Received 4 May 2005; revised 28 June 2006
Communicated by M. Jackson
This research is supported by grant VEGA G-1/3025/06 of MŠSR. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0071-06.
Abstract
We prove that every for every complete lattice-ordered effect algebra E there exists an orthomodular lattice O(E) and a surjective full morphism \phi _E:O(E)\to E which preserves blocks in both directions: the (pre)image of a block is always a block. Moreover, there is a 0,1-lattice embedding \phi ^*_E:E\to O(E).
Download the article in PDF format (size 316 Kb)
2000 Mathematics Subject Classification:
primary 06C15; secondary 03G12, 81P10
|
(Metadata: XML, RSS, BibTeX) |
References
-
M. K. Bennett and D. J. Foulis, ‘Phi-symmetric effect algebras’, Found. Phys. 25 (1995), 1699–1722.
MR1377109
-
M. K. Bennett and D. J. Foulis, ‘Interval and scale effect algebras’, Adv. in Appl. Math. 19 (1997), 200–215.
MR1459498
-
G. Cattaneo, ‘A unified framework for the algebra of unsharp quantum mechanics’, Internat. J. Theoret. Phys. 36 (1997), 3085–3117.
MR1614189
-
C. C. Chang, ‘Algebraic analysis of many-valued logics’, Trans. Amer. Math. Soc. 89 (1959), 74–80.
MR94302
-
F. Chovanec and F. Kôpka, ‘Boolean D-posets’, Tatra Mt. Math. Publ 10 (1997), 1–15.
MR1469294
-
A. Dvurečenskij and S. Pulmannová, ‘Tensor product of D-posets and D-test spaces’, Rep. Math. Phys. 34 (1994), 251–275.
MR1339465
-
A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures (Kluwer, Dordrecht and Ister Science, Bratislava, 2000).
MR1861369
-
D. Foulis and M. K. Bennett, ‘Tensor products of orthoalgebras’, Order 10 (1993), 271–282.
MR1267193
-
D. J. Foulis and M. K. Bennett, ‘Effect algebras and unsharp quantum logics’, Found. Phys. 24 (1994), 1325–1346.
MR1304942
-
D. J. Foulis, R. Greechie and G. Rütimann, ‘Filters and supports in orthoalgebras’, Internat. J. Theoret. Phys. 35 (1995), 789–802.
MR1353682
-
D. J. Foulis and C. H. Randall, ‘Operational quantum statistics. I. Basic concepts’, J. Math. Phys. 13 (1972), 1667–1675.
MR416417
-
R. Giuntini and H. Greuling, ‘Toward a formal language for unsharp properties’, Found. Phys. 19 (1989), 931–945.
MR1013913
-
G. Grätzer, General Lattice Theory, second edition (Birkhäuser, 1998).
MR1670580
-
R. Greechie, D. Foulis and S. Pulmannová, ‘The center of an effect algebra’, Order 12 (1995), 91–106.
MR1336539
-
S. Gudder, ‘S-dominating effect algebras’, Internat. J. Theoret. Phys. 37 (1998), 915–923.
MR1624277
-
S. Gudder, ‘Sharply dominating effect algebras’, Tatra Mt. Math. Publ. 15 (1998), 23–30.
MR1655076
-
J. Hashimoto, ‘Ideal theory for lattices’, Math. Japon. 2 (1952), 149–186.
MR57224
-
G. Jenča, ‘Blocks of homogeneous effect algebras’, Bull. Austral. Math. Soc. 64 (2001), 81–98.
MR1848081
-
G. Jenča, ‘Finite homogeneous and lattice ordered effect algebras’, Discrete Math. 272 (2003), 197–214.
MR2009543
-
G. Jenča, ‘Boolean algebras R-generated by MV-effect algebras’, Fuzzy sets and systems 145 (2004), 279–285.
MR2074002
-
G. Jenča, ‘Sharp and meager elements in orthocomplete homogeneous effect algebras’, Technical report, (FEI STU Bratislava, 2004).
-
G. Jenča and S. Pulmannová, ‘Quotients of partial abelian monoids and the Riesz decomposition property’, Algebra Universalis 47 (2002), 443–477.
MR1923079
-
G. Jenča and S. Pulmannová, ‘Orthocomplete effect algebras’, Proc. Amer. Math. Soc. 131 (2003), 2663–2671.
MR1974321
-
G. Jenča and Z. Riečanová, ‘On sharp elements in lattice ordered effect algebras’, BUSEFAL 80 (1999), 24–29.
-
F. Kôpka, ‘D-posets of fuzzy sets’, Tatra Mt. Math. Publ. 1 (1992), 83–87.
MR1230466
-
F. Kôpka and F. Chovanec, ‘D-posets’, Math. Slovaca 44 (1994), 21–34.
MR1290269
-
H. M. MacNeille, ‘Extension of a distributive lattice to a Boolean ring’, Bull. Amer. Math. Soc. 45 (1939), 452–455.
-
D. Mundici, ‘Interpretation of AF C^{*}-algebras in Lukasziewicz sentential calculus’, J. Funct. Anal. 65 (1986), 15–63.
MR819173
-
C. H. Randall and D. J. Foulis, ‘Operational quantum statistics. II. Manual of operations and their logics’, J. Math. Phys. 13 (1972), 1667–1675.
MR416417
-
Z. Riečanová, ‘Generalization of blocks for D-lattices and lattice-ordered effect algebras.’, Internat. J. Theoret. Phys. 39 (2000), 231–237.
MR1762594
-
Z. Riečanová, ‘Continuous lattice effect algebras admitting order continuous states’, Fuzzy sets and systems 136 (2003), 41–54.
MR1978468