J. Aust. Math. Soc. 83 (2007), no. 1, pp. 31–54.
Rate of escape of random walks on free products
Lorenz A. Gilch
University of Technology Graz
Institut für Mathematische Strukturtheorie (Math. C)
Steyrergasse 30
A-8010 Graz
Austria
gilch@TUGraz.at
Received 23 June 2005; revised 24 April 2006
Communicated by V. Stefanov

Abstract

Suppose we are given the free product V of a finite family of finite or countable sets (V_i)_{i\in \mathcal {I}} and probability measures on each V_i, which govern random walks on it. We consider a transient random walk on the free product arising naturally from the random walks on the V_i. We prove the existence of the rate of escape with respect to the block length, that is, the speed at which the random walk escapes to infinity, and furthermore we compute formulae for it. For this purpose, we present three different techniques providing three different, equivalent formulae.

Download the article in PDF format (size 224 Kb)

2000 Mathematics Subject Classification: primary 60G50; secondary 20E06, 60B15
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2354??? Z'blatt-MATH: pre05231331

References

  1. D. I. Cartwright, V. A. Kaimanovich and W. Woess, ‘Random walks on the affine group of local fields and of homogeneous trees’, Ann. Inst. Fourier (Grenoble) 44 (1994), 1243–1288. MR1306556
  2. D. I. Cartwright and P. M. Soardi, ‘Random walks on free products, quotients, and amalgams’, Nagoya Math. J. 102 (1986), 163–180. MR846137
  3. Y. Derriennic, ‘Quelques applications du théorème ergodique sous-additif’, Astérisque 74 (1980), 183–201. MR588163
  4. A. Dyubina, ‘Characteristics of random walks on wreath products of groups’, J. Math. Sci. (5) 107 (2001), 4166–4171. MR1708557
  5. A. Erschler, ‘On the asymptotics of drift’, J. Math. Sci. (3) 121 (2004), 2437–2440. MR1879073
  6. H. Furstenberg, ‘Non commuting random products’, Trans. Amer. Math. Soc. 108 (1963), 377–428. MR163345
  7. Y. Guivarc'h, ‘Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire’, Astérisque 74 (1980), 47–98. MR588157
  8. V. A. Kaimanovich and A. M. Vershik, ‘Random walks on discrete groups: boundary and entropy’, Ann. Probab. 11 (1983), 457–490. MR704539
  9. J. F. C. Kingman, ‘The ergodic theory of subadditive processes’, J. Roy. Statist. Soc., Ser. B 30 (1968), 499–510. MR254907
  10. F. Ledrappier, Some Asymptotic Properties of Random Walks on Free GroupsCRM Proceedings and Lecture Notes 28 (Amer. Math. Soc, Providence, RI, 2001) pp. 117–152. MR1832436
  11. R. Lyons, R. Pemantle and Y. Peres, ‘Random walks on the lamplighter group’, Ann. Probab. (4) 24 (1996), 1993–2006. MR1415237
  12. J. Mairesse, ‘Random walks on groups and monoids with a markovian harmonic measure’, Technical Report Research Report LIAFA 2004–005, (Univ. Paris 7, 2004). MR2191634
  13. J. Mairesse, ‘Randomly growing braid on three strands and the manta ray’, Technical Report Report LIAFA 2005–001, (Univ. Paris 7, 2005).
  14. J. Mairesse and F. Mathéus, ‘Random walks on free products of cyclic groups and on Artin groups with two generators’, Technical Report Research Report LIAFA 2004–006, (Univ. Paris 7, 2004).
  15. J. C. McLaughlin, Random walks and convolution operators on free products (Ph.D. Thesis, New York Univ., 1986).
  16. T. Nagnibeda and W. Woess, ‘Random walks on trees with finitely many cone types’, J. Theoret. Probab. 15 (2002), 399–438. MR1898814
  17. S. Sawyer and T. Steger, ‘The rate of escape for anisotropic random walks in a tree’, Probab. Theory Related Fields 76 (1987), 207–230. MR906775
  18. P. M. Soardi, ‘Simple random walks on \mathbb{Z}^{2}*\mathbb{Z}/2’, Symposia Math. 29 (1986), 303–309. MR951189
  19. N. Th. Varopoulos, ‘Long range estimates for Markov chains’, Bull. Sci. Math. (2) 109 (1985), 225–252. MR822826
  20. D. Voiculescu, ‘Addition of certain non-commuting random variables’, J. Funct. Anal. 66 (1986), 323–346. MR839105
  21. W. Woess, ‘A description of the Martin boundary for nearest neighbour random walks on free products’, Probability Measures on Groups VII (1985), 203–215. MR879007
  22. W. Woess, ‘Nearest neighbour random walks on free products of discrete groups’, Boll. Un. Mat. Ital. (6) 5–B (1986), 961–982. MR871708
  23. W. Woess, Random Walks on Infinite Graphs and Groups (Cambridge University Press, Cambridge, 2000). MR1743100