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Abstract

We call an algebraic group monothetic if it possesses a dense cyclic subgroup. For an arbitrary field k
we describe the structure of all, not necessarily affine, monothetic k-groups G and determine in which
cases G has a k-rational generator.

2000 Mathematics subject classification: primary 14L99; secondary 20G15, 20K99.

The abstract theory of groups, especially in the infinite case, deals preponderantly
with the study of classes of groups which are given by distinguished group theoretical
properties. For algebraic groups so far this approach has not been applied systemat-
ically. If one wants to follows the pattern given by the abstract theory of groups in
the case of algebraic groups, it is indispensable to have detailed knowledge of those
algebraic groups that correspond to cyclic groups.

Groups that have a dense cyclic subgroup play a fundamental role in the theory of
topological groups. For the class of locally compact groups these groups are called
monothetic and were introduced by van Dantzig in [14]. The full classification of their
structure can be found in [4, Section 25].

In the theory of algebraic groups over a field k we study the analogous class
of groups, which we also call monothetic. So far, groups having a dense cyclic
subgroup with respect to the Zariski topology have not found particular attention.
In [10, page 146] the affine monothetic groups over an algebraically closed field of
characteristic 0 are described in connection with the Galois groups of differential
equations.

In order to treat algebraic groups with group theoretical methods it is necessary
to know the monothetic groups in detail. We classify them for k-groups and find
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k-rational generators whenever they exist. Our results may be summarized by the
following theorem.

MAIN THEOREM. .I/ A k-group G is monothetic if and only if it is the direct
product of a connected monothetic k-group G◦ and a finite cyclic group.
.II/ A connected algebraic k-group G �= 1 is monothetic if and only if k is not

locally finite and G = H D, where H is a monothetic connected affine k-group, D
is a connected monothetic algebraic k-group having no non-trivial affine image, and
H ∩ D is finite.
.III/ A connected algebraic k-group G �= 1 having no non-trivial affine epimorphic

image is monothetic if and only if k is not locally finite.
.IV/ A connected affine algebraic k-group H �= 1 is monothetic if and only if k is not

locally finite and H is the direct product of a torus T and an ž-dimensional connected
unipotent group V , where ž = 0 if char.k/ > 0, whereas ž ≤ 1 if char.k/ = 0. Both
groups T and V are defined over k.
.V/ A monothetic algebraic k-group G has a k-rational generator if and only if the

minimal subgroup D of G with an affine factor group has a k-rational generator.

In Theorem 16 we show that all closed connected subgroups of a monothetic
algebraic group G are monothetic if and only if the maximal connected unipotent
subgroup U of G is monothetic. This condition is clearly satisfied for affine groups
and for abelian varieties. The same holds over fields of positive characteristic (Corol-
lary 15). However, in characteristic 0, there are counter examples, which are connected
monothetic non-affine groups having a vector subgroup of dimension greater than 1
(Remark 12).

Our paper shows that in contrast to the monothetic Lie groups, which are precisely
the direct products of a torus and a cyclic discrete group, the structure of algebraic
monothetic groups is more subtle.

For various discussions and hints we are grateful to Peter Müller from Würzburg.
Furthermore we thank the referee to his truly helpful suggestions.

A. Prerequisites In this note we consider algebraic k-groups. A general reference
for these groups is Borel’s book [1]. If not specified, we denote by G the set of
elements which are rational over the algebraic closure ka of k. If we consider the
rational points of G over a field F containing the minimal field of definition for G (see
[13] and [16, Chapter IV, Corollary 3, page 71]), we denote this set by G.F/.

We call an algebraic k-group G monothetic if it contains an element x such that
G = 〈x〉. In this case G is a commutative group [1, Section 2.1(e)]. We call x a
generator of G.

Clearly any epimorphic image of a monothetic group is monothetic as well. Con-
versely we have the following result.
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PROPOSITION 1. Let G be a connected algebraic k-group, and let E be a finite
subgroup of G such that G=E is monothetic. Then G is monothetic also.

PROOF. Let G=E = 〈uE〉 and U = 〈u〉. Then G = U E . It follows G = U ◦, the
connected component of the identity in U . Thus G coincides with U .

Proposition 1 shows that together with a connected algebraic group G all groups
isogenous to G are monothetic.

Let x be a generator of G. As the connected component G◦ of an algebraic group G
has finite index in G, a power xm of x lies in G◦. Put H = 〈xm〉; then H ≤ G◦. Since
the finite union H ∪ H x ∪· · ·∪ H xm−1 is a closed subgroup containing x , it is all of G,
and we have H = G◦. If G is a k-group then H = G◦ is a k-group, too. Therefore,
we arrive at the following result.

PROPOSITION 2. Let G = 〈x〉 be a monothetic algebraic k-group. Then its con-
nected component G◦ is a monothetic k-group also. If G is connected, then for any
integer m we have G = 〈xm〉.

By this proposition we are justified to restrict our attention mostly to connected
monothetic k-groups. We shall discuss the non-connected case in more detail later.

The connected subgroups of a connected monothetic Lie group are always mono-
thetic. In the case of connected algebraic k-groups this is true for affine groups (Corol-
lary 6), as well as for abelian varieties (Lemma 9), but not in general (Remark 12). Of
course, subgroups that are not connected do not have to be monothetic.

The set G.k/ of k-rational elements of an algebraic k-group G is always a subgroup
of G = G.ka/ ([15, Sections I.7 and II.8–10]). We are interested in the question of
whether it is possible to find a k-rational generator of a given monothetic k-group G.
It follows from the next proposition that this question is meaningful only if the field k
is not locally finite.

PROPOSITION 3. Let G be a k-group.

(a) If k is a locally finite field, then G.k/ is a torsion group.
(b) If G has positive dimension and is monothetic, then the field k is not locally finite

and there is a finite extension F of k such that G.ka/ contains an F-rational generator.

PROOF. Observe that the minimal field k0 of definition for G is finitely generated
over the prime field of k, since the representatives of G are described by finitely
many polynomials (see [16, page 179]). Consider a ∈ G.ka/. Adjoining to k0 the
set of coordinates of a with respect to a finite system of charts for G, one obtains a
finite extension k0.a/ of k0, over which a is rational and G is defined (compare [16,
Chaper VII.3]).
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(a) If k is locally finite, then for g ∈ G.k/ the field k0.g/ is finite. Thus g lies in the
finite group G.k0.g//.

(b) Obviously any generator g of a k-group G of positive dimension has infinite
order. Because of (a), the field k is not locally finite. Since k0 is a subfield of k, the
field F = k.g/ has finite degree over k.

B. Affine groups For affine groups the structure theorems for algebraic k-groups,
found in [1, Chapter III] enable one to determine the structure of monothetic groups
and to consider rationality questions.

PROPOSITION 4. A connected unipotent k-group G �= 1 is monothetic if and only if
char.k/ = 0 and dim.G/ = 1. In this case every element of G that is not equal to 1 is
a generator of G, and G has k-rational generators.

PROOF. If char.k/ > 0, then G is a torsion group. If char.k/ = 0, then every
element of G that is not equal to 1 has infinite order and generates a 1-dimensional
subgroup of G.

THEOREM 5. A connected affine algebraic k-group G �= 1 is monothetic if and only
if the following conditions hold:

(a) the field k is not locally finite;
(b) G is commutative; and
(c) the unipotent radical Gu is an ž-dimensional vector group, where ž = 0 if

char.k/ > 0 and ž ≤ 1 if char.k/ = 0.

In this case, the unipotent radical Gu and the maximal torus Gs of G are defined over
k and a generator of G can be chosen to be k-rational.

PROOF. Let G be a monothetic k-group. Since G is commutative, it is the direct
product of Gu and Gs , where Gu is the set of unipotent elements of G, which is a
k-closed subgroup, and Gs is the set of its semisimple elements, which is even defined
over k (see [1, Theorems 4.7 and 10.6 (3)]). For a generator x of G one has x = xu xs

with xu ∈ Gu and xs ∈ Gs . Hence G = 〈xu〉 × 〈xs〉, Gs = 〈xs〉 and Gu = 〈xu〉.
It follows from Proposition 4 that (c) holds. Since fields of characteristic 0 are

perfect, the unipotent radical of a monothetic affine k-group is defined over k (see [5,
Lemma 34.1, page 217]) and we can choose a generator of Gu that is rational over k
(see Proposition 4).

The subgroup Gs of the monothetic k-group G is a k-torus. From [1, Proposition 8.8
and Remark] it follows that a k-torus is monothetic if and only if k is not locally finite.
In this case, a generator can be chosen to be k-rational.

Conversely, let G be an affine k-group satisfying (a)–(c). Then G = Gu × Gs and
Gu, Gs are k-groups with k-rational generators xu , xs . Consider the monothetic group
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X = 〈xu xs〉. Then the restrictions to X of the projections from G to Gu and from
G to Gs , respectively are surjective. Since there are no non-trivial homomorphisms
between Gu and Gs it follows that G = X (compare [9, page 40]).

COROLLARY 6. Every closed connected subgroup of an affine connected monothetic
algebraic k-group is monothetic.

C. Abelian varieties We now turn our attention to monothetic abelian varietes.
A simple abelian variety is monothetic if and only if it is not a torsion group. The
next statement, which is a variant of Theorem 12 in [2], is needed for the proof of our
Theorem 9, where we show that also for abelian varieties the converse of Proposition 3
holds.

A field k is called Hilbertian if Hilbert’s irreducibility theorem holds over k (com-
pare [3, page 141]). Important examples of Hilbertian fields are finitely generated
transcendental extensions of some subfield (compare [3, Theorem 12.10, page 155])
and the algebraic number fields (compare [3, Corollary 12.8, page 154]).

THEOREM 7. Let k be a field that is not locally finite and let A �= 1 be an abelian
variety, defined over k. Then there is a Hilbert field E ⊆ k such that A is defined
over E and A.Ea/ has infinite torsion free rank. The field E is finitely generated over
its prime field.

PROOF. Assume that the torsion free rank of A.ka/ is some finite number d ≥ 0.
Let L be an algebraically closed extension of k of uncountable transcendence degree.
Since the torsion subgroup of A.L/ is countable (see [8, page 39]), whilst A.L/ itself
has the same cardinality as L, there are elements a1; : : : ; ad+1 in A.L/, that generate
a free abelian group of rank d + 1. If we embed A.L/ into a projective space over L,
we see that there exists a field F, finitely generated over the prime field of k, such that
the elements a1; : : : ; ad+1 are rational in A.F/.

Let k0 be a minimal field of definition for A contained in k. Since A is defined
(in any of its finitely many charts) by polynomials with coefficients in k0, the field k0

is finitely generated. We assume first that k0 is locally finite. Then there exists an
element t0 in k, which is transcendental over k0. We put E = k0.t0/. If k0 is not locally
finite, we put E = k0. In both cases the field E is Hilbertian, contained in k, and is a
field of definition for the abelian variety A.

By a theorem of Néron [7, Chapter 1, Theorem 7.2, page 41], there exists an injective
specialization homomorphism ¦ from A.F/ to A.Ea/. Hence {¦.a1/; : : : ; ¦ .ad+1/}
are Z-independent elements in A.Ea/ ⊂ A.ka/: a contradiction.

PROPOSITION 8. Assume that the field k is not locally finite and let A1, A2 be abelian
k-varieties. Then for every element a1 ∈ A1 of infinite order there exists an element
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a2 ∈ A2 of infinite order such that '.a1/ �= a2
n for all algebraic homomorphisms '

from A1 to A2 and for any n ∈ N.

PROOF. By [8, Theorem 3, page 176], the group Hom.A1; A2/ of all algebraic
homomorphisms from A1 to A2 has finite torsion free rank. Thus the abstract group
X = Hom.A1; A2/a1 is a commutative group of finite rank. It follows from Theorem 7
that the group X cannot intersect all torsion-free subgroups of rank 1 of A2 non-
trivially.

Now we treat monothetic abelian varieties in general. Although the discussion of
monothetic abelian varieties is in the spirit of Borel’s proof for tori (see [1, Proposi-
tion 8.8]), it becomes more complicated.

THEOREM 9. An abelian k-variety A �= 1 is monothetic if and only if the field k is
not locally finite.

PROOF. If k is locally finite, then A is a torsion group by Proposition 3. Conversely,
assume that k is not locally finite and that A is a counterexample of minimal dimension.
By Theorem 7, the abelian variety A is not simple, hence A = A1 A2, where A1 is a
simple non-trivial abelian variety and A2 is monothetic, by minimality. Because of
Proposition 1 we may assume that A = A1 × A2. Choose an arbitrary generator t2

of A2 and an element t1 ∈ A1 of infinite order such that t1
n �= '.t2/ for any n ∈ N

and for all algebraic homomorphisms ' from A2 to A1. This is possible thanks to
Proposition 8. We put U = 〈.t1; t2/〉. Then U �= A and, changing .t1; t2/ to a suitable
power, by Proposition 2 we can even assume that U is connected. Since A1 is simple,
the group U ∩ A1 has some finite order m.

Let ³i : U → Ai be the restriction to U of the canonical projection from A to Ai ,
.i = 1; 2/. Since t2 = ³2.t1; t2/ ∈ A2, the homomorphism ³2 is surjective; its kernel
is the finite group U ∩ A1 of order m. It follows from [8, Chapter IV.18, Remark,
page 169] that there is a homomorphism � : A2 → U such that �³2.x1; x2/ = .x1; x2/

m

for all .x1; x2/ ∈ U . But then

³1�.t2/ = ³1�³2.t1; t2/ = ³1.t1; t2/
m = .³1.t1; t2//

m = tm
1 ;

a contradiction to the choice of t1.

In contrast to the affine case (Theorem 5), in general we cannot say anything
more about the rationality of a generator of an abelian k-variety A than we said in
Proposition 3. For k = Q one finds in [6, Chapter I.3, Table 2] examples of elliptic
curves, where the group ofQ-rational points is finite. Using [6, Theorem 3.3, page 34]
one sees that are many cases in which the identity is the only Q-rational point of A.
One such example is given by the equation y2 = x3 + 6.
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D. The general case In [11], Rosenlicht described how an arbitrary connected
algebraic group is built from an affine group and an abelian variety. We collect these
facts in the following theorem.

THEOREM 10 (Rosenlicht [11]). Let G be a connected algebraic k-group. Then
there exists a (unique) maximal connected affine subgroup LG and a (unique) minimal
(connected) normal subgroup DG such that the factor group G=DG is affine. The
following statements hold:

(i) G = LG DG.
(ii) LG is a k-closed characteristic subgroup of G, and G=LG is an abelian variety.

(iii) DG is defined over k and is central and characteristic in G. It has no non-
trivial affine epimorphic image, and it has only a finite number of elements of any
given finite order.

(iv) Any k-closed abelian subvariety A of G, as well as the connected component
of LG ∩ DG, is defined over k and is contained in DG. Moreover, for the subgroup
A there exists a connected k-closed algebraic subgroup G1 of G such that G = G1 A
and G1 ∩ A is finite.

By the preceding theorem the group DG is commutative. Hence the connected
component of LG ∩ DG is the direct product of a vector group and a torus ([5,
Theorem 15.5, page 100]).

LEMMA 11. If the field k is not locally finite, then a connected algebraic k-group
G having no non-trivial affine epimorphic image is always monothetic. If G is such a
group and k has positive characteristic, then LG is a torus.

PROOF. Let L be the maximal connected affine subgroup of G. As G=L is an abelian
variety, by Theorem 9, we find an element y ∈ G=L such that G=L = 〈y〉. Let x be a
pre-image of y with respect to the canonical projection G → G=L . We put X = 〈x〉.
Since X L=L contains y, we see that X L = G. Thus G=X = X L=X ∼= L=.L ∩ X/ is
affine and consequently we have G = X .

Assume finally that char(k) is positive. Since G has only a finite number of elements
of order p (Theorem 10 (iii)), the group G in this case cannot contain any non trivial
vector subgroup.

If a monothetic k-group G having no non-trivial affine epimorphic image is an
extension of a vector group H by an abelian variety A, then it follows from Lemma 11
that the field k has characteristic 0. Conversely, if char.k/ = 0, then according to
[12, Proposition 11 and Theorem 3] such extensions exist for dim.H/ ≤ dim.A/.
From our Theorem 5 we see that the vector group H is monothetic if and only if
dim.H/ ≤ 1. Hence, in contrast to Corollary 6, we have the following observation.
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REMARK 12. Closed connected subgroups of connected monothetic k-groups G are
not necessarily monothetic if the maximal connected affine subgroup of G is not a
torus. This can only happen if char.k/ = 0.

THEOREM 13. A connected algebraic k-group G �= 1 is monothetic if and only if
the field k is not locally finite and G is a product DH with finite D ∩ H, where H is a
monothetic connected affine k-group and D is a monothetic connected k-group having
no non-trivial affine epimorphic image.

A connected algebraic k-group G has a k-rational generator if and only if D has a
k-rational generator; the group H always has a k-rational generator.

PROOF. Assume first that G is monothetic, and consider the subgroups L =
LG; D = DG of G as in Theorem 10. There is a finite subgroup E of G such
that G=E = C × DG=E with an affine group C ([9, Lemma 3]). Thus by Proposition 1,
we may suppose that L ∩ D is connected. Furthermore, L is a k-closed subgroup of
G by Theorem 10 (ii) and there is a complement H of L ∩ D in L; in particular, we
have H ∩ D = 1. The affine algebraic group H is isomorphic to L=.L ∩ D/.

If char.k/ = 0, then the affine monothetic group G=D = L D=D is the direct
product of a torus with an ž-dimensional vector group (ž ≤ 1) by theorem 5. By The-
orem 10 (ii) and [5, Lemma 34.1, page 217], the group L is a connected commutative
affine algebraic k-subgroup of G.

If char.k/ > 0, then L D=D is a torus (Theorem 5) and D is an extension of a torus
by an abelian variety (Lemma 11); in particular, L is the maximal torus of G. By [11,
Proposition 4, page 443], it follows that L is defined over k.

Now, in both cases, the group H ∼= L=.L ∩ D/ is defined over k ([11, Theorem 4,
page 413]) and is monothetic as an epimorphic image of G. Finally, we observe that
G is isogeneous to the direct product of H and D.

Conversely, let G = H D with k-groups D = 〈x〉; H = 〈y〉. Since H ∩ D is finite,
we may assume that H ∩ D = 1. Consider the group U = 〈xy〉. If U �= G, then D
and H are not contained in U .

Observing that G = D × H we consider the subgroup N = .D ∩ U / × .H ∩ U /
and the factor group

G1 = G=N = (
D × H

)
=
(
.D ∩ U /× .H ∩ U /

) ∼= D1 × H1;

where D1 = D=.D∩U / is the minimal subgroup of G1 with an affine factor group and
H1 = H=.H ∩U / is the maximal connected affine subgroup of G1. With U1 = U=N ,
we have U1 × D1 = G1 = U1 × H1. Since G1=D1 is affine, it follows that U1 is affine.
Hence G1 = U1 H1 is affine, a contradiction. Thus D or H is contained in U , but in
both cases G = U is monothetic.
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Since the monothetic group H is defined over k, it follows from Theorem 5 that we
can choose a k-rational generator x for H . If y is a k-rational generator of D, then,
as just shown, the element xy is a k-rational generator of G. Conversely, if z is a
k-rational generator for G, then for any k-rational generator x for H the element x−1z
is a k-rational generator of D.

COROLLARY 14. A connected monothetic k-group G is divisible (as an abstract
commutative group).

PROOF. We consider monothetic subgroups D; H of G satisfying G = DH as
in Theorem 13. It follows from Lemma 11 that D is divisible as an extension of a
divisible group by a divisible group. Since H is divisible by Theorem 5, the assertion
follows.

From the preceding theorem, Corollary 6 and Remark 12, we also obtain the
following result.

COROLLARY 15. Let k be a field. Each closed connected subgroup of every mono-
thetic k-group is monothetic if and only if k has positive characteristic.

For fields of characteristic 0, our structure theorems, together with Remark 12 yield
the following.

COROLLARY 16. All closed connected subgroups of a monothetic k-group G over a
field of characteristic 0 are monothetic if and only if the maximal connected unipotent
subgroup of G has dimension at most 1.

THEOREM 17. An algebraic k-group G is monothetic if and only if G is commutative,
the connected component G◦ is monothetic, and G=G◦ is a finite cyclic group.

PROOF. If G is monothetic, then G◦ is monothetic by Proposition 2 and G=G◦ is a
finite cyclic group.

Conversely, let G◦ and G=G◦ be monothetic. Since G◦ is divisible by Corollary 14,
there is a finite cyclic subgroup F ∼= G=G◦ of G such that G = G◦ × F is an algebraic
group. Let g be a generator of G◦ and let f be a generator of F . Using Proposition 2
it follows that g f is a generator of G.

REMARK 18. Let G = G◦ × F be a non-connected monothetic k-group. One has
the decomposition G◦ = H D as in Theorem 13, since G◦ is a monothetic k-group by
Proposition 2. The group H × F is a monothetic affine k-group (see [11, Corollary 1,
page 430]). Using Theorem 5, one sees that H × F has a k-rational generator. Thus G
has a k-rational generator if and only if D has this property.
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Università di Palermo
viale delle Scienze
I-90128 Palermo
Italy
e-mail: gfalcone@unipa.it

Mathematisches Institut
Universität Erlangen
Bismarckstraße 1 1/2

D-91054 Erlangen
Germany

e-mail: plaumann@mi.uni-erlangen.de
strambach@mi.uni-erlangen.de

mailto:gfalcone@unipa.it
mailto:plaumann@mi.uni-erlangen.de
mailto:strambach@mi.uni-erlangen.de

