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Abstract

In this paper we obtain some results on coincidence and common fixed points for two pairs of multi-valued
and single-valued non-self mappings in complete convex metric spaces. We improve on previously used
methods of proof and obtain results for mappings which are not necessarily compatible and not necessarily
continuous, generalizing some known results. In particular, a theorem by Rhoades [19] and a theorem by
Ahmed and Rhoades [2] are generalized and improved.

2000 Mathematics subject classification: primary 54H25, 47H10.

1. Introduction

Let .X; d/ be a complete metric space and C B.X/ be the set of all non-empty closed
bounded subsets of X . Denote by H the Hausdorff metric induced by the metric d ,
and for any x ∈ X and A ⊆ X set D.x; A/ = inf{d.x; y/ : y ∈ A}.

Extending the Banach contraction principle, Nadler [16] and Markin [15] first
initiated the study of fixed point theorems for multi-valued contraction self-mappings.
Assad and Kirk [4] first studied fixed point theorems for multi-valued contraction
non-self mappings in a complete metrically convex metric space .X; d/, using the fact
that if K is any non-empty closed subset of X then for each x ∈ K and y =∈ K there
exists a point z ∈ @K (the boundary of K ) such that d.x; z/+ d.z; y/ = d.x; y/.

In the last four decades several authors have proved some fixed point or common
fixed point theorems for self-mappings (see, for example, [5, 12, 13, 15, 16, 17, 20]
or for non-self mappings (see, for example, [1]–[4], [6]–[11], [14, 18, 19, 21] Some
applications of non-self mappings are given by Assad and Kirk [4] and by Tsachev
and Angelov [21].
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Recently Ahmed and Rhoades [2] generalized and improved the result of Rhoades
[19]. They proved the following theorem.

THEOREM 1.1 (Ahmed and Rhoades [2]). Let .X; d/ be a complete metrically
convex metric space and K be a non-empty closed convex subset of X. If mappings
F, G : K → C B.X/ and S; T : K → X satisfy the following condition

H.Fx;Gy/

(1.1)

≤ h max

{
d.Sx; T y/

a
; D.Sx; Fx/; D.T y;Gy/;

D.Sx;Gy/ + D.T y; Fx/

a + h

}

for all x, y in X, where

0 < h <
−1 + √

5

2
; a ≥ 1 + 2h2

1 + h

and

(i) @K ⊆ SK ∩ T K , F K ∩ K ⊆ T K , G K ∩ K ⊆ SK ,
(ii) T x ∈ @K implies Fx ⊆ K , Sx ∈ @K implies Gx ⊆ K ,

(iii) .F; S/ and .G; T / are compatible mappings,
(iv) F, G, S, T are continuous on K ,

then there exists a point z in X such that

Sz = T z ∈ Fz ∩ Gz:

The purpose of this paper is to generalize the theorem of Rhoades [19] and Theo-
rem 1.1, weakening the condition for the coefficient h and removing the hypotheses
of compatibility and continuity for the mappings. We prove coincidence and common
fixed point theorems for not necessarily compatible and not necessarily continuous
non-self mappings F , G, S and T , which satisfy (1.1) with 0 < h < 2=3. To accom-
plish that, we improve on the methods of proof used by Rhoades [19] and Ahmed and
Rhoades [2].

2. Results

THEOREM 2.1. Let .X; d/ be a metrically convex metric space and K be a non-
empty closed subset of X. If mappings F;G : K → C B.X/ and S; T : K → X
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satisfy the following condition

H.Fx;Gy/

(2.1)

≤ h max

{
d.Sx; T y/

a
; D.Sx; Fx/; D.T y;Gy/;

D.Sx;Gy/ + D.T y; Fx/

a + h

}

for all x, y in X, where

0 < h <
2

3
; a ≥ 1 + 2h2

1 + h

and

(i) @K ⊆ SK ∩ T K ,
(ii) F K ∩ K ⊆ T K , G K ∩ K ⊆ SK ,

(iii) Sx ∈ @K implies Fx ⊆ K , T x ∈ @K implies Gx ⊆ K

and S.K / and T .K / are complete, then there exist points u and w in K such that

Su ∈ Fu; Tw ∈ Gw; Su = Tw and Fu = Gw:

PROOF. If F.K /, G.K /, S.K /, T .K / ⊆ K then the Theorem holds without the
hypothesis of convexity of X and under a contractive condition weaker than condition
(2.1). The proof in that instance is much simpler, since Cases 2 and 3 do not occur.
We will give a proof under the hypothesis that each of the mappings F , G, S and T is
not necessarily a self-mapping.

Let x ∈ @K be arbitrary. We construct three sequences: {xn} and {zn} in K and
a sequence {yn} in X in the following way. Set z0 = x . Since z0 ∈ @K , by (i) there
exist points x ′

0; x ′′
0 ∈ K such that Sx ′

0 = T x ′′
0 = z0. Consider the choice z0 = Sx ′

0. In
this case we denote x0 = x ′

0. Now Sx0 ∈ @K implies Fx0 ⊆ K , so we conclude that
Fx0 ⊆ K ∩ F K . Then from (ii), Fx0 ⊆ T K . Thus there exists an x1 ∈ K such that
T x1 ∈ Fx0 ⊆ K . Set z1 = y1 = T x1. Let c be any real number such that

1 < c and ch = q <
2

3
(2.2)

(for example, c = 1 + 2=3 − h ). Since y1 ∈ Fx0 ∈ C B.X/, from Nadler [16] we
know that there exists a point y2 ∈ Gx1 such that

d.y1; y2/ ≤ cH.Fx0;Gx1/:

If y2 ∈ G K ∩ K then from (ii) we have y2 ∈ SK and so there is a point x2 ∈ K such
that Sx2 = y2 = z2 ∈ Gx1.
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If y2 =∈ K then by z2 we denote a point in @K such that

d.y1; z2/+ d.z2; y2/ = d.y1; y2/:

There are two possibilities : d.z2; y2/ ≤ .1=2/d.y1; y2/ or d.z2; y1/ < .1=2/d.y1; y2/.
If the first possibility occurs, then we choose x2 ∈ K such that Sx2 = z2 . This

choice is possible by (i), as z2 ∈ @K ⊆ SK . Now we choose a point y3 ∈ Fx2 such
that

d.y2; y3/ ≤ cH.Gx1; Fx2/:(2.3)

Since Fx2 ∈ F K ∩ K ⊆ SK , it follows from (ii) that there is a point x3 ∈ K such
that T x3 = y3.

If the second possibility occurs, that is, if d.z2; y1/ < .1=2/d.y1; y2/, then by
x2 we denote a point in K such that T x2 = z2. This choice is possible because
z2 ∈ @K ⊆ SK ∩ T K . Since y1 ∈ Fx0, we can choose a point y3 ∈ Gx2 ⊆ K such
that

d.y1; y3/ ≤ cH.Fx0;Gx2/:(2.4)

Since y3 ∈ Gx ∩ K ⊆ SK , there is a point x3 ∈ K such that Sx3 = y3.
Continuing the foregoing procedure we construct sequences {xn} ⊆ K , {zn} ⊆ K

and {yn} ⊆ F K ∪ G K such that:

(i) yn ∈ Fxn−1 or yn ∈ Gxn−1,

(ii) zn = Sxn or zn = T xn,

(iii) yn = zn if and only if yn ∈ K and in this case :

if yn ∈ Fxn−1 then zn = T xn and yn+1 ∈ Gxn is such that

d.yn; yn+1/ ≤ cH.Fxn−1;Gxn/;

or, if yn ∈ Gxn−1 then zn = Sxn and yn+1 ∈ Fxn is such that

d.yn; yn+1/ ≤ cH.Gxn−1; Fxn/;

(iv) yn �= zn whenever yn =∈ K and then zn ∈ @K is such that

d.yn−1; zn/+ d.zn; yn/ = d.yn−1; yn/
and

(iv.i) if d.zn; yn/ ≤ .1=2/d.yn−1; yn/, then

if yn ∈ Fxn−1 then zn = T xn and yn+1 ∈ Gxn is such that

d.yn; yn+1/ ≤ H.Fxn−1;Gxn/
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or, if yn ∈ Gxn−1 then zn = Sxn and yn+1 ∈ Fxn is such that

d.yn; yn+1/ ≤ H.Gxn−1; Fxn/;

(iv.ii) if d.yn−1; zn/ < .1=2/d.yn−1; yn/, then

if yn ∈ Fxn−1, then zn = Sxn and yn+1 ∈ Fxn is such that

d.yn−1; yn+1/ ≤ cH.Gxn−2; Fxn/;

or, if yn ∈ Gxn−1 then zn = T xn and yn+1 ∈ Gxn is such that

d.yn−1; yn+1/ ≤ cH.Fxn−2;Gxn/:

OBSERVATION. If zn �= yn then zn ∈ @K , which implies zn+1 = yn+1 ∈ K . This
implies that also zn−1 = yn−1 ∈ K , since otherwise zn−1 ∈ @K which implies that
zn = yn ∈ K .

Now we wish to estimate d.zn; zn+1/. If d.zn; zn+1/ = 0 for some n then it is easy
to show that zn+k = zn for all k ≥ 1.

Suppose that d.zn; zn+1/ > 0 for all n. From the Observation we conclude that
there are three possibilities.

Case 1. Let zn = yn ∈ K and zn+1 = yn+1 ∈ K . Suppose, without loss of generality,
that zn = yn = T xn ∈ Fxn−1. Then zn+1 = yn+1 ∈ Gxn , zn−1 = T xn−1 (observe
that zn−1 is not necessarily equal to yn−1) and points yn and yn+1 are chosen such that
d.yn; yn+1/ ≤ cH.Fxn−1;Gxn/. Then from (2.1) and (2.2),

d.yn; yn+1/ ≤ cH.Fxn−1;Gxn/(2.5)

≤ q max

{
d.Sxn−1; T xn/

a
; D.Sxn−1; Fxn−1/; D.T xn;Gxn/;

D.Sxn−1;Gxn/+ D.T xn; Fxn−1/

a + h

}

≤ q max

{
d.zn−1; zn/

a
; d.zn−1; zn/; d.zn; zn+1/;

d.zn−1; zn+1/

a + h

}
:

Note that if (2.1) holds for some h1 > 0 then it also holds for any h such that
h1 ≤ h < 2=3. Thus we may suppose that 3=5 ≤ h < 2=3, which implies that

1

a
<

3

4
and

1

a + h
<

1

2
:

Thus from (2.1),

H.Fx;Gy/

(2.6)

≤ h max

{
3d.Sx; T y/

4
; D.Sx; Fx/; D.T y;Gy/;

D.Sx;Gy/+ D.T y; Fx/

2

}
:
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From (2.5) and (2.6),

d.yn; yn+1/ ≤ q max

{
d.zn−1; zn/; d.zn; zn+1/;

d.zn−1; zn/+ d.zn; zn+1/

2

}

≤ q max {d.zn−1; zn/; d.zn; zn+1/} :

Hence, as zn = yn , zn+1 = yn+1 and q < 2=3,

d.yn; yn+1/ ≤ qd.zn−1; zn/:(2.7)

Note that (2.7) holds whenever yn = zn, without regard to yn+1 = zn+1 or yn+1 �= zn+1.
From (2.7) it immediately follows, since now yn+1 = zn+1, that

d.zn; zn+1/ ≤ qd.zn−1; zn/:(2.8)

Case 2. Let zn = yn ∈ K but zn+1 �= yn+1. Then zn+1 ∈ @K is such that

d.yn; zn+1/+ d.zn+1; yn+1/ = d.yn; yn+1/:

Thus d.zn; zn+1/ = d.yn; zn+1/ < d.yn; yn+1/ and from (2.7),

d.zn; zn+1/ ≤ qd.zn−1; zn/:(2.9)

Case 3. Let zn �= yn . Then zn ∈ @K , and

d.yn−1; zn/+ d.zn; yn/ = d.yn−1; yn/:(2.10)

Also, by the Observation, zn+1 = yn+1 and zn−1 = yn−1.
If we suppose that d.zn; zn+1/ ≤ d.yn−1; yn/ then from (2.7),

d.zn; zn+1/ ≤ qd.zn−2; zn−1/;(2.11)

so we shall only consider the case

d.zn; zn+1/ > d.yn−1; yn/:(2.12)

From (2.10) it follows that there are two possibilities:

d.zn; yn/ ≤ d.yn−1; yn/

2
(2.13)

or

d.zn; yn−1/ <
d.yn−1; yn/

2
:(2.14)
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Case 3a. Suppose that (2.13) holds and, without loss of generality, assume that
yn ∈ Fxn−1. Then yn−1 = zn−1 = Sxn−1 ∈ Gxn−2 and yn �= zn = T xn and, by
construction of {yn} (see (iv.i)), yn+1 = zn+1 = Sxn+1 ∈ Gxn is such that

d.yn; yn+1/ ≤ cH.Fxn−1;Gxn/:

Thus from (2.6) and (2.2),

d.yn; yn+1/ ≤ cH.Fxn−1;Gxn/

(2.15)

≤ q max

{
d.Sxn−1; T xn/; D.Sxn−1; Fxn−1/; D.T xn;Gxn/;

D.Sxn−1;Gxn/+ D.T xn; Fxn−1/

2

}

≤ q max

{
d.yn−1; zn/; d.yn−1; yn/; d.zn; zn+1/;

d.yn−1; zn+1/+ d.zn; yn/

2

}
:

Since, from (2.10) and (2.12),

d.yn−1; zn/ < d.yn−1; yn/ < d.zn; zn+1/;

d.yn−1; zn+1/+ d.zn; yn/ ≤ d.zn; yn/+ d.yn−1; zn/+ d.zn; zn+1/

= d.yn−1; yn/+ d.zn; zn+1/ < 2d.zn; zn+1/;

from (2.15) we deduce

d.yn; yn+1/ ≤ qd.zn; zn+1/:(2.16)

Since zn+1 = yn+1 and zn−1 = yn−1, from (2.13), (2.16) and (2.7),

d.zn; zn+1/ ≤ d.zn; yn/+ d.yn; yn+1/ ≤ d.yn−1; yn/

2
+ qd.zn; zn+1/

≤ q

2
d.zn−2; zn−1/+ 2

3
d.zn; zn+1/:

Hence

d.zn; zn+1/ ≤
(

3

2

)
t d.zn−2; zn−1/:(2.17)

Similarly, if yn ∈ Gxn−1 then one can show that (2.17) holds.

Case 3b. Consider now the second possibility, namely the case when (2.14) holds.
We may suppose, without loss of generality, that yn ∈ Fxn−1. Then, by construction
of {xn} (see (iv.ii)), we now have that xn ∈ K is chosen such that Sxn = zn, and
yn+1 = zn+1 ∈ Fxn is such that d.yn−1; yn+1/ ≤ cH.Gxn−2; Fxn/.
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Thus from (2.6),

d.yn−1; yn+1/

(2.18)

≤ cH.Gxn−2; Fxn/

≤ q max

{
3

4
d.T xn−2; Sxn/; D.T xn−2;Gxn−2/; D.Sxn; Fxn/;

D.T xn−2; Fxn/+ D.Sxn;Gxn−2/

2

}

≤ q max

{
3

4
d.zn−2; zn/; d.zn−2; zn−1/; d.zn; zn+1/;

d.zn−2; yn+1/+ d.zn; yn−1/

2

}
:

Since yn−1 = zn−1, from (2.14) and (2.7),

d.zn; yn−1/ <
1

2
d.yn−1; yn/ ≤ q

2
d.zn−2; zn−1/ <

1

3
d.zn−2; zn−1/;

d.zn−2; zn/ ≤ d.zn−2; zn−1/+ d.yn−1; zn/ <
4

3
d.zn−2; zn−1/;

d.zn−2; yn+1/ ≤ d.zn−2; yn−1/+ d.yn−1; yn+1/:

Thus from (2.18),

d.yn−1; yn+1/≤ q max

{
d.zn−2; zn−1/; d.zn; zn+1/;

[
2

3
d.zn−2; zn−1/+ 1

2
d.yn−1; yn+1/

]}
:

(2.19)

If we suppose that d.yn−1; yn+1/ > q max{d.zn−2; zn−1/; d.zn; zn+1/}, then from (2.19),

d.yn−1; yn+1/≤ 2q

3
d.zn−2; zn−1/+ q

2
d.yn−1; yn+1/≤ 2q

3
d.zn−2; zn−1/+ 1

3
d.yn−1; yn+1/

and hence

d.yn−1; yn+1/ ≤ qd.zn−2; zn−1/;

a contradiction. Thus,

d.yn−1; yn+1/ ≤ q max {d.zn−2; zn−1/; d.zn; zn+1/} :(2.20)

Using the triangle inequality together with (2.14), (2.20), (2.7) and the fact that
yn+1 = zn+1 and yn−1 = zn−1, we obtain

d.zn; yn+1/ ≤ d.yn−1; zn/+ d.yn−1; yn+1/ ≤ 1

2
d.yn−1; yn/+ d.yn−1; yn+1/

≤ q

2
d.zn−2; zn−1/+ q max {d.zn−2; zn−1/; d.zn; zn+1/}

≤ q

2
d.zn−2; zn−1/+ max

{
q d.zn−2; zn−1/;

2

3
d.zn; zn+1/

}
:
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Hence

d.zn; zn+1/ ≤ 3q

2
d.zn−2; zn−1/:(2.21)

Similarly, if yn ∈ Gxn−1 then (2.21) holds.

From (2.11), (2.17) and (2.21) we see that in Case 3,

d.zn; zn+1/ ≤ 3q

2
d.zn−2; zn−1/ for all n ≥ 2:(2.22)

From (2.8), (2.9) and (2.22) we conclude that in each of the cases considered we
have

d.zn; zn+1/ ≤ 3q

2
max {d.zn−2; zn−1/; d.zn; zn+1/} for all n ≥ 2:

Now, proceeding on the lines of Ćirić [5] and using the fact that .3=2/q < 1, it can
be shown that the sequence {zn} is a Cauchy sequence and hence converges to some
point z ∈ K . Since S.K / and T .K / are complete, there are points u and w in K such
that Su = z and Tw = z. By the construction of {zn}, at least one of its subsequences
{zn. j/} or {zn.k/}, defined by zn. j/ = Sxn. j/ ∈ Gxn. j/−1, or by zn.k/ = T xn.k/ ∈ Fxn.k/−1,
respectively, is infinite.

Suppose that the sequence {zn. j/}, with zn. j/ ∈ Gxn. j/−1, is infinite. For convenience,
denote zn. j/, yn. j/, xn. j/ and xn. j/−1 by z j , y j , x j and x j−1, respectively. Then we have
z j = y j = Sx j ∈ Gx j−1 and T x j−1 = z j−1 ∈ K (note that z j−1 = y j−1 ∈ Fx j−2, or
y j−1 �= z j−1 ∈ @K ).

Since z j ∈ Gx j−1, from (2.1) we deduce that

D.Fu; z j/ ≤ H.Fu;Gx j−1/

≤ h max

{
d.Su; T x j−1/

a
; D.Su; Fu/; D.T x j−1;Gx j−1/;

D.Su;Gx j−1/+ D.T x j−1; Fu/

a + h

}

≤ h max

{
d.z; z j−1/

a
; D.z; Fu/; d.z j−1; z j/;

d.z; z j/+ D.z j−1; Fu/

a + h

}
:

Taking the limit as j → ∞, we get D.Fu; z/ ≤ h D.z; Fu/ and hence D.Fu; z/ = 0.
Since Fu is closed, z ∈ Fu. Thus we have proved that Su ∈ Fu.

Similarly, if {zn.k/}, with zn.k/ ∈ Fxn.k/−1, is infinite then Tw ∈ Gw.
Consider now the case when {zn.k/}, with zn.k/ ∈ Fxn.k/−1, is finite. In this case we

will construct a new infinite sequence {un} in F K ∩ K such that limn→∞ un = z. Since
{zn.k/} is finite, it follows that there is some n0 such that zn ∈ K\F K for all n > n0.
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Hence there is an infinite subsequence {zn.i/} of {zn}, defined by zn.i/ ∈ @K . For
convenience, we denote xn.i/, zn.i/, zn.i/±1 and zn.i/−2 by xi , zi , zi±1 and zi−2, respectively.
Now, parallel with the already considered points xi ∈ K , zi = T xi , zi+1 = yi+1 ∈ Gxi

(see Case 3a), we choose a new point xi ∈ K such that Sxi = zi ∈ @K and a point
ui+1 ∈ Fxi ⊆ K (see Case 3b) such that

d.zi−1; ui+1/ ≤ cH.Gxi−2; Fxi /:

This choice is possible because zi−1 ∈ Gxi−2.
As in Case 3b (see (2.20)), it can be shown that

d.zi−1; ui+1/ ≤ q max{d.zi−2; zi−1/; d.zi ; un+1/}:
Hence, as zn → z, it follows that ui → z. From (2.1),

D.ui+1;Gw/ ≤ H.Fxi ;Gw/

≤ h max

{
d.zi; z/

a
; d.zi ; ui+1/; D.z;Gw/;

D.zi ;Gw/+ d.z; ui+1/

a + h

}
:

Taking the limit as i → ∞, we get D.z;Gw/ ≤ h D.z;Gw/ and hence D.z;Gw/ = 0.
Therefore

z = Tw ∈ Gw:

Now from (2.1) we have H.Fu;Gw/ = 0. Hence Fu = Gw. Thus we have proved
that

Su ∈ Fu; Tw ∈ Gw; Su = Tw and Fu = Gw:

We note that a coincidence of F and S and a coincidence of G and T need not be
the same point, even if F;G; S and T are single-valued self mappings. The following
example shows this.

EXAMPLE 1. Let X be the Euclidean space [0;∞/ with the usual metric. Define
F , G, S and T on X as follows :

Fx = x2 + 7=64; Gx = x3 + 7=64; Sx = 8x2 and T x = 8x3:

Then

d.Fx;Gy/ = ∣∣x2 − y3
∣∣ ≤ 8

∣∣x2 − y3
∣∣

4
= d.Sx; T y/

4
:

Thus (2.1) holds for all x; y ∈ X . Also the other hypotheses (i) and (ii) are satisfied.
It is easy to see that F.1=8/ = S.1=8/ = 1=8 and G.1=4/ = T .1=4/ = 1=8.
Therefore F and S have a coincidence at the point u = 1=8 and G and T have a
coincidence at the point w = 1=4 and F.1=8/ = G.1=4/.
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In Theorem 2.1, if we set S = T = id (where id is the identity mapping), we
obtain the following result.

COROLLARY 2.2. Let .X; d/ be a complete and metrically convex metric space
and K be a non-empty closed subset of X. If mappings F;G : K → C B.X/ satisfy

H.Fx;Gy/ ≤ h max

{
d.x; y/

a
; D.x; Fx/; D.y;Gy/;

D.x;Gy/+ D.y; Fx/

a + h

}

for all x, y in X, where

0 < h <
2

3
and a ≥ 1 + 2h2

1 + h
;

and x ∈ @K implies Fx ⊆ K and Gx ⊆ K , then there exists a point z in K such that
z ∈ Fz ∩ Gz and Fz = Gz.

In Corollary 2.2, if we set G = F , we obtain the following generalization of the
Rhoades result in [19].

COROLLARY 2.3. Let .X; d/ be a complete metrically convex metric space and K a
non-empty closed subset of X. Let F : K → C B.X/ be a non-self mapping satisfying

H.Fx; Fy/ ≤ h max

{
d.x; y/

a
; D.x; Fx/; D.y; Fy/;

D.x; Fy/+ D.y; Fx/

a + h

}

for all x, y in X, where

0 < h <
2

3
and a ≥ 1 + 2h2

1 + h
:

If Fx ⊆ K for each x ∈ @K , then F has a fixed point.
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[9] Lj. B. Ćirić and J. S. Ume, ‘Some common fixed point theorems for weakly compatible mappings’,

J. Math. Anal. Appl. 314 (2006), 488–499.
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