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Abstract

This paper concerns a generalization of the Markov branching process that preserves the random walk
jump chain, but admits arbitrary positive jump rates. Necessary and sufficient conditions are found for
regularity, including a generalization of the Harris-Dynkin integral condition when the jump rates are
reciprocals of a Hausdorff moment sequence. Behaviour of the expected time to extinction is found,
and some asymptotic properties of the explosion time are given for the case where extinction cannot
occur. Existence of a unique invariant measure is shown, and conditions found for unique solution of the
Forward equations. The ergodicity of a resurrected version is investigated.
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1. Introduction

Let {p j : j = 0; 1; : : : } be a probability mass function satisfying pj < 1 for all j
and p1 = 0, and denote its probability generating function by f .s/ = ∑

j≥0 p j s j .
Next, let ½. j/ > 0 for natural numbers j and ½.0/ = 0. Our principal objective is to
examine extinction and explosion of the minimal Markov process X := .Xt : t ≥ 0/
with the non-negative integers as state space, and whose q-matrix Q has elements

qi j =

⎧⎪⎨
⎪⎩
½.i/p j−i+1 if i > 0; j ≥ 0 and i �= j;

−½.i/ if i = j ≥ 1;

0 otherwise:

(1.1)
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Let m = f ′.1−/ ≤ ∞ and let q be the least non-negative solution of s = f .s/.
The jump chain determined by the q-matrix (1.1) is an unrestricted random walk
S = {Sn : n ≥ 0} that is skip-free to the left, sometimes called left-continuous. Let
N = inf{n : Sn = 0} and −0 = inf{t : Xt = 0} be the zero-state hitting times of S
and X , respectively. Denoting Pi.·/ = P.·|X0 = i/, the known fact Pi.N < ∞/ = qi

implies that Pi.−0 < ∞/ = qi , irrespective of the form of the jump rates ½.i/.
Let −e = sup{t > 0 : Xt < ∞} be the explosion time of the minimal process. We

say that X is regular if Pi.−e = ∞/ = 1, and irregular otherwise. If X is irregular
then the backward Kolmogorov (BK) sytem of equations has many solutions, and this
may also be true for the forward Kolmogorov (FK) system. Examination of these
possibilities is the main objective of this paper. To set the context we look first at what
is presently known.

The minimal process Z := .Zt : t ≥ 0/ for the case ½.i/ = ai , where a > 0,
is the Markov branching process (MBP), which allows the interpretation that Zt is
the size at time t of a population of individuals whose lifetimes have an exponential
law with density ae−ax and which, at the end of their lives, produce j offspring with
probability p j . All lifetimes and progeny numbers are independent. This physical
model implies that family lineages develop independently of each other, the branching
property. This is expressed analytically by the generating function identity

Fi.s; t/ := Ei .s
Zt / = [

F1.s; t/
]i
; .i = 0; 1; : : : /;

where Ei .·/ denotes expectation conditional on the initial state i . The BK system has
only one solution with the branching property, and this solution uniquely solves the
FK system (Harris [15, page 97]). Hence only the minimal process bears the above
interpretation as a model of population growth. It follows also that the zero state is
absorbing, corresponding in the physical model to population extinction. We write
F.s; t/ = F1.s; t/.

The BK system for the MBP can be expressed in integrated form as∫ F.s;t/

s

du

f .u/− u
= at; .0 ≤ s ≤ 1/;(1.2)

where the integral is defined by continuity if s = q. Since Pi .Zt < ∞/ ≡ 1 if and
only if Pi.−e = ∞/ = 1, we see that by letting s ↑ 1 that the MBP is regular if and
only if for each ž ∈ .0; 1 − q/, the integral

I =
∫ 1

1−ž

ds

s − f .s/
(1.3)

is divergent. This criterion usually is named after Harris [15] who gave this analytical
proof in more detail. Harris mentioned that the criterion appeared without proof in
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Zolotarev [31, Equation (1)], and also that it was attributed there to Dynkin. Harris’
reference was to the Russion version, and the Dynkin attribution was not included
in the English translation. Savits [29] called this regularity condition ‘a well known
result of Dynkin’, but his only reference was to Harris’ attribution. In addition, Savits
mentioned a probabilistic proof in unpublished Stanford lecture notes of Ikeda. This
proof probably is the same as that in Ikeda et al. [16, page 395]. Properties of the
irregular MBP have been examined by Pakes [25] and Sagitov [28].

We seek general criteria for regularity of the nonlinear MBP, defined as the minimal
process corresponding to (1.1). The most far-reaching generalization of the MBP
admits any q-matrix subject to the skip-free property qi j = 0 if j < i − 1 (and which
is inherent in (1.1)). Lenz [19] considered this most general model and he obtained a
condition for regularity under the additional constraint that there is a constant K ≥ 1
such that qi j = 0 if j − i > K ≥ 1, that is, upward jumps are bounded. He also
considered the particular case of (1.1) with

½.i/ = ai � ;(1.4)

where 1=2 < � ≤ 1 is a constant and, it seems, p j−i+1 = 0 if j − i > K . This
case is always regular. In fact, even without restricting jump sizes, and assuming only
0 < � ≤ 1, the minimal process in this case is stochastically smaller than the MBP
(the case � = 1), and hence .Xt/ is regular if the MBP is.

Kuster [18] allowed a completely general jump chain, but restricted the jump rate
to be linear, as for the MBP, or sublinear in the sense that there exists � ∈ [0; 1] such
that {i−�½.i/ : i ≥ 1} is non-increasing and ½.i/= i → 0. The regularity problem here
is open, although the moment conditions imposed by Kuster [18] ensure his process
is regular.

Reinhard [27] retained the skip-free property of the jump chain used by Lenz [19]
and she assumeed (1.4) with 0 < � ≤ 1. However once again her moment conditions
ensure regularity, and her interest centered on diffusion approximations under the
near-criticality condition

∑
j �=i jqi j=½.i/ = 1 + O.i−1+þ/ for some þ > 0. This work

seems to be independent of Lipow [20].
The motivation for the above generalizations of the MBP is that in some (un-

defined?) sense they capture the growth in numbers of individuals whose lifetime
and/or splitting laws depend on instantaneous population size. A mathematical moti-
vation is finding perturbations of the MBP whose properties are qualitatively similar
to the MBP.

Quite independently of all this earlier work, Chen [9] considered the model (1.1),
including the case (1.4) with 0 < � ≤ 1. His motivation came partly from controlled
branching processes and more particularly from (1.1) with ½.i/ = i2, a process said
to be associated with the dual of the Fleming-Viot process (Etheridge [12]). Chen [9]
proved regularity under various conditions. In particular, he showed that if (1.4) holds
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and 1 < m < ∞, then X is regular if and only if 0 < � ≤ 1. This assertion follows
also from the general criteria for regularity of jump Markov processes proved using
martingale arguments by Kersting and Klebaner [17], and Hamza and Klebaner [14]
should be mentioned in this connection.

Chen [5] and Chen et al. [6] examined some properties of the generalized MBP,
defined as the minimal process corresponding to (1.1) and (1.4) with � > 0. The latter
reference established an integral test, which subsumes the Harris-Dynkin test. They
used an analytical approach based on identities satisfied by transition probabilities and
resolvent elements.

In this paper we provide a more probabilistic approach, which substantially reduces
the above assumptions about the jump rates. The case m ≤ 1 is seen in Section 2
to almost surely (a.s.) hit {0}, and hence be regular. We obtain a substantially
complete description of the asymptotic behaviour of the expected hitting time. In
Section 3 we obtain necessary and sufficient conditions for regularity assuming only
that {½. j/ : j ≥ 1} is ultimately non-decreasing. In particular, a generalization
of (1.4) in which {1=½. j/} is a moment sequence gives a rather natural extension
of the Harris-Dynkin criterion. For the irregular case we give some simple results
on asymptotics for the explosion time which show the variety of behaviours that are
possible. After completing this research Dr A. Chen sent me a copy of Chen et al. [7],
which contains results overlapping those in Sections 3 and 5 below, but with substantial
differences in their proofs. In particular, these authors developed a test sequence for
assessing whether or not the FK system is uniquely satisfied by the minimal transition
semigroup. This test was used by Chen et al. [8] to derive a simple necessary and
sufficient condition for such uniqueness. In Section 5 we provide what we believe is
a more direct proof.

Existence and form of stationary measures for the transition semigroup of X is
addressed in Section 4. Resurrected forms of X are constructed by allowing q0 j > 0
for at least one value of j > 0. Chen [4] considers regularity and ergodicity properties
when (1.4) holds, and in Section 6 we extend these results to arbitrary jump rates.

2. The case m ≤ 1

If m ≤ 1, then p0 > 0 and q = 1 and hence S will hit the zero state, which
is absorbing for X under the sole condition that ½.0/ = 0. The following result is
immediate. Recall that −0 is the hitting time of {0}, and let qi = Pi.−0 < ∞/.

THEOREM 2.1. Suppose (1.1) holds with ½.0/ = 0 and ½.i/ > 0 for all positive i .
If m ≤ 1, then the minimal process X is regular and qi ≡ 1.
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Let {An : n ≥ 0} denote the random walk S stopped when it first hits {0},

An =
{

Sn if S0; : : : ; Sn > 0;

0 otherwise:

Denote its transition probabilities by a.n/i j = Pi.An = j/, and the mean occupation
time of state { j} by Ai j = ∑

n≥0 a.n/i j , which is finite if j ≥ 1. It is clear that

Hi := Ei .−0/ =
∑
j≥1

Ai j=½. j/:(2.1)

Discussion of properties of Hi requires the following facts about the stopped random
walk; see Pakes [21] and references cited there.

First, Ei .x N / = gi.x/ where g is the unique solution of the functional equation
g = x f .g/. Let Þ.n/i .s/ = Ei .s An /. Pakes [21, Section 3] showed that

Þ
.n+1/
i .s/ = b.s/Þ.n/i .s/− .b.s/− 1/a.n/i0 ;

where b.s/ = f .s/=s. It follows that

Ai .s; x/ :=
∞∑

n=0

Þ
.n/
i .s/x

n = si − .b.s/− 1/x Ai .0; x/

1 − xb.s/
;(2.2)

and since the denominator is zero when s = g.x/ we obtain

Ai .0; x/ =
∞∑

n=0

a.n/i0 xn = gi.x/

1 − x
:

Subtraction yields
∞∑

n=0

Ei .s
An ; An > 0/xn = Ai .s; x/− Ai .0; x/ = si − gi.x/

1 − xb.s/
;(2.3)

and since g.1−/ = 1 if m ≤ 1, we obtain the following generating function for Ai j ,

∑
j≥1

Ai j s
j = s

1 − si

f .s/− s
:(2.4)

The coefficients can be written explicitly as

Ai j = u j−i + · · · + u j−1(2.5)

where {u j} is the renewal sequence with the generating function .1 − w.s//−1 and
w.s/ = .1 − f .s//=.1 − s/. The associated renewal process is transient if m < 1 and
recurrent if m = 1. In (2.5) we define u j = 0 if j < 0.
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This representation allows us to determine the asymptotic behaviour of Hi , and
hence understand the rôle of the jump rates in this behaviour. It is worth recalling for
the MBP case that

Hi ∼ log i

a.1 − m/
; .i → ∞/;

if m < 1, and this can be refined under further moment conditions; see (2.6) in Pakes
[23]. If m = 1 and f ′′.1/ < ∞, then Hi ≡ ∞. We deal separately with the subcritical
.m < 1/ and critical .m = 1/ cases.

THEOREM 2.2. Suppose m < 1, and let 3.i/ = ∑i
j=1 1=½. j/, 3.0/ = 0, and

3 = limi→∞3.i/.

(a) If 3 < ∞, then limi→∞ Hi = 3=.1 − m/−∑
j≥1 u j3. j/:

(b) Suppose that 3 = ∞, þ := inf j≥1 ½. j/ > 0, and that there is a positive
constant M such that

sup
l≥1

3.i + l/−3.i/

3.l/
≤ M(2.6)

uniformly for i ≥ 1. Then Hi < ∞ for all i and Hi ∼ 3.i/=.1 − m/:

PROOF. Observe that (2.1) and (2.5) can be expressed as

Hi = D1i + D2i :=
i∑

j=1

1

½. j/

j−1∑
l=0

ul +
∑
j>i

1

½. j/

j−1∑
l= j−i

ul :(2.7)

Using the fact that
∑

j≥0 u j = .1 − m/−1, we see for case (a) that

D1i →
∑
j≥1

1

½. j/

j−1∑
l=0

ul =
∑
l≥0

ul.3−3.l//;

which equals the asserted limit form. Similarly, D2i is dominated by

1

1 − m

∑
j>i

1

½. j/
→ 0:

For case (b) write

D1i = 3.i/

1 − m
−

i∑
j=1

1

½. j/

∑
l≥ j

ul :

For a given ž > 0 choose i ′ so that
∑

l>i ′ ul < ž, and observe that the double sum D3i

is dominated by .1 − m/−1
∑i ′

j=1 1=½. j/+ ž3.i/. Hence D3i = o.3.i//. Reversing
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the order of summation for D2i yields D2i = 11i +12i where

11i =
i∑

l=1

ul

i+l∑
j=i+1

½−1. j/ =
i∑

l=1

ul .3.i + l/ −3.i//

and

12i =
∑
l>i

ul .3.i + l/−3.l// :

It follows from (2.6) that 11i ≤ M
∑i

l=1 ul3.l/ ≤ M
[∑i ′

l=1 ul3.l/ + ž3.i/
]
; so

11i = o.3.i//. Observe that 3.i + l/ − 3.l/ ≤ i=þ and hence 12i < ∞ for all i .
Interchanging the rôles of i and l in (2.6) yields the bound

12i ≤ M3.i/
∑
l>i

ul = o.3.i//;

thus completing the proof.

Observe that 12i >
∑

l>i ul=½.l + 1/ and that if þ = 0, then it is possible that
the series diverges, that is, that Hi ≡ ∞. If the series converges, and if {½. j/}
is ultimately non-decreasing, then Hi < ∞. In addition, (2.6) holds if {½. j/} is
ultimately non-decreasing.

THEOREM 2.3. Suppose m = 1 and � = 2= f ′′.1/ > 0. Then Hi ≡ ∞ if 3 = ∞,
and Hi < ∞ for all i if 3 < ∞. In the latter case:

(a) If
∑

j≥1 j=½. j/ < ∞, then limi→∞ Hi = ∑
j≥1.1=½. j//

∑ j−1
l=0 ul < ∞;

(b) If
∑

j≥1 j=½. j/ = ∞, then

Hi ∼ �
[L.i/+ i.3−3.i//

]
;

where L.i/ = ∑i
j=1 j=½. j/.

PROOF. Since w′.1/ = � −1, the discrete renewal theorem asserts that ui → � .
Observe that

D2i = � i.3−3.i//+
∑
j>i

1

½. j/

j−1∑
l= j−i

.ul − � /:

There are i summands in the inner sum, and they are smaller in modulus than ž if
l > l.ž/. It follows that the double sum equals o.i.3−3.i//+ O.3−3.i//. Thus
D2i ∼ � i.3−3.i// for both cases (a) and (b).

In case (a) it is clear that i.3−3.i// ≤ ∑
j≥i j=½. j/ → 0, implying D2i → 0, and

that limi→∞ D1i < ∞ since its inner sum ∼ j� as j → ∞. In case (b) D1i ∼ �L.i/,
and the assertion follows.
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EXAMPLE 2.4. Suppose m = 1, � > 0, and that ½.i/ = i �L.i/ where L.x/ is
slowly varying at infinity, and either � > 1, or � = 1 and 3 < ∞. We have case (a)
of Theorem 2.3 if � > 2, or if � = 2 and

∑
i 1= i L.i/ < ∞, and we have case (b)

otherwise. In case (b) we have i.3−3.i// ∼ i 2−� =.� − 1/L.i/. If 1 ≤ � < 2, then
L.i/ ∼ i 2−�=.2 − �/L.i/, and hence

Hi ∼ � i2−�

.2 − �/.� − 1/L.i/
:

If � = 2, then L.i/ = ∑i
j=1 1=j L. j/ diverges to infinity in a slowly varying manner.

If 0 < ž < 1, then

L.i/L.i/ ≥
∑
ži≤ j≤i

L.i/=j L. j/ ∼
∑
ži≤ j≤i

1=j → log.1=ž/;

where we have used the uniform convergence theorem for slowly varying functions.
Letting ž → 0, we conclude that Hi ∼ �L.i/. In particular, if L. j/ → a, then
Hi ∼ .� =a/ log i .

An explicit integral representation for Hi follows by assuming there exists a measure
¼ supported in the unit interval [0; 1] satisfying (i) ¼..0; 1// > 0, and (ii):

½.i/ =
[∫ 1

0

si−1¼.ds/

]−1

:(2.8)

Assumption (i) ensures that ¼ is not concentrated at the origin. The jump rates are
unboundedly increasing if and only if ¼.{1}/ = 0. Integrating (2.4) with respect to ¼
yields the following result.

THEOREM 2.5. Suppose (1.1) and (2.8) hold and m ≤ 1. Then the expected time to
extinction is

Hi =
∫ 1

0

1 − si

f .s/− s
¼.ds/:(2.9)

Taking ¼.ds/ = a−1ds in (2.8) gives the MBP case ½.i/ = ai ; see Pakes [22,
Equation (3.3)]. If � > 0 and

¼.ds/ = .log.1=s//�−1

a0.�/
ds;(2.10)

then (1.4) holds; see Chen [5, Equation (4.2)]. The asymptotic forms in Example 2.4
could be obtained from (2.9) by assuming that ¼.ds/ = �.s/ ds, where �.x/ is
regularly varying at zero. It is obvious that

lim
i→∞

Hi =
∫ 1

0

¼.ds/

f .s/− s
≤ ∞:(2.11)
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3. The super-critical case, m > 1

In this section we assume 1 < m ≤ ∞, in which case the jump chain {An} drifts
to ∞ with probability 1 − qi if X0 = i , and then explosion may occur if the jump
rates grow sufficiently fast. If this occurs for the MBP, then the BK system has many
distinct solutions, although it is known that the FK system is satisfied only by the
minimal solution (Harris (1963)). Let I = {N = ∞} = {Xt → ∞}. A small
adaptation of the well-known explosion criterion for jump Markov processes asserts
that �i := Pi.−e < ∞ | I/ = 1 if and only if

Pi

(∑
n≥1

1

½.An/
< ∞

∣∣∣ I
)

= 1:(3.1)

We can apply this criterion immediately to dispose of one case, since the series
diverges a.s. on I if the jump rates are bounded.

LEMMA 3.1. If 1 < m ≤ ∞ and {½. j/} is bounded, then X is regular.

In general, what we may call a Feller-Lundberg type of criterion would assert that
(3.1) holds if and only if

�i := Ei .−e|I/ =
∑
n≥1

Ei

[
1=½.An/

∣∣ I] < ∞:(3.2)

Obviously (3.2) always implies (3.1), and the burden of the following proofs is to
give conditions under which the converse holds. See Pakes [24, Section 2] for an
elementary example of a random series of independent summands that converges, but
has infinite mean.

We begin by investigating conditions for (3.2). Observe that Pi .An = j |I/ =
a.n/i j .1 − q j /=.1 − qi /, and hence that

�i =
∑
j≥1

.½. j//−1 Ai j
1 − q j

1 − qi
:(3.3)

Observing that g.1−/ = q if m > 1, we have the following replacement for (2.4),

∑
j≥1

Ai j s
j = s

qi − si

f .s/− s
;(3.4)

which yields the following result.
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THEOREM 3.2. If 1 < m ≤ ∞ and (2.8) both hold, then

�i = .1 − qi /−1

∫ 1

0

s−1

[
si − qi

1 − b.s/
− qi 1 − si

1 − b.qs/

]
¼.ds/:(3.5)

In particular, �i = ∞ for all i ≥ 1 if and only if

J :=
∫ 1

1−ž

¼.ds/

s − f .s/
= ∞(3.6)

for any ž ∈ .0; 1 − q/.

Theorem 3.2 implies that X is irregular if (2.8) holds and J < ∞. The next
result proves the converse, thus giving a direct generalization of the Harris-Dynkin
integral criterion, as well as generalizing the integral criterion obtained with analytic
arguments based on the resolvent by Chen et al. [6]. We use the following result.

LEMMA D. Let p0 = 0, S0 = 0 and Sn = V1 + · · · + Vn where {Vn : n ≥ 1}
is an independent sequence of N-valued random variables having the probability
generating function f .s/=s. If 0 < ½. j/ → ∞ as j → ∞ and there exists j ′ such
that ½. j + 1/ ≥ ½. j/ . j ≥ j ′/, then for each i ∈ N,∑

n≥1

1=½.i + Sn/ = ∞ if and only if
∑
n≥1

E[1=½.i + Sn/] = ∞:

This is essentially part (ii) of the theorem in Doney [10]. He assumed that {½. j/}
is non-decreasing, but in our case altering details of his proof shows that this is
not necessary, nor is his condition (∗) required. We will say that the rate sequence
is ultimately monotone (and hence non-decreasing) if it satisfies the conditions in
Lemma D.

THEOREM 3.3. Suppose that (2.8) holds for the q-matrix (1.1), that ¼.{1}/ = 0,
and that 1 < m ≤ ∞. Then the minimal process is regular if and only if (3.6) holds.

PROOF. We consider two cases. (i) If p0 = 0 then {i + Sn} is the jump chain and
the assertion follows directly from Lemma D, (3.1) and Theorem 3.2.

(ii) Suppose 0 < p0 < 1. We prove that J = ∞ implies that X is regular by
stochastic comparison with the case p0 = 0. Let r0 = 1 − p0, f̂ .s/ = . f .s/− p0/=r0,
q̂i j = qi j=r0 if j > i , q̂i j = 0 if j < i , and q̂ii = qii . The minimal process
corresponding to the q-matrix Q̂ is a generalized MBP and, from case (i), it is regular
if and only if ∫ 1

0

¼.ds/

s − f̂ .s/
= r0

∫ 1

0

¼.ds/

s − f .s/+ p0.1 − s/
= ∞:
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The denominator in the second integral is asymptotically proportional to s − f .s/ as
s → 1−, so it follows from (3.6) that X̂ is regular if and only if (3.6) holds.

It is easily checked that
∑

j≥k q̂i j ≥ ∑
j≥k qi j for all i; k ≥ 0 and hence

∑
k≤ j

p̂i j.t/ ≤
∑
k≤ j

pi j.t/:

This assertion follows from the proof of Kirstein’s theorem as presented by Anderson
[1, page 250]. Specifically, the inequality holds for the approximating transition
probabilities formed from n × n north-west truncations of Q and Q̂, and the assertion
follows by letting n → ∞ and using [1, Proposition 2.2.14]. Now let k → ∞ to
obtain the inequality

Pi.X̂ t < ∞/ ≤ Pi.Xt < ∞/;(3.7)

and hence regularity of X is implied by that of X̂ , in other words, (3.6) implies that
X is regular.

EXAMPLE 3.4. If 1 < m < ∞, then (3.6) holds if and only if
∫ 1

0 ¼.ds/=.1−s/ = ∞.
It follows from (2.8) that X is regular if and only if

∑
j≥1

1

½. j/
= ∞:(3.8)

EXAMPLE 3.5. Suppose � > 0 and (2.10) holds. Since log.1=s/ ∼ 1 − s as s → 1,
X is regular if and only if

J� :=
∫ 1

1−ž

.1 − s/�−1

s − f .s/
ds = ∞:

This criterion is derived by different means in Chen et al. [6, see Equations (2.3)
and (2.4)]. It follows that X is irregular if � > 1, and it is regular if � < 1 and
m < ∞. Suppose that m = ∞ and 1− f .s/ = .1− s/ÞL..1− s/−1/where 0 ≤ Þ ≤ 1
and L is slowly varying at infinity. Then s − f .s/ ∼ 1 − f .s/ and hence J� = ∞ if
and only if

J̃� =
∫ ∞

1=ž

(
x1+�−ÞL.x/

)−1
dx = ∞:

Hence X is regular if � < Þ and irregular if � > Þ. Either outcome can occur if
� = Þ. These conclusions remain intact if ¼.ds/ = .1 − s/�−1 M..1 − s/−1/, where
M.x/ is slowly varying at infinity, provided � �= Þ. If � = Þ, then X is regular if and
only if

∫∞
1 .M.x/=x L.x// dx = ∞.
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The outcome we found in Example 3.4 holds without any structural assumption on
the jump rates.

THEOREM 3.6. If 1 < m < ∞, then X is regular if and only if (3.8) holds.

In order to explain this, and for other purposes, we need the following notation
and facts. The function w.s; q/ = .q − f .s//=.q − s/ is a probability generating
function. To see this observe that w.1/ = 1 and, if q > 0, then w.qs; q/ =
.1− f .qs/=q/=.1− s/ is the generating function of the terms

∑
l> j plql−1 ≥ 0. Write

w.s; q/ = ∑
j≥1 w j.q/s j and observe that

w j.q/ = q− j
∑
l> j

plq
l−1;(3.9)

w′.1; q/ = .m − 1/=.1 − q/, and that w0.q/ = 1 − p0=q (where we adopt the
convention that p0=q = 1 if p0 = 0). Thus .1 − w.s; q//−1 = ∑

j≥0 u j.q/s j where
{u j.q/} is a (generalized) renewal sequence, and hence the discrete renewal theorem
yields u∞.q/ := lim j→∞ u j.q/ = 1=w′.1; q/.

Theorem 3.6 is proved in the case p0 > 0 by Chen et al. [7] without reference to
(3.1) or to Reuter’s (equivalent) analytical condition (Anderson [1, page 81]). They
prove the following identity for the resolvent elements ri j .�/ = ∫∞

0 pi j.t/e−� t dt , valid
if p0 ≥ 0,

u j−i.q/− �

j−1∑
k=0

rik.�/u j−k.q/ = ri; j−1.�/½. j − 1/− qri j.�/½. j/;(3.10)

which is obtained from the generating function form of the FK-system. Letting
j → ∞ it follows from the dominated convergence theorem that

lim
j→∞

[
ri; j−1.�/½. j − 1/− qri j.�/½. j/

] = u∞.q/1.�/

where 1.�/ = 1 − �
∑∞

k=0 rik.�/. In particular, if X is irregular, then 1.�/ > 0, so
choosing 0 < Ž < 1.�/ we find in the case q = 0 that 1=½. j/ ≤ ri j.�/=Žu∞.0/ if j
is sufficiently large and hence

∑
j 1=½. j/ < ∞. On the other hand, it follows from

(3.10) that there is a constant C > u∞.q/ > 0, independent of � and j such that if
j ≥ 1, then ri j.�/ ≤ C=½. j/. Summing over j and assuming X is regular yields
�−1 ≤ ∑

j 1=½. j/. Letting � → 0 shows that (3.8) holds. This argument completes
the proof of Theorem 3.6 for the case p0 = 0, and it follows the strategy used by Chen
et al. [7].

In the results which follow, we show, subject to some mild technical conditions,
that a necessary and sufficient condition ((3.11) below) for regularity is possible in
the case m = ∞. The first such result places no condition on the jump rates, but it
assumes a little about the offspring distribution.
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THEOREM 3.7. Suppose that 1 < m ≤ ∞ and that one of the following conditions
holds:

(a) p0 > 0; or
(b) p0 = 0 and lim sup j→∞ p j+1=pj < ∞.

Then either �i = ∞ for all i or �i < ∞ for all i . The former occurs if and only if

K .q/ :=
∑
j≥0

u j.q/

½. j + 1/
= ∞:(3.11)

In particular, X is irregular if K .q/ < ∞.

PROOF. We see from (3.3) that �i = ∞ if and only if
∑

j≥1 Ai j=½. j/ = ∞. By
expressing f .s/ in terms of w.s; q/ in the right-hand side of (3.4) it follows that

Ai j =
i∑

k=1

qi−ku j−k.q/:(3.12)

If (a) holds, then Ai j ≥ qi−1u j−1.q/ and hence �i < ∞ implies that K .q/ < ∞
for all i . Conversely, it is clear that if K .q/ < ∞ then �i < ∞ provided L :=
lim sup j→∞ u j−1.q/=u j .q/ < ∞. The recursive relation w j.q/ = qw j+1.q/ + p j+1

follows from (3.9), and it implies that w j+1.q/=w j .q/ ≤ q−1. It follows from ra-
tio estimates for renewal sequences (Theorem 2.3 of Garsia et al. [13]) that M :=
lim sup j→∞ u j.q/=u j−1.q/ ≤ q−1, and hence that L ≤ .mq/−1 < ∞, as desired. In
the case of Assumption (b) the assertion follows because this additional hypothesis
ensures that the quotients u j−1.0/=u j.0/ are bounded away from zero and infinity.
The proof is complete.

Our next result pushes the analysis of Chen et al. [7] as far as possible, although the
final outcome is unsatisfactory in the case p0 > 0 because the regularity assumption
used to make the proof work cannot easily be expressed in terms of the offspring
distribution.

THEOREM 3.8. If m = ∞ and {w j.q/} is a log-convex sequence, then X is regular
if and only if (3.11) holds

PROOF. de Bruijn and Erdös [3] show that the log-convexity condition implies
the same property of the renewal sequence {u j.q/}, and in particular that, for each k,
u j−k.q/=u j.q/ ↓ 1 as j ↑ ∞. Hence details of the last proof can be altered to conclude
that K .q/ < ∞ implies that �i < ∞ for all i ≥ 1, and conversely that �i < ∞ for
some i implies that K .q/ < ∞. In particular, X is irregular if K .q/ < ∞.
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It follows from the above ratio limit conclusion and (3.10) that

lim
j→∞

[ri; j−1.�/½. j − 1/− qri j.�/½. j/]
u j.q/

= 1.�/

from which, assuming X is irregular, we obtain

ri; j−1.�/½. j − 1/− qri j .�/½. j/ ≥ Žu j.q/

if j ≥ j ′ > 0, where 0 < Ž < 1.�/. If p0 > 0, then multiplying by q j−1 and
summing yields

ri j.�/½. j/ ≥ Ž
∑
l≥0

ul+ j+1.q/q
l ∼ Žu j−1.q/

.1 − q/
; . j → ∞/;

where we have used the monotone convergence theorem to obtain the last estimate.
This conclusion remains valid in the case p0 = 0. Hence we have the bound

u j.q/=½. j + 1/ = O.ri; j+1.�//

for all sufficiently large j , and it follows that K .q/ < ∞. The proof is complete.

Theorem 3.6 implies that if 1 < m < ∞, then Lemma 3.1 holds if the boundedness
condition there is replaced with lim inf j→∞ ½. j/ < ∞. This is not the case if m = ∞.
To see this, suppose p0 > 0 and K .q/ < ∞, in which case X is irregular. Since
u j.q/ → 0, there is an infinite subset S of N such that

∑
j∈S u j.q/ < ∞, so we can

choose ½. j/ ≡ ½ > 0 for j ∈ S and preserve the irregularity. It follows that N cannot
be denumerably atomic (as defined by Breiman [2]) for the random walk jump chain
if m = ∞. It is conceivable in the case 1 < m < ∞ that N is denumerably atomic
for the jump chain because the expected occupation time of any infinite subset S is
infinite.

The proofs of Theorems 3.6–3.8 use, in one form or another, ratio limit theorems
for discrete renewal sequences. It seems that such arguments cannot demonstrate
equivalence of regularity and (3.11) simply because it is possible that the quotient
u j+1.q/=u j.q/ oscillates unboundedly. In the sequel we let U j .q/ = ∑ j

i=1 ui.q/.
Doney [10] proved that the MBP is regular if and only if

∑
j≥1. j M j/

−1 = ∞ where

M j = ∑ j
k=0

∑
l>k pl . For the case p0 = 0 (in which case q = 0) this follows from

the Harris-Dynkin criterion (1.3) because term-by-term integration of the power series
expansion of the integrand yields J = ∞ if and only if

∑
j≥1 u j.0/=j = ∞, and this

holds if and only if
∑

j≥1 U j .0/=j 2 = ∞. Doney’s criterion follows from Erickson’s
bound [11, Lemma 1] which in this case is 1 ≤ M jU j .0/=j ≤ 2. The following
result extends this by giving a criterion in terms of defining parameters of X which is
equivalent to (3.11).
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THEOREM 3.9. Suppose that 1 < m ≤ ∞ and {½. j/} is ultimately monotone. Then
(3.11) holds if and only if

K :=
∑
j≥1

j

M j

(
1

½. j/
− 1

½. j + 1/

)
= ∞:(3.13)

In addition, X is regular if and only if (3.13) holds.

PROOF. We assume that ½. j/ ≤ ½. j +1/ for all j ≥ 1, but alteration of some details
in the sequel will show that this assumption entails no loss of generality. Abel’s partial
summation identity is

k∑
j=0

u j.q/

½. j + 1/
=

k∑
j=0

U j.q/

(
1

½. j + 1/
− 1

½. j + 2/

)
+ Uk.q/

½.k + 2/
:

Since U j+1.q/=U j .q/ → 1 as j → ∞, we conclude that K .q/ < ∞ if and only if

K1.q/ :=
∞∑
j=0

U j.q/

(
1

½. j/
− 1

½. j + 1/

)
< ∞;

provided Uk.q/=½.k/ = O.1/ as k → ∞. Assume this for the moment and let
M j.q/ = ∑ j

k=0

∑
l>k wk.q/. Erickson’s bound implies that K1.q/ < ∞ if and only if

K2.q/ =
∑
j≥1

j

M j.q/

(
1

½. j/
− 1

½. j + 1/

)
< ∞:

It follows from (3.9) that M j.q/ = ∑
l≥1.Ml+ j − Ml/ql−1, and since Ml+ j=M j → 1

as j → ∞, it follows from the dominated convergence theorem that M j.q/=M j →
.1 − q/−1. Thus we conclude that K .q/ < ∞ if and only if K < ∞.

If Uk.q/=½.k/ → ∞ through a subsequence, then K .q/ = ∞. In addition,

∑
j≥k

U j .q/

(
1

½. j/
− 1

½. j + 1/

)
≥ Uk.q/

(
1

½.k/
− 1

½.∞/

)
→ ∞

so K1.q/ = ∞ and hence K = ∞ too.
If p0 = 0, then the assertion about regularity of X follows directly from Lemma D,

Theorem 3.7 and from what has just been proved. If K = ∞ and p0 > 0, then, using
the notation in part (ii) of the proof of Theorem 3.3, let p̂0 = 0 and p̂ j = p j=r0.
Checking that M̂ j = ∑ j

k=0

∑
l>k p̂k = M j=r0, we infer that the process X̂ is regular,

and (3.7) shows that X is regular too. The proof is complete.
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The criterion (3.13) is more general than the criterion that would follow directly
from part (iii) of Doney’s theorem because his proof of that result requires more
assumptions about the jump rates. If ½. j/ = aj then we recover Doney’s Corollary 2
for the MBP. Following Doney, if we assume that 1=½. j/ = ∫∞

j h.x/ dx , where
h.x/ > 0 if x ≥ 1, and also that

0 < inf
j≥1

h. j + x/

h. j/
≤ sup

j≥1

h. j + x/

h. j/
< ∞ .0 ≤ x ≤ 1/;

then K < ∞ if and only if
∑

j≥1 jh. j/=M j < ∞; compare with part (iii) of Doney’s
theorem. The above ratio bounds for h replace Doney’s condition (∗). If ½. j + 1/−
½. j/ = j �−1 N . j/ where � > 0 and N .x/ is slowly varying at infinity, then K = ∞
(and hence X is regular) if and only if

∑
j≥1

(
½. j/M j

)−1 = ∞.
The criterion (3.13) directs attention to structural assumptions for the jump rates.

Abel’s lemma can be used to show that (3.13) holds if and only if

K ′ :=
∑
j≥1

1

½. j/

(
j + 1

M j+1
− j

M j

)
= ∞

and the summands are eventually non-negative. This allows determination in terms
of additional conditions on the jump distribution.

If X is irregular, then �i → 0 as i → ∞, but finding the convergence rate is
problematic, partly because it appears to depend in a detailed way on properties of
the defining elements of X . Consider the case where (2.8) holds and J < ∞; see
(3.6). It is clear from (3.5) that �i ∼ ∫ 1

1−ž[si=.s − f .s/]¼.ds/. It can be shown that
the assumptions in Example 3.5 yield the estimates

�i ∼

⎧⎪⎪⎨
⎪⎪⎩
0.� − Þ/

ai �−ÞL.i/
if � > Þ;

a−1

∫ ∞

i

dz

zL.z/
if � = Þ;

where the integral is assumed finite if � = Þ.
We have � = 1 in the MBP case, and then {�i} is an appropriate norming constant

for −e if Þ < 1, but not if Þ = 1. This assertion follows from Proposition 2 in
Sagitov [28], as follows. Let V .s/ = ∫ 1

s dv=.v − f .v//, which is finite since Z is
irregular. The BK system takes the form t ≡ V .F.s; t// − V .s/. In particular, if
F.t/ := F.1−; t/, then t ≡ V .F.t// and Pi .−e ≤ t/ = 1 − Fi .t/. It follows that

lim
i→∞

Pi.−e ≤ V .1 − t= i// = 1 − e−t :(3.14)

This is the essential content of Sagitov’s proposition. A further step yields the general
limit result involving a nonlinear norming of the explosion time,

lim
i→∞

Pi .i.1 − F.−e// ≤ t/ = 1 − e−t :
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It is straightforward to check that ifÞ<1, then V .s/∼ .1−s/1−Þ=.1−Þ/L..1−s/−1/

and hence (3.14) yields limi→∞ Pi .0.2−Þ/−e=�i ≤ t/ = 1−exp
(−t1=.1−Þ/). However,

if Þ = 1, then V .s/ ∼ a−1
∫∞

1=.1−s/ dz=zL.z/, a slowly varying function of .1 − s/−1,
and which does not permit a reduction similar to the case Þ < 1. However it can be
shown that if Þ = 1 and −∞ < v < ∞, then

lim
i→∞

Pi

(
L.i/

�2
i

(
−−1

e − �−1
i

) ≤ v

)
= exp

(−e−v) :
Some insight into the nonlinear case can be obtained if p0 = 0, for then we have

−e = ∑
n≥0 "n=½.i + Sn/, where S0 = 0 and the "n are independent with the standard

exponential law and indepdendent of the random walk {Sn}. We assume here that the
series converges almost surely. If ½.i/ = R.ei/ where R.x/ = xþN .x/, þ > 0, and
N .x/ is slowly varying, then

½.i/−e
d→ Z :=

∑
n≥0

"ne−þSn < ∞ .a.s./:

If Zn denotes the n-th partial sum of this random series then Zn+1 = "0+e−þS1 Z ′
n where

Z ′
n

d= Zn and it is independent of ."0; S1/. Hence {Zn} has the same one-dimensional

laws as a random perpetuity. Similarly, we have ½.i/�i → E.Z/ = (
1 − eþ f .e−þ/

)−1
.

Next, suppose 1 < m < ∞ and ½.i/ = i � M.i/, where � > 1 and M.x/ is slowly
varying. Since Sn=n

a.s.→ m − 1, it is fairly clear that

1

i

∑
n≥0

½.i/

½.i + Sn/
∼ 1

i

∑
n≥0

(
1 + .m − 1/n

i

)−�
→
∫ ∞

0

.1 + .m − 1/x/−� dx;

and hence that ½.i/�i= i → [.� − 1/.m − 1/]−1. Considering Ei [e−�½.i/−e= i |S] in a
similar manner shows that −e=�i

p→ 1.

4. The stationary measure

In this section we consider the existence of stationary measures {Mi : i ≥ 1} for
the transition semigroup pi j .t/ = Pi.Xt = j/, in other words, we seek non-trivial
solutions Mi ≥ 0 of

M j =
∑
i≥1

Mi pi j.t/ . j ≥ 1; t > 0/:(4.1)

If p0 = 0 and j < i , then pi j.t/ ≡ 0, so M j = ∑ j
i=1 Mi pi j.t/ → 0 as t → ∞.
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Hence we assume p0 > 0 for the remainder of this section. Harris [15, page 111]
showed that the MBP has a stationary measure {¦i} that is unique (up to a multiplicative
constant) given by ∑

i≥1

i¦i s
i−1 = p0¦1

f .s/− s
; .0 ≤ s < q/:(4.2)

We set p0¦1 = 1. It follows that {¦i} is invariant for the q-matrix of Z , equivalently,
if ¼i := i¦i then {¼i} is invariant for the jump chain A,∑

i≥1

¼i p j−i+1 = ¼ j . j ≥ 1/:(4.3)

If we define Mi = ¼i=½.i/ for the general case, then (4.3) can be expressed in
terms of the q-matrix (1.1) as

∑
i≥1 Mi qi j = ∑

i≥1 ¼i p j−i+1 − ¼ j ≡ 0; that is, {Mi }
is invariant for Q.

We conjecture that {Mi} is invariant for the transition semigroup. This is equivalent
to the following assertion. For some ¹ > 0, the system∑

i≥1

ci qi j = c j ; . j ≥ 1/(4.4)

and

0 ≤ ci ≤ Mi(4.5)

has no non-trivial solution; see Anderson [1, page 195]. Our next result establishes
this.

THEOREM 4.1. If p0 > 0, then the measure {Mi } is the unique invariant measure
for the transition semigroup of X .

PROOF. The explicit form of (4.4) is

j+1∑
i=1

ci½.i/p j−i+1 = .½. j/+ ¹/c j ; . j ≥ 1/(4.6)

and since p0 > 0, we can choose c1 > 0 and solve recursively for c j . j ≥ 2/. Assume
that (4.5) holds, equivalently, that 0 ≤ d j ≤ ¼ j where d j := ½. j/c j . Since p0¼1 = 1,
it follows from (4.2) that ¼.s/ := ∑

j≥1 ¼ j s j = s=. f .s/ − s/, and this is finite for
0 ≤ s < q. Thus D.s/ := ∑

i≥1 disi < ∞ if s < q, and hence (4.6) implies that
C.s/ := ∑

i≥1 ci si < ∞ and that D.s/ = [Þ + ¹C.s/]¼.s/, .0 ≤ s < q/, where
Þ := p0d1. Identifying coefficients of s j gives the identity

d j = Þ¼ j + ¹

j−1∑
i=1

ci¼ j−i ; . j ≥ 2/:
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Consequently d j > Þ¼ j , whence

d j

¼ j
> Þ

[
1 + ¹

q j¼ j

j−1∑
i=1

¼i qi

½.i/
q j−i¼ j−i

]
:

Yang [30] showed that if m �= 1, then

q j¼ j ↑ .1 − þ/−1 where þ = f ′.q/ < 1; . j ↑ ∞/:(4.7)

Consequently

lim inf
j→∞

d j

¼ j
≥ Þ

[
1 + ¹

∑
i≥1

¼i qi

½.i/

]
;(4.8)

and we see from (4.7) that the series on the right-hand side converges if and only if
L = ∑

i≥1 1=½.i/ < ∞. So if L = ∞, then (4.5) is violated for all sufficiently large
j . If L < ∞ then ¹ can be chosen so large that the right-hand side of (4.8) exceeds
unity, and (4.5) again is violated.

If m = 1, then ¼.s/ = s=.1 − s/.1 − w.s// where w.s/ = .1 − f .s//=.1 − s/
is a probability generating function. It follows that if j ≥ 1, then ¼ j = ∑ j−1

k=0 uk

where {u j} is a (generalized) renewal sequence. Since ¼.1/ = ∞, it follows that
¼ j+1=¼ j → 1 and Fatou’s lemma can be used to obtain (4.8). The assertion then
follows much as above. Thus {Mi } is invariant for the semigroup.

Conversely, any measure invariant for the semigroup is invariant for Q, and hence
yields an invariant measure for the semigroup of Z . However this measure is unique,
thus completing the proof.

5. FK uniqueness

Assuming that m > 1, Chen [5] showed the transition semigroup ofX is FK-unique
if (1.4) holds. The thrust of his proof can be considerably extended to demonstrate
FK-uniqueness if p0 > 0 and

∞∑
j=1

(
q j½. j/

)−1 = ∞:(5.1)

We understand this identity as always holding if p0 = 0. Chen et al. [8] proved the
following result using a sequential criterion in Chen et al. [6, Theorem 3.5], and we
now offer a different proof of their result.

THEOREM 5.1. The condition (5.1) is necessary and sufficient for FK-uniqueness.
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PROOF. We have only to prove that the system

x j =
j+1∑
i=0

xi½.i/p j−i+1 − ½. j/x j . j ≥ 0/;(5.2)

together with x j ≥ 0 and
∑∞

j=0 x j < ∞, has only the trivial solution if and only if
(5.1) holds; see Anderson [1, page 82]. If p0 = 0, then setting j = 1 in (5.2) shows
that x0 = 0, and it follows by induction that x j ≡ 0. The assertion is valid in this case.

Let p0 > 0 and set x0 = 1. It is clear then that (5.2) can be solved recursively for
x1; x2; : : : . Indeed, setting C0 = 0 and C j = x j½. j/ for j ≥ 1, then (5.2) takes the
recursive form

p0C j+1 = C j + x j −
j∑

i=1

Ci p j−i+1;

where

p0C1 = 1 and x1 = 1=p0½.1/;(5.3)

and so on. Define ¼0 = 0 and recall that the invariant measure {¼i } introduced in
Section 4 is scaled so that p0¼1 = 1. Now define numbers x ′

j and C ′
j = x ′

j½. j/ by
x ′

0 = 1 and then, by recursion,

C ′
j =

j−1∑
i=0

x ′
i¼ j−i . j ≥ 1/:(5.4)

Some manipulation using (4.3) to evaluate the sum in (5.2) shows that (5.4) satisfies
(5.2) and since x0 = x ′

0, it follows that x ′
j = x j and C ′

j = C j for all j . Thus (5.2) and
(5.4) are equivalent, and we omit the primes. However (5.4) implies that C j > ¼ j and
hence that

∑
j≥1 x j >

∑
j≥1 1=¼ j½. j/. It follows from (4.7) that (5.1) implies that∑

j≥1 x j = ∞ and hence the FK system has a unique solution.
Proving the converse requires three distinct steps. The first is a simple comparison

result. Let ½. j/ be jump rates satisfying ½.0/ = 0 and ½. j/ ≥ ½. j/ for all j ≥ 1, and
then let x0 = 1 and x j and C j be constructed from the analogous version of (5.4).
Then (5.3) implies that C1 = C1 and x1 = x1½.1/=½.1/ ≤ x1. It follows from (5.4)
that if xi ≤ xi (i = 0; : : : ; j − 1), then C j ≤ C j , whence

x j ≤ �C j

½. j/
= x j½. j/

½. j/
≤ x j :

Hence, by induction, these inequalities hold for all j and, in particular,

X .s/ :=
∞∑
j=0

x j s
j ≤ X.s/ :=

∞∑
j=0

x j s
j :
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Second, it follows from (4.7) that ¼.s/ := ∑
j≥1 ¼ j s j converges if s < q, and

together with the ratio test we infer that the function

X.s/ := 1 +
∞∑
j=1

A j

j∏
l=1

¼
(
qls
)

converges if s < 1 and that it has a power series representation as above with co-
efficients x j ≥ 0. Some manipulation shows that X.s/ solves a functional equation
which can be expressed as

A−1
(
X.s=q/− 1

) = ¼.s/X.s/; .s < q/:

Identifying coefficients of s j yields .Aq j /−1x j = ∑ j−1
i=0 xi¼ j−i , so we conclude that

(5.4) is satisfied with ½. j/ := .Aq j/−1.
Finally, assume that the series (5.1) converges and denote its sum by A−1. Then

½. j/ ≥ ½. j/ and we conclude that X .s/ < ∞ if s < 1. Writing (5.4) as

q j C j =
j−1∑
i=0

xi q
i q j−i¼ j−i ;

it follows from the monotone convergence theorem and (4.7) that

q j C j → L := X .q/

1 − þ
< ∞;

that is, x j ∼ L=q j½. j/ and hence that
∑

j≥0 x j < ∞, thus completing the proof.

6. Resurrection

Let Y = .Yt/ be the process obtained by restarting or resurrecting independent
copies of X whenever they hit {0}. Specifically, let ² = ½.0/ > 0 and {h j : j ≥ 1}
be a probability mass function. Then Y is the minimal process for the q-matrix Q̃
where q̃i j = qi j as given by (1.1) for i; j ≥ 1, q̃00 = −², and q̃0 j = ²h j if j ≥ 1.
Thus Yt = Xt if t < −0, and if −0 < −e, then Yt = 0 if −0 ≤ t < −0 + R1, where R1

is independent of .Yt : t ≤ −0/ and it has an exponential distribution with mean ²−1,
P.Y−0+R1 = j/ = h j , and the process evolves further in a similar way. See Chen [4]
for the case (1.4), and Pakes and Tavaré [26, Section 4] for the general notion of return
processes.

A sample path ofY has a finite first infinity −∞ if and only if one of theX excursions
explodes, and hence Y is regular if and only if X is regular.
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THEOREM 6.1. The resurrected process Y is regular if m ≤ 1. If 1 < m ≤ ∞ and
(2.8) holds, then Y is regular if and only if J = ∞ (see (3.6)); if 1 < m < ∞, then Y
is regular if and only if (3.8) holds; and if m = ∞ and {½. j/ : j ≥ 1} is ultimately
monotone, then Y is regular if and only if (3.13) holds.

The case (2.8) subsumes Proposition 1.1 of Chen [4]. It is clear that if the conditions
for explosion are satisfied, then ¾i := Ei .−∞/ < ∞ for all i . The next result gives an
integral representation for this quantity for the case (2.8). Let h.s/ = ∑

j≥1 h j s j .

THEOREM 6.2. Let 1 < m ≤ ∞ and (2.8) and (3.6) both hold. Then

¾i = ²−1Gi0 +
∫ 1

0

si − .1 − h.s//Gi0

s − f .s/
¼.ds/(6.1)

where

Gi0 = qi

1 − h.q/
:(6.2)

PROOF. Let W = {Wn} denote the jump chain of Y (that is, W is a resurrected
version of A), let Ei .sWn / = R.n/

i .s/ = ∑
j≥0 r .n/i j s j and Gi j = ∑

n≥0 r .n/i j . Clearly

¾i =
∑
j≥0

Gi j

½. j/
= Gi0

²
+
∫ 1

0

.Ri.s; 1/− Gi0/ ¼.ds/

where Ri.s; x/ = ∑
n≥0 R.n/

i .s/x
n . Observe that

R.n+1/
i .s/ = Ei .s

Wn ; Wn > 0/b.s/+ r .n/i0 h.s/ = R.n/
i .s/b.s/− r .n/i0 .b.s/− h.s//;

and hence that

Ri .s; x/ = si − x Ri.0; x/.b.s/− h.s//

1 − xb.s/
:

Matching zeros as in the proof of Theorem 2.1 yields

Ri.0; x/ = gi.x/

1 − xh.g.x//
;

and (6.2) follows by setting x = 1. Similarly

Ri.s; 1−/ = si − Gi0.b.s/− h.s//

1 − b.s/
;

and (6.1) follows.



[23] Extinction and explosion of nonlinear Markov branching processes 425

It is clear from the sample path behaviour of Y that the non-negative integers
comprise a communicating class of states, and that the states are recurrent if m ≤ 1
and they are transient if m > 1. In the former case it follows from (2.8) and (2.9) that
the mean recurrence time of {0} is

m00 = ²−1 +
∑
i≥1

hi Hi = ²−1 +
∫ 1

0

1 − h.s/

f .s/− s
¼.ds/:(6.3)

THEOREM 6.3. Suppose that (2.8) holds. Then Y is recurrent if and only if m ≤ 1,
in which case it is positive recurrent if and only if m00 < ∞. If this holds, then the
generating function of the limiting-stationary law is

5.s/ = ³0

(
1 + ²s

∫ 1

0

1 − h.sy/

f .sy/− sy
¼.dy/

)
(6.4)

where

³0 =
[

1 + ²

∫ 1

0

1 − h.y/

f .y/− y
¼.dy/

]−1

:(6.5)

PROOF. We need only demonstrate (6.4). If m00 < ∞, then the limiting-stationary
law {³ j : j ≥ 0} solves

∑
i �= j ³i q̃i j = ½. j/³ j . Multiplying by s j and summing over

j ≥ 0 gives the identity ∑
i≥1

³i½.i/s
i−1 = ³0²

1 − h.s/

f .s/− s
:(6.6)

Replace s with sy and integrate both sides with respect to ¼.dy/ over [0; 1]. This
cancels the ½.i/ factors on the left-hand side, giving .5.s/ − ³0/=s, and (6.4) and
(6.5) now follow.

If ¼.ds/ = �.s/ ds, then

5.s/ = ³0

(
1 + ²s

∫ s

0

1 − h.v/

f .v/− v
�.v=s/dv/

)
:(6.7)

This expression together with Theorem 6.3 extends the principal results in Sections 3
and 4 of Chen [4]. Indeed we can say rather more.

Let {³ j} denote the stationary distribution for the resurrected MBP, that is, where
½.i/ = ai if i ≥ 1, and similarly for qi j and related quantities. Taking �.s/ ≡ a−1

in (6.7) we see that 5
′
.s/=³ 0 = .²=a/.1 − h.s//=. f .s/ − s/, and reference to (6.4)

and (2.8) yields the identification ½. j/³ j=³0 = aj³ j=³ 0, . j ≥ 1/. Observing that
{³ j=³ 0} is a stationary measure for Q, then using this identity to define ³ j=³0 for
any positive set of jump rates ½. j/, . j ≥ 1/, it is easily checked that the invariance
equations

∑
i≥0 ³i q̃i j = 0 are satisfied for all j ≥ 0. We thus get the following result.
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THEOREM 6.4. If m ≤ 1, then {¦ j : j ≥ 0}, defined by

∑
j≥1

¦ j s
j = 1 + ²s

a

∫ s

0

1 − h.v/

f .v/− v
dv

is the unique stationary measure for Y . If S := ∑
j≥1 j¦ j=½. j/ < ∞, then Y

is positive recurrent with limiting-stationary law given by ³0 = .1 + aS/−1 and
³ j = ³0aj¦ j=½. j/, . j ≥ 1/.

Suppose m00 < ∞. Then Y (specifically, its transition semigroup) is strongly

ergodic if supi≥0

∑
j≥0 |pi j .t/− ³ j | t→∞−−→ 0.

This occurs if and only if supi≥0 Hi < ∞ (Anderson [1, page 215]). Thus the next
result follows from Theorems 2.2–2.5.

THEOREM 6.5. If m ≤ 1 and m00 < ∞, then Y is strongly ergodic if and only if
case (a) of Theorems 2.2 or 2.3 hold. If (2.8) also holds then Y is strongly ergodic if
and only if the limit (2.11) is finite.

EXAMPLE 6.6. Suppose (2.8) holds with ¼.ds/ = .1 − s/�−1 L..1 − s/−1/ and that
1 − h.s/ = .1 − s/ŽM..1 − s/−1/, where Ž > 0, 0 ≤ � ≤ 1, and L.x/ and M.x/ are
slowly varying at infinity. If m < 1, then m00 < ∞ if and only if∫ ∞

1

x−Ž−�L.x/M.x/ dx < ∞

and hence Y is ergodic if Ž + � > 1, not ergodic if Ž + � < 1, and if Ž + � = 1
then it is ergodic if and only if

∫∞
1 x−1 L.x/M.x/ dx < ∞. If it is ergodic, then it is

strongly ergodic if � > 1, and not so if � ≤ 1. If m = 1 and � > 0, then all the above
assertions hold provided the critical value 1 is replaced by 2.
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[26] A. G. Pakes and S. Tavaré, ‘Comments on the age distribution of Markov processes’, Adv. Appl.

Prob. 13 (1981), 681–703.
[27] I. Reinhard, ‘The qualitative behaviour of some slowly growing population-dependent Markov

branching processes’, in: Stochastic Modelling in Biology (ed. P. Tautu) (World Scientific, Singa-
pore, 1990) pp. 267–277.

[28] S. M. Sagitov, ‘On an explosive branching process’, Theor. Prob. Appl. 40 (1996), 575–577.



428 Anthony G. Pakes [26]

[29] T. H. Savits, ‘The explosion problem for branching Markov processes’, Osaka J. Math. 6 (1969),
375–395.

[30] Y. N. Yang, ‘Asymptotic properties of the stationary measure of a Markov branching process’, J.
Appl. Prob. 10 (1973), 447–450.

[31] V. M. Zolotarev, ‘More exact statements of several theorems in the theory of branching processes’,
Theor. Prob. Appl. 2 (1957), 245–253.

School of Mathematics and Statistics
University of Western Australia
35 Stirling Highway
Crawley WA 6009
Australia
e-mail: pakes@maths.uwa.edu.au

mailto:pakes@maths.uwa.edu.au

