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Abstract

For any abelian group G and any function f : G → G we define a commutative binary operation or
‘multiplication’ on G in terms of f . We give necessary and sufficient conditions on f for G to extend to
a commutative ring with the new multiplication. In the case where G is an elementary abelian p-group of
odd order, we classify those functions which extend G to a ring and show, under an equivalence relation
we call weak isomorphism, that there are precisely six distinct classes of rings constructed using this
method with additive group the elementary abelian p-group of odd order p2.

2000 Mathematics subject classification: primary 11T30; secondary 13A99.

1. Introduction

The classification of finite simple groups was primarily motivated by the fact that
simple groups are the essential building blocks of finite groups. For finite ring theory,
the rings of prime power order assume the role of simple groups as the prime objects.
Recently, the problem of classifying finite associative rings has received considerable
attention, see [5, 6, 19] for example. Meanwhile, work on non-associative rings has
tended to concentrate more on construction methods, though there have been some
results on the classification problem, such as [11]. In their broadest sense, rings can
be viewed as additive groups with an additional bivariate mapping satisfying specific
properties used for multiplication. Here we provide a method for constructing non-
associative rings based on this viewpoint and then consider the classification problem
for the resulting rings, concentrating specifically on the elementary abelian case. In
particular, a complete classification is achieved for those rings constructed using our
method and elementary abelian groups of odd prime square order. It should be noted
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that our classification method does not use standard ring isomorphism, but a weaker
equivalence relation, which is certainly more natural for our problem and may be
significant in the study of non-associative commutative rings in general.

In this article, rings are not assumed to be associative, nor to contain an identity.
In general, the multiplication of a ring � = {G;+; ·} can be viewed as a bivariate
function defined on the group G = {G;+}, which is both left and right distributive.
It is easily seen that, given any ring � and any bivariate function L.x; y/ defined
on G × G which satisfies

L.x + y; z/ = L.x; z/+ L.y; z/ and L.x; y + z/ = L.x; y/+ L.x; z/

for all x; y; z ∈ G, it is possible to define a multiplication ? on G × G by

x ? y = L.x; y/

resulting in a, possibly new, ring {G;+; ?}.
We now let G = {G;+} be an abelian group and define an additional operation

on G by constructing a function L as above, but by using a univariate function. Let
f : G → G be any function. Define ? f on G × G by

x ? f y = f .x + y/− f .x/− f .y/

for all x; y ∈ G. Note that ? f is commutative since G is assumed to be abelian. The
definition can be extended to non-abelian groups using x ? f y = − f .x/+ f .x + y/−
f .y/, but we do not consider them in the current article. This definition is motivated
by results concerning planar functions in projective geometry, see [9], and we return
to this topic in Section 5.

A natural question is when does {G;+; ? f } define a ring? An example can be seen
through reverse engineering: let� = {G;+; ·} be a commutative ring with identity e
in which e + e = 2e is a unit. Then the function f given by f : x �→ .2e/−1 · x · x
defines a ring � f = {G;+; ? f } with� f = �.

We give necessary and sufficient conditions on the function f so that {G;+; ? f }
defines a ring. Further, we classify all functions which extend an elementary abelian
p-group G to a ring.

Following this, we define weak isomorphism, a concept which sits between iso-
morphism of ring theory and isotopism of projective geometry. As with isomorphism
and isotopism, weak isomorphism is an equivalence relation and in the context of our
construction, appears to be the most natural and useful one to consider. We show
there are precisely six non-weakly isomorphic classes of rings constructed using our
method when G = C p ⊕ C p with p an odd prime. Thus the number of non-weakly
isomorphic rings in this case is independent of p. It can be shown that this is not the
case with the usual ring isomorphism.
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We end the article by using our results to show that the only planar Dembowski-
Ostrom polynomials over Fp2 are precisely those which can be written in the form
L1.L2

2.X// where L1 and L2 are linearised permutation polynomials.

2. Extending abelian groups to rings

Throughout this article, G denotes an abelian group written additively. For any
integer n ≥ 1 and any a ∈ G we write na as the addition of n copies of a. By a ring
� = {G;+; ·} we mean .G;+/ is an abelian group and

(i) .a + b/ · c = .a · c/+ .b · c/, and
(ii) a · .b + c/ = .a · b/+ .a · c/,

for all a; b; c ∈ G.
For any function f : G → G, define the difference operator ? f of f on G by

? f .x; y/ = x ? f y = f .x + y/− f .x/− f .y/

for all x; y ∈ G.
We view the operator ? f as a type of multiplication on G and note that it is

necessarily commutative by definition. We now consider properties of {G;+; ? f }.
The following result is immediate.

THEOREM 2.1. � f = {G;+; ? f } is a ring if and only if

f .a + b + c/ = f .a + b/+ f .a + c/+ f .b + c/− f .a/− f .b/− f .c/(2.1)

holds for all a; b; c ∈ G.

PROOF. Left distributivity follows from the definition, and right distributivity by
commutativity.

In general, such a ring will have zero-divisors as a ? f b = 0 precisely when
f .a + b/ = f .a/ + f .b/. The example given in the introduction shows there are
many rings which can be constructed in this way.

THEOREM 2.2. Let {� f ;+; ? f } be a ring. Then the following statements hold.

(i) f .0/ = 0.
(ii) a ? f 0 = 0 ? f a = 0 for all a ∈ G.

(iii) a ? f .−b/ = .−a/ ? f b = −.a ? f b/ for all a; b ∈ G.
(iv) .−a/ ? f .−b/ = a ? f b for all a; b ∈ G.
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PROOF. For (i), set a = b = c = 0 in (2.1). The definition of ? f along with (i)
yields (ii). By (2.1),

f .a/ = f .a + b + .−b// = f .a + b/+ f .a − b/− f .a/− f .b/− f .−b/

so that
a ? f .−b/ = f .a − b/− f .a/− f .−b/

= − f .a + b/+ f .a/+ f .b/ = −.a ? f b/:

Similarly, .−a/? f b = −.a ? f b/, yielding (iii), while (iv) is immediate from (iii).

Recall that two rings � and � are isomorphic if there exists a bijective mapping
� : � → � satisfying (i) �.x + y/ = �.x/+ �.y/, and (ii) �.xy/ = �.x/�.y/ for
all x; y ∈ �.

THEOREM 2.3. Let� f = {G;+; ? f } and�h = {G;+; ?h} be rings determined by
the two functions f and h on G, respectively. Then� f and�h are isomorphic if and
only if there exists a group automorphism � on {G;+} such that x ? f ◦� y = x ?�◦h y
for all x; y ∈ G.

PROOF. For any automorphism � on {G;+}, we have

�.x/ ? f �.y/ = f .�.x/+ �.y//− f .�.x//− f .�.y//

= f .�.x + y//− f .�.x//− f .�.y// = x ? f ◦� y;

and

�.x ?h y/ = �.h.x + y/− h.x/− h.y//

= �.h.x + y//− �.h.x//− �.h.y// = x ?�◦h y:

If � f and �h are isomorphic, then there exists an automorphism � on {G;+} such
that �.x/? f �.y/ = �.x ?h y/, and so x ? f ◦� y = x ?�◦h y for all x; y ∈ G. Conversely,
if there exists a group automorphism � on {G;+} such that x ? f ◦� y = x ?�◦h y for all
x; y ∈ G, then clearly �.x/ ? f �.y/ = �.x ?h y/ and �.x + y/ = �.x/+ �.y/ for all
x; y ∈ G, and so� f and�h are isomorphic.

LEMMA 2.4. Let � f = {G;+; ? f } and �h = {G;+; ?h} be rings determined by
the two functions f and h on G, respectively. Then � f = �h if and only if f − h is
a group homomorphism on G.

PROOF. As both rings have the same additive group, we need only show that their
multiplication operations are identical. Define .x/ = f .x/−h.x/. Then is a group
homomorphism on G if and only if, for all x; y ∈ G,  .x + y/ =  .x/ +  .y/, or
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equivalently, f .x+y/−h.x+y/ = f .x/−h.x/+ f .y/−h.y/. Therefore is a group
homomorphism on G if and only if f .x + y/− f .x/− f .y/ = h.x + y/−h.x/−h.y/.
In other words, the multiplication operations ? f and ?h are the same.

The example given in the introduction coupled with the previous lemma yields the
following corollary.

COROLLARY 2.5. Let � = {G;+; ·} be a commutative ring with identity ž and
such that 2ž is a unit in �. Then � f = {G;+; ? f } = � if and only if f : x �→
..2ž/−1 · x · x/+ �.x/ where � is a group homomorphism on G.

LEMMA 2.6. Let � f = {G;+; ? f } be a ring with identity ž. Then

(i) ž = f .ž/+ f .−ž/.
(ii) For any integer n ≥ 1, f .nž/ = n f .ž/+ .n.n − 1/=2/ž.

PROOF. We have x = x ? f ž = f .x + ž/ − f .x/ − f .ž/ for all x ∈ G. Setting
x = −ž gives (i). An equivalent equation is

f .x + ž/ = x + f .x/+ f .ž/:(2.2)

If x = ž, then f .2ž/ = 2 f .ž/ + ž. We proceed by induction. Suppose f .nž/ =
n f .ž/+ .n.n − 1/=2/ž holds for some integer n ≥ 1. Using (2.2), we have

f ..n + 1/ž/ = nž + f .ž/+ f .nž/

= nž + f .ž/+ n f .ž/+ .n.n − 1/=2/ž

= .n + 1/ f .ž/+ .n.n + 1/=2/ž:

Thus (ii) follows by induction.

COROLLARY 2.7. Let G = 〈g〉 be a finite cyclic group and� f = {G;+; ? f } define
a ring with identity g. Then |G| is odd.

PROOF. Let |G| = k be even. Then ka = 0 for all a ∈ G. By Lemma 2.6 (ii),
f .kg/ = k f .g/ + .k.k − 1/=2/g = 0 + .k=2/.k − 1/g �= 0 contradicting Theo-
rem 2.2 (i).

3. Extending elementary abelian groups to rings

For the remainder of the article we let G be an elementary abelian p-group of order
q = pn with p a prime and n a positive integer. It is immediate that we can extend G
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to a finite field and by Lagrange interpolation we can associate the function f on G
with a unique polynomial f of degree less than q on the finite field of q elements. The
key result of this section is Theorem 3.3, which for this case classifies those functions
which extend G to a ring.

Before continuing we require some additional notation and definitions pertaining
to finite fields. Further details can be found in [15]. We denote the finite field
of q elements by Fq and the non-zero elements by F∗

q . The symbol g will always
represent a primitive element of Fq . The ring of polynomials in indeterminate X will
be denoted by Fq [X ]. We define the difference operator of a polynomial f ∈ Fq [X ] to
be the bivariate polynomial 1 f .X; Y / = f .X + Y /− f .X/− f .Y / and identify the
polynomial1 f .X; Y /with the bivariate function ? f . For polynomials f1; f2, we write
f1. f2/ = f1 ◦ f2 for the composition of f1 with f2. Recall a permutation polynomial
over Fq is any polynomial that permutes the elements of Fq under evaluation.

A linear transformation over Fq can be described by a polynomial L ∈ Fq [X ],
called a p-polynomial (also known as a linearised or additive polynomial), with
shape L.X/ = ∑n−1

i=0 ai X pi
. Any p-polynomial L satisfies L.x + y/ = L.x/+ L.y/

and L.ax/ = aL.x/ for all x; y ∈ Fq and a ∈ Fp . It is immediate from the first of
these two properties that L is a permutation polynomial over Fq if and only if x = 0
is the only root of L in Fq .

A particularly important p-polynomial is the absolute trace mapping, denoted Tr,
which is defined to be the polynomial

Tr.X/ =
n−1∑
i=0

X pi

:

A key property of the trace mapping is Tr.x/ ∈ Fp for all x ∈ Fq . The trace mapping
is also equidistributive by which we mean that every element a ∈ Fp has pn−1 pre-
images.

The set of all p-polynomials which are permutations over Fq form a group, under
composition modulo X q − X , isomorphic to the general linear group GL(n; p). We
shall denote this group by � throughout. For notational simplicity, we write L ∈ �
to mean L ∈ Fq [X ] is a permutation polynomial. For the following result, see [15,
Chapter 7].

LEMMA 3.1. The polynomial L.X/ = a X q + bX ∈ Fq2[X ] is a permutation poly-
nomial over Fq2 if and only if aq+1 �= bq+1.

A Dembowski-Ostrom (DO) polynomial is any polynomial f ∈ Fq [X ] of the shape

f .X/ =
n−1∑

i; j=0

ai j X pi +p j

:
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More precisely, we shall call f a ps-DO polynomial if ai j = 0 whenever i or j are
not divisible by s. DO polynomials play a key role in the study of planar functions;
see Section 5. The following result characterises DO polynomials in terms of their
difference operator.

THEOREM 3.2. Let f ∈ Fq [X ] with deg. f / < q. Then the following conditions are
equivalent.

(i) f = D + L ; where D is a Dembowski-Ostrom polynomial and L is a
p-polynomial.

(ii) For each a ∈ F∗
q , 1 f .X; a/ = La.X/ where La is a p-polynomial depending

on a.

For the proof, see [7, Theorem 3.2]. The statement of this result differs slightly from
that given in [7] because we are dealing with a different definition of the difference
operator. However, it is easily seen that the proof as given there suffices.

We now classify those functions which extend an elementary abelian p-group to a
ring.

THEOREM 3.3. Let G be an elementary abelian p-group and f ∈ Fq [X ]. Then
� f = {G;+; ? f } is a ring if and only if f satisfies f .X/ = D.X/+ L.X/ where D
is a DO polynomial and L is a p-polynomial.

PROOF. Let f ∈ Fq [X ] satisfy f .X/ = D.X/+ L.X/. Now1 f is symmetric in X
and Y . It follows from Theorem 3.2 that1 f .X; Y / is a p-polynomial in both X and Y .
In particular, we have 1 f .a + b; c/ = 1.a; c/+1.b; c/ for all a; b; c ∈ Fq . Hence
1 f yields both distributive laws, and so� f is a ring. Now suppose� f is a ring. Then
? f and hence1 f are left and right distributive as mappings. Thus1 f .X; a/must be a
p-polynomial for all a ∈ F∗

q . By Theorem 3.2, f .X/ = D.X/+ L.X/ for some DO
polynomial D and some p-polynomial L .

We now consider an example. Let q = pn with n a positive integer and define
f .X/ = X pÞ+1 whereÞ ≥ 0. It is easy to see that1 f .X; Y / = X pÞY +XY pÞ = X? f Y .
For x; y; z ∈ F∗

q , a short calculation reveals

.x ? f y/ ? f z = x p2Þ

y pÞ z + x pÞ y p2Þ

z + x pÞ yz pÞ + xy pÞ z pÞ

x ? f .y ? f z/; = x pÞ y pÞ z + x pÞ yz pÞ + xy p2Þ

z pÞ + xy pÞ z p2Þ

:

Suppose � f is associative. Fix x; y ∈ F∗
q and consider the two multiplications

above as polynomials in the indeterminate Z by replacing z with Z . Then the two
polynomials, one of degree pÞ and one of degree p2Þ, are identical under evaluation,
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which is impossible unless Þ ≡ 0 mod n or n = 2. If n = 2, then the two polynomials
become (under reduction modulo Z p2 − Z )

.x ? f y/ ? f Z = .Z + Z pÞ /.xy pÞ + x pÞ y/;

x ? f .y ? f Z/ = Z.x pÞ y pÞ + xy pÞ /+ Z pÞ .x pÞ y + xy/:

It follows that y = y pÞ for all y ∈ Fp2 , implying Þ ≡ 0 mod n. Thus � f is an
associative ring if and only if Þ ≡ 0 mod n, in which case f .X/ mod .X q − X/ = k X 2

for some k ∈ Fq . A similar argument shows that � f has a multiplicative identity ž if
and only if Þ ≡ 0 mod n.

It is not true in general that � f has a multiplicative identity if and only if f .X/ ≡
k X 2 mod .X q − X/. For example, the ring � f with DO polynomial f .X/ = X 2 +
2X p2+p − X 2p − X 2p2

has multiplicative identity ž = .p + 1/=2 over any finite field
Fpn , p odd.

It is also the case, for f = D + L as in Theorem 3.3, that if � f has an identity ž,
then it is a root of the polynomial D.X/− X , by Lemma 2.6 (i).

4. The number of non-equivalent rings

Our next objective is to describe machinery that allows us to determine if two rings
constructed from the same elementary abelian group, but using different DO polyno-
mials, are equivalent. As an application, we show that relevant to weak isomorphism
(defined below) there are six distinct rings of odd order p2 constructed in this way
(effectively there is only one DO polynomial, X 3, to consider over F22 ).

The class of DO polynomials is closed under composition with p-polynomials. In
particular, one can define an equivalence relation on DO polynomials in the following
manner: two DO polynomials f1; f2 are called equivalent, written f1 ∼ f2, if there
exist L1; L2 ∈ � such that L1 ◦ f1 ◦ L2 ≡ f2 mod .X q − X/. Generally, we make use
of the equivalent statement: f1 ∼ f2 if there exist L1; L2 ∈ � such that

L1 ◦ f1 ≡ f2 ◦ L2 mod .X q − X/:

This equivalence relation can be defined more generally, both in the choice of the
group G and for all polynomials over Fq . It appears the study of such equivalence
relations and the related problem of modular invariants began with Dickson in [10],
and has since been taken up in various forms by Carlitz, [1, 2], Cavior, [3, 4], and
Mullen [16, 17, 18].

For two DO polynomials f; h ∈ Fq [X ], we shall call the rings � f = {Fq ;+; ? f }
and �h = {Fq ;+; ?h} weakly isomorphic if there exist two linear transformations
L1; L2 ∈ � such that L1.x/? f L1.y/ = L2.x ?h y/ for all x; y ∈ Fq . This lies between
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the concept of ring isomorphism, see [12, page 133], and the concept of semifield
isotopism, see [8, page 135]. This definition could be extended to general rings, but
we will not need it here. This definition is motivated by the equivalence relation for
DO polynomials, as illustrated in our next result. The proof is trivial.

LEMMA 4.1. Let f; h ∈ Fq [X ] be DO polynomials. The rings� f and�h are weakly
isomorphic if and only if there exist L1 ; L2 ∈ � such that f = L1◦h◦L2 mod .X q−X/.

Let q = pn and set d < n to be a positive divisor of n. Suppose f ∈ Fq [X ] is a DO
polynomial such that f .X/ ≡ cX 2 mod .X pd − X/, for some c ∈ F∗

q . This can happen
if and only if f is a pd-DO polynomial. So � f contains a weakly isomorphic copy
of Fpd . In particular, for any DO polynomial f , the ring � f must contain a weakly
homomorphic copy of Fp . More precisely, f .X/ mod .X p − X/ = cX 2 for some
c ∈ Fq and if c �= 0, then � f contains a weakly isomorphic copy of Fp . Otherwise
x ? f y = 0 for all x; y ∈ Fp .

A weak automorphism of a polynomial f is a pair of polynomials .L1; L2/ ∈ � ×�
such that L1 ◦ f ≡ f ◦ L2 mod .X q − X/. The set�. f / of all weak automorphisms of
f forms a group under the operation of pairwise composition: .L1; L2/ · .M1;M2/ =
.L1 ◦ M1; L2 ◦ M2/. More importantly, the cardinality of �. f / is invariant for
polynomials f in the same equivalence class. An application of [18, Theorem 2.4]
yields the following lemma.

LEMMA 4.2. Let �. f / denote the group of weak automorphisms of the DO poly-
nomial f and let C. f / denote the equivalence class containing f . Then

|C. f /| = |� |2

|�. f /| :

We now restrict ourselves specifically to the case where the elementary abelian
p-group G has odd order p2. Our aim is to determine the number of non-weakly
isomorphic rings which can be constructed from G using our method. We take
a constructive approach and determine a DO polynomial which acts as the class
representative for each class as well as the number of elements in each class. To
determine the number of elements in each class we use the result of Mullen from
[18] (given above as Lemma 4.2), and determine the number of weak automorphisms
of each polynomial instead. The following lemma will be used extensively in what
follows. The proof is purely mechanical and so we omit it.

LEMMA 4.3. Let L1.X/ = a X p +bX and L2.X/ = cX p +d X with a; b; c; d ∈ Fq .
Define f .X/ = ÞX 2 + þX p+1 + � X 2p to be a general DO polynomial defined over
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Fp2 . Then we have

L1.X/ ◦ f .X/ mod .X p2 − X/

= .a� p + bÞ/X 2 + .aþ p + bþ/X p+1 + .aÞ p + b� /X 2p

and

f .X/ ◦ L2.X/ mod .X p2 − X/

= .Þd2 + þcpd + � c2p/X 2 + .2Þcd + þ.cp+1 + d p+1/+ 2� cpd p/X p+1

+ .Þc2 + þd pc + � d2p/X 2p:

4.1. Equivalence classes of DO monomials We first consider the equivalence
classes containing the DO monomials. For Fp2 there are only three DO monomials:
X 2; X p+1 and X 2p. Clearly X 2p ∈ C.X 2/.

LEMMA 4.4. We have |�.X 2/| = 2.p2 − 1/ and |�.X p+1/| = 2p.p − 1/.p2 − 1/.

PROOF. Set f .X/ = X 2. We need to determine the number of pairs .L1; L2/ ∈
� × � such that L1 ◦ f ≡ f ◦ L2 mod .X q − X/. Using Lemma 4.3 and equating
terms we have the three equations

a = c2; 0 = 2cd; b = d2:

Thus cd = 0, from which it follows that L1 and L2 are necessarily monomials. In
fact, either a = c2 and b = d = 0, or b = d2 and a = c = 0, and

�.X 2/ = {
.c2 X p; cX p/ | c ∈ F∗

p2

} ∪ {
.d2 X; d X/ | d ∈ F∗

p2

}
:

Thus |�.X 2/| = 2.p2 − 1/.
Now let f .X/ = X p+1. From Lemma 4.3, we again obtain three equations:

0 = cd p; a + b = cp+1 + d p+1; 0 = cpd:

So cd = 0 and either c = 0 and a + b = d p+1, or d = 0 and a + b = cp+1. As the
cases are symmetric, we count only for the second case. There are p2 − 1 choices
of c �= 0. In each case cp+1 ∈ F∗

p . For every a ∈ Fp2 , there is exactly one choice
of b such that a + b = cp+1. However, we need to test that L1.X/ = a X p + bX is
invertible as well. With b = cp+1 −a, L1 is not invertible if and only if a p +a = cp+1;
see Lemma 3.1. As the trace mapping Tr is equidistributive, there are exactly p
choices of a for each chosen c such that L1 is not invertible. Hence, there are p2 − 1
choices for c and p2 − p choices for a. Including the symmetry, we have shown that
|�.X p+1/| = 2p.p − 1/.p2 − 1/ as required.
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4.2. Equivalence classes of DO binomials We now deal with two DO binomials:
X p+1 + X 2, and X 2p − X 2. By determining the number of weak automorphisms for
each of these binomials, we shall show that they cannot be equivalent to each other,
or to the two monomial classes of the previous section.

LEMMA 4.5. We have

|�.X p+1 + X 2/| = p.p − 1/2 and |�.X 2p − X 2/| = 2p.p − 1/3:

PROOF. Setting f .X/ = X p+1 + X 2, and applying Lemma 4.3, we obtain the three
equations

a = c2 + cd p;(4.1)

a + b = 2cd + cp+1 + d p+1;(4.2)

b = d2 + cpd:(4.3)

Adding (4.1) to (4.3) and equating the result with (4.2) eventually gives

.c − d/2 = .c − d/p+1:

It follows that c − d ∈ F∗
p (as we may omit c = d). Substituting d p = cp − c + d into

(4.3) we obtain a = cp+1 + cd . A similar calculation with (4.1) gives b = d p+1 + cd .
Now taking the last two equations and subtracting one from the other shows

a − b = cp+1 − d p+1(4.4)

implying a − b ∈ F∗
p . We shall now show that a p+1 = bp+1 implies cp+1 = d p+1.

We have a p − bp = a − b. Multiplying through by a and assuming a p+1 = bp+1 we
obtain the equation

.bp + a/.b − a/ = 0:

If a = b, then (4.4) implies cp+1 = d p+1. If a = −bp, then using (4.1) and (4.3) we
have .cp + d/2 = 0, or cp = −d . It follows that cp+1 = −cd = d p+1. It remains to
count the pairs .c; d/ satisfying c − d ∈ F∗

p and cp+1 �= d p+1. There are p2 choices
for c. For each c there are p − 1 choices for d such that c − d ∈ F∗

p . This gives
p2.p − 1/ pairs overall. We need to remove those pairs where cp+1 = d p+1. Assume
cp+1 = d p+1. We have .c−d/p = c−d . Multiplying through by c yields the equation

.d p + c/.d − c/ = 0:

So either d = c or d = −cp. If Tr.c/ = cp + c = 0, then there is only one
choice of d for which cp+1 = d p+1 (as c = −cp). If Tr.c/ �= 0, then there are two
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choices. We must therefore remove p pairs for the case Tr.c/ = 0 (as there are p
such c ∈ Fp2 ), and 2.p2 − p/ pairs for the case Tr.c/ �= 0. This means that there are
p2.p − 1/− 2p.p − 1/− p = p.p − 1/2 legitimate pairs .c; d/, and as a and b are
fixed by c and d , there are p.p − 1/2 weak automorphisms of X p+1 + X 2.

For f .X/ = X 2p − X 2, Lemma 4.3 yields the equations

a − b = c2p − d2;(4.5)

0 = 2.cd/p − 2cd;(4.6)

b − a = d2p − c2:(4.7)

Raising (4.5) to the power p and using (4.7) shows a − b ∈ Fp . Equation (4.6)
shows cd ∈ Fp . Also, equating (4.5) and (4.7) shows c2 + d2 ∈ Fp . If cd �= 0, then
.c2 + d2/=cd ∈ Fp . Setting � = c=d , we have

� p + �−p = � + �−1

from which it follows .� p+1 − 1/.� p−1 − 1/ = 0. So cp+1 = d p+1 or c=d ∈ Fp . As we
can exclude the first possibility, it follows that c2; d2 ∈ Fp (even if cd = 0). We thus
have the following relevant conditions:

c2; d2 ∈ Fp ;(4.8)

cd ∈ Fp ;(4.9)

a − b ∈ F∗
p :(4.10)

To begin counting, if c = 0, then d = gi.p+1/=2, with 0 ≤ i < 2.p − 1/. So there
are 2.p − 1/ choices for d when c = 0. Likewise, when d = 0 we have 2.p − 1/
choices for c. Overall we have 4.p − 1/ choices for pairs .c; d/ when cd = 0. When
cd �= 0, we have 2.p − 1/ choices for c

(= gi.p+1/=2
)
. We require d2; cd ∈ F∗

p , and
d p+1 �= cp+1. Conditions (4.8) and (4.9) imply d = g j .p+1/=2 where 0 ≤ j < 2.p − 1/
and i ≡ j mod 2. There are p − 1 such d . However, two such choices will give
cp+1 = d p+1 (they are d = c or d = −c). So there are p − 3 legitimate choices for d .
Overall we have 2.p − 1/.p − 3/+ 4.p − 1/ = 2.p − 1/2 choices for pairs .c; d/. For
these pairs .c; d/, choosing an a ∈ Fp2 fixes b. We are left to determine the number of
a ∈ Fp2 such that a p+1 �= bp+1 where a − b ∈ Fp . We have b = a + Þ, where Þ ∈ F∗

p .
A short calculation yields

bp+1 = a p+1 + Þ.Þ + Tr.a//:

Suppose a p+1 = bp+1. Then Tr.a/ = −Þ and there are p choices for a ∈ Fp2 such
that this holds. Therefore there are p2 − p choices for a (and hence pairs .a; b/). In
summary, there are .p2 − p/.2.p − 1/2/ = 2p.p − 1/3 weak automorphisms of the
polynomial X 2p − X 2.
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The equation involving � + �−1 in the last argument will be familiar to those who
have studied the Dickson Polynomials of the first and second kind, see [14].

4.3. Equivalence classes of DO trinomials It remains to consider two final classes,
both of which are generated by DO trinomials. In the next section we shall show that
we have exhausted the number of classes.

LEMMA 4.6. We have

|�.X 2p − 2X p+1 + X 2/| = p2.p − 1/3 and

|�.X 2p + gX p+1 + X 2/| = 2.p − 1/2:

PROOF. Let f .X/ = X 2p − 2X p+1 + X 2. Applying Lemma 4.3 yields

a + b = d2 − 2cpd + c2p = .cp − d/2;(4.11)

a + b = cp+1 + d p+1 − cd − .cd/p = .cp − d/.c − d p/;(4.12)

a + b = c2 − 2cd p + d2p = .c − d p/2:(4.13)

Equating (4.11) and (4.12), we have either c + d ∈ Fp or cp = d . However, cp = d
implies c + d ∈ Fp . We also have a + b ∈ Fp as (4.12) is unaltered by taking
pth powers. The count for pairs .c; d/ follows in exactly the same fashion as for
f .X/ = X p+1 + X 2, resulting in p.p − 1/2 pairs. The calculation for pairs .a; b/ is
exactly the same as it was for the case f .X/ = X 2p − X 2, giving p2 − p such pairs.
Thus |�.X 2p − 2X p+1 + X 2/| = p2.p − 1/3.

Now set f .X/ = X 2p + gX p+1 + X 2. From Lemma 4.3, the following three
equations must be satisfied.

a + b = d2 + gcpd + c2p;(4.14)

g pa + gb = g.cp+1 + d p+1/+ 2cd + 2.cd/p;(4.15)

a + b = c2 + gcd p + d2p:(4.16)

From (4.14), we have

.a + b/p + .a + b/ = c2p + c2 + d2p + d2 + g pcd p + gcpd:

Likewise, (4.16) yields

.a + b/p + .a + b/ = c2p + c2 + d2p + d2 + g pcpd + gcd p:

Equating these shows that cpd ∈ Fp .
Returning to (4.14) and (4.16), we have c2 − d2 ∈ Fp . If cd �= 0, then

c2 − d2 = c2p − d2p = c2p − c−2.cpd/2 = c2p−2.c2 − d2/:
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If c2 = d2, then cp+1 = d p+1, a case we must exclude. It follows that c2; d2 ∈ Fp

(regardless of whether cd = 0 or not). These are almost the same conditions for c; d
as in the case f .X/ = X 2p − X 2 (replace cd ∈ Fp with cpd ∈ Fp ). A similar counting
argument can be used, giving 2.p−1/2 pairs .c; d/. It remains to show that a and b are
completely determined by c and d , and that a p+1 �= bp+1 holds whenever cp+1 �= d p+1.
Equations (4.14)–(4.16) now generate

a + b = c2 + d2 + gcpd;(4.17)

ag p + bg = g.cp+1 + d p+1/+ 2 Tr.cd/:(4.18)

Multiplying (4.17) by g and subtracting the result from (4.18) shows

.g p − g/a = 2 Tr.cd/+ g.c p+1 + d p+1 − c2 − d2/+ g2cpd:

So a is determined completely by c and d , which in turn implies b is also. Suppose
a p+1 = bp+1. We may assume ab �= 0. Obviously

g p.a p+1 − bp+1/+ a p.bg − bg/ = 0:

It follows that a p.ag p + bg/− b.bpg p + a pg/ = 0. Raising this to the power p and
subtracting the result from the initial expression we obtain

.a + b/.ag p + bg/p − .a + b/p.ag p + bg/ = 0:(4.19)

Substituting into (4.19) using the values of a + b and ag p + bg (and their pth powers)
from (4.17) and (4.18), one obtains the equation

cp+3 + d p+3 − 2c2d p+1 = 0:(4.20)

As cpd = cd p, (4.20) implies

.d p+1 − cp+1/.d2 − c2/ = 0:

Thus a p+1 = bp+1 implies cp+1 = d p+1, which are the cases we have already excluded.
Hence |�.X 2p + gX p+1 + X 2/| = 2.p − 1/2.

4.4. A complete set of equivalence classes We need to show that the six classes
given in the previous three sections do indeed account for all DO polynomials over Fp2 .

THEOREM 4.7. Under weak equivalence, there are six equivalence classes of DO
polynomials, and these are described by the six polynomials X 2, X p+1, X p+1 + X 2,
X 2p − X 2, X 2p − 2X p+1 + X 2 and X 2p + gX p+1 + X 2.
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PROOF. That the six polynomials given always describe different classes is easily
established from noting that no two formulae for the number of weak automorphisms
(as determined in the previous three sections) can be equal for a fixed prime p > 2.

It remains to show that these six classes contain all DO polynomials over Fp2 .
Let f1.X/ = X 2; f2.X/ = X p+1; f3.X/ = X p+1 + X 2; f4.X/ = X 2p − X 2; f5.X/ =
X 2p −2X p+1 + X 2 and f6.X/ = X 2p +gX p+1+ X 2. There are p6 −1 DO polynomials
over Fp2 (we exclude the zero polynomial). We need to show

p6 − 1 =
6∑

i=1

|C. fi/|:

Recall |� | = p.p − 1/.p2 − 1/. By Lemma 4.2 and the results of the previous three
sections, we have

|C. f1/| =
(

p2 − 1

2

)
.p4 − 2p3 + p2/; |C. f2/| =

(
p2 − 1

2

)
.p2 − p/;

|C. f3/| =
(

p2 − 1

2

)
.2p3 − 2p/; |C. f4/| =

(
p2 − 1

2

)
.p2 + p/;

|C. f5/| =
(

p2 − 1

2

)
.2p + 2/; |C. f6/| =

(
p2 − 1

2

)
.p4 − p2/:

Summing gives

6∑
i=1

|C. fi /| =
(

p2 − 1

2

)
.2p4 + 2p2 + 2/ = p6 − 1

as required.

Since two rings are weakly isomorphic if they are isomorphic, it is seen that this
construction method yields at least six non-isomorphic rings of order p2 for any odd
prime p. Computational evidence leads us to make the following conjecture.

CONJECTURE 4.8. Let p an odd prime. Then the number of non-isomorphic rings
{Fp2;+; ? f } generated by polynomials f ∈ Fp2[X ] is p2 + 3p + 6 if p > 3 and
p2 + 3p + 5 if p = 3.

The method used above for weak isomorphism may be adapted for the isomorphism
problem provided good class representatives can be found.

5. Planar functions

A polynomial f over Fq is planar if for every a ∈ F∗
q , the polynomial 1 f .X; a/

is a permutation polynomial over Fq . Planar functions have been used to construct
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projective planes, see [9]. All planar DO polynomials necessarily describe semifield
planes.

We end the article by applying our results to classify those DO polynomials which
are planar over Fp2 . By [7, Theorem 2.3], either every polynomial in a class is a planar
function, or every polynomial in a class is not. So we need only test the planarity of
the class representatives.

THEOREM 5.1. A DO polynomial f ∈ Fp2[X ] is planar if and and only if f .X/ ≡
L1.L2

2.X// mod .X p2 − X/, where L1; L2 ∈ � .

PROOF. It follows from [7, Theorem 3.3] that X 2 is planar and X p+1 is not planar.
For the remaining class representatives, it is easy to show

1 f3.X; a/ = a X p + .a p + 2a/X;

1 f4.X; a/ = 2..a X/p − a X/;

1 f5.X; a/ = 2..a p − a/X p − .a p − a/X/;

1 f6.X; a/ = .2a p + ga/X p + .2a + ga p/X/:

We proceed to show that each of these difference polynomials cannot be permutation
polynomials of Fp2 for all a ∈ F∗

p2 . Now a p+1 − .a p + 2a/p+1 = −2.a p + a/2 =
−2 Tr.a/2:As the trace mapping is equidistributive, there are p −1 choices of a ∈ F∗

p2

such that Tr.a/ = 0 and a X p+.a p+2a/X is not a permutation polynomial (by Lemma
3.1). For any a ∈ F∗

p2 , both 1 f4.X; a/ and 1 f5.X; a/ are permutation polynomials if
and only if X p − X is. Since X p − X has p roots, 1 f4.X; a/ and 1 f5.X; a/ are never
permutation polyonomials. Finally, for a ∈ Fp , .2a p + ga/X p + .2a + ga p/X =
a.2 + g/Tr.X/, which cannot be a permutation polynomial. Hence X 2 is the only
class representative which is planar and every planar DO polynomial must be of the
form L1 ◦ X 2 ◦ L2 mod .X p2 − X/ with L1; L2 ∈ � .

It has been known for some time, see [13], that any semifield plane of order p2

is desarguesian and that the class C.X 2/ describes the desarguesian plane, see [7,
Theorem 5.2]. Thus Theorem 5.1 shows there are no other planar DO polynomials
which describe the desarguesian plane of order p2.
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