.1 to deduce for n ≥ m ≥ 2 that
g.n;m; n − m + 2 j − 1/ = 0, j = 1; 2; : : : ;m, g.n;m; n − m/; g.n;m; n − m/ > 0
and g.n;m; n − m + 2 j/ < 0, j = 1; 2; : : : ;m − 1. Hence, for all n;m ≥ 2,∑

k

|g.n;m; k/| = 2.g.n;m; |n − m|/+ g.n;m; n + m//− 1:

Let 2 ≤ m < n. Using (6.3) and (6.4) we derive∑
k

g|.n;m; k/| <
∑

k

g|.n;m + 1; k/|:

Now suppose 2 ≤ n ≤ m and set rm = ∏m+n−1
k=m ak +∏m

k=m−n+1 ck . Since

∑
k

|g.n;m; k/| = 2rm

(
n−1∏
k=1

ak

)−1

− 1;

the inequality rm+1 < rm yields
∑

k |g.n;m + 1; k/| < ∑
k |g.n;m; k/|. Finally, we

derive

� .n/ =
∑

k

|g.n; n; k/| = 2∏n−1
k=1 ak

(
2n−1∏
k=n

ak +
n∏

k=1

ck

)
− 1 for all n ≥ 2:

By using
∏2n−1

k=n ak <
∏n

k=1 ck this yields h.n/−1 ≤ � .n/ < 4h.n/−1 − 1. With (7.1)
we get the last assertion.

Now it is straightforward to determine the dual objects of the generalized hyper-
groups generated by ultraspherical polynomials.

THEOREM 7.2. Let −1 < Þ. Then the duals of the generalized hypergroup {R.Þ;Þ/
n ;

n ∈ N0} of ultraspherical polynomials coincide, S = N̂0 = X b.N0/ � [−1; 1]:

PROOF. We have to show S ⊃ X b.K /. Assume z ∈ C \ [−1; 1]. From [15,
Equation (8.21.9)], we deduce that Rn.z/ grows exponentially with n. From (7.2) we
know that � .n/ grows only polynomially. Hence, there does not exist a constant r
such that |Rn.z/| ≤ r� .n/, which means Þz =∈ X b.N0/.



392 Rupert Lasser, Josef Obermaier and Holger Rauhut [24]

One might ask the question what happens in the case .Þ; þ/ ∈ G when choosing
the normalization point c =∈ [−1; 1]. Surprisingly, [1, Theorem 2] immediately yields
the following theorem.

THEOREM 7.3. Let .Þ; þ/ ∈ G and choose c ∈ R\[−1; 1]. The Jacobi polynomials
T .Þ;þ/

n normalized at c (T .Þ;þ/
n .c/ = 1) constitute a normalized and bounded generalized

hypergroup, that is, a discrete signed hypergroup. The duals are given by

S = [−1; 1]; N̂0 = [−|c|; |c|];
X b.N0/ =

{
z ∈ C;

∣∣∣z +
√

z2 − 1
∣∣∣ ≤ |c| +

√
c2 − 1

}
:

Hereby, the branch of
√

z2 − 1 is chosen such that
∣∣z + √

z2 − 1
∣∣ ≥ 1.
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