Received 4 November 2005; revised 1 June 2006
Communicated by L. Batten
Abstract
Projective planes of order n with a collineation group admitting a 2-transitive orbit on a line of length at least n/2 are investigated and new examples are provided.
Download the article in PDF format (size 480 Kb)
2000 Mathematics Subject Classification:
primary 51E15; secondary 20B25
|
(Metadata: XML, RSS, BibTeX) |
References
-
M. Aschbacher, Finite group theory (Cambridge University Press, 1996).
MR1777008
-
H. Bender, ‘Endliche zweifach transitive permutationsgruppen, deren involutionen keine fixpunkte haben’, Math. Z. 104 (1968), 175–204.
MR227261
-
H. Bender, ‘Transitive gruppen gerader ordnung, in denen jede involution genau einen puntk festläßt’, J. Algebra 17 (1971), 527–554.
MR288172
-
M. Biliotti and E. Francot, ‘Two-transitive orbits in finite projective planes’, J. Geom. 82 (2005), 1–24.
MR2161811
-
M. Biliotti, V. Jha and N. L. Johnson, ‘The collineation group of generalized twisted fields planes’, Geom. Dedicata 76 (1999), 97–126.
MR1699202
-
M. Biliotti and N. L. Johnson, ‘The non-solvable rank 3 affine planes’, J. Combin. Theory Ser. A 93 (2000), 201–230.
MR1805294
-
M. Biliotti and G. Korchmáros, ‘Some new results on collineation groups preserving an oval of a finite projective plane’, in: Combinatorics '88, Vol. 1 (Ravello, 1988), Res. Lecture Notes Math., Mediterranean, Rende (1991) pp. 159–170.
MR1223562
-
M. Biliotti and A. Montinaro, ‘Finite projective planes of order n with a 2-transitive orbit of length n-3’, Adv. Geom. 6 (2005), 15–37.
MR2242859
-
J. Cofman, ‘Double transitivity in finite affine and projective planes’, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 8 (1967), 317–320.
MR236813
-
J. Cofman, ‘On a conjecture of Hughes’, Proc. Camb. Phil. Soc. 63 (1967), 647–652.
MR217691
-
J. H. Conway, R. T. Curtis, R. A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal subgroups and ordinary characters for simple groups (Oxford University Press, 1985).
MR827219
-
B.N. Cooperstein, ‘Minimal degree for a permutation representation of a classical group’, Israel J. Math. 30 (1978), 213–235.
MR506701
-
T. Czerwinski, ‘Finite translation planes with a collineation groups doubly transitive on the points at infinity’, J. Algebra 22 (1972), 428–441.
MR313933
-
T. Czerwinski, ‘On collineation groups that fix a line of a finite projective plane’, Illinois J. Math. 16 (1977), 221–230.
MR487766
-
U. Dempwolff, ‘The projective planes of order 16 admitting \operatorname{SL}(3,2)’, Rad. Mat. 7 (1991), 123–134.
MR1126890
-
U. Dempwolff and A. Reifart, ‘The classification of the translation planes of order 16. I’, Geom. Dedicata 15 (1984), 137–153.
MR737954
-
J. D. Dixon and B. Mortimer, Permutation groups (Springer Verlag, New York, 1966).
MR1409812
-
D. A. Foulser, ‘Solvable flag transitive affine groups’, Math. Z. 86 (1964), 191–204.
MR170956
-
M. J. Ganley and V. Jha, ‘On translation planes with a 2-transitive orbit on the line at infinity’, Arch. Math. (Basel) 47 (1986), 379–384.
MR866529
-
M. J. Ganley, V. Jha and N. L. Johnson, ‘The translation planes admitting a nonsolvable doubly transitive line-sized orbit’, J. Geom. 69 (2000), 88–109.
MR1800461
-
G. Glauberman, ‘Central elements in core-free groups’, J. Algebra 4 (1966), 403–420.
MR202822
-
D. Gorenstein, Finite groups (Chelsea Publishing Company, New York, 1980).
MR569209
-
D. Gorenstein and J. H. Walter, ‘The characterization of finite groups with dihedral Sylow 2-subgroups I’, J. Algebra 2 (1965), 85–151.
MR177032
-
The GAP Group, ‘Gap — groups, algorithms, and programming, version 4.3’, http://www.gap-system.org, 2002.
-
R. W. Hartley, ‘Determination of the ternary collineation groups whose coefficients lie in \operatorname{GF}(2^{n})’, Ann. Math. 27 (1926), 140–158.
-
C. Hering, ‘Eine bemerkung über automorphismengruppen von endlichen projektiven ebenen und möbiusebenen’, Arch. Math. (Basel) 18 (1967), 107–110.
MR210793
-
C. Hering, ‘On involutorial elations of projective planes’, Math. Z. 132 (1973), 91–97.
MR325738
-
C. Hering, ‘Transitive linear groups and linear groups which contain irreducible subgroups of prime order’, Geom. Dedicata 2 (1974), 425–460.
MR335659
-
Y. Hiramine, ‘On finite affine planes with a 2-transitive orbit on l_{∞}’, J. Algebra 162 (1993), 392–409.
MR1254783
-
C. Y. Ho, ‘Involutory collineations of finite planes’, Math. Z. 193 (1986), 235–240.
MR856151
-
C. Y. Ho, ‘Projective planes of order 15 and other odd composite orders’, Geom. Dedicata 27 (1988), 49–64.
MR950322
-
C. Y. Ho and A. Gonçalves, ‘On totally irregular simple collineation groups’, in: Advances in finite geometries and designs (Chelwood Gate 1990) (eds. J. W. P. Hirschfeld, P. R. Hughes and J. A. Thas), Oxford Sci. Publ. (Oxford Univ. Press, New York, 1991) pp. 177–193.
MR1138743
-
D. R. Hughes and F. C. Piper, Projective Planes (Springer Verlag, New York - Berlin, 1973).
MR333959
-
B. Huppert, Endliche Gruppen I (Springer Verlag, New York - Berlin, 1967).
MR224703
-
B. Huppert and N. Blackburn, Finite Groups III (Springer Verlag, Berlin - Heidelberg - New York, 1982).
MR662826
-
Z. Janko and T. Van Trung, ‘The full collineation group of any projective plane of order 12 is a {2,3}-group’, Geom. Dedicata 12 (1982), 101–110.
MR645042
-
N. L. Johnson, ‘A note on the derived semifield planes of order 16’, Aequationes Math. 18 (1978), 103–111.
MR513872
-
M. Kallaher, ‘Translation planes’, in: Handbook Of Incidence Geometry (ed. F. Buekenhout) (Elsevier, 1995) pp. 137–192.
MR1360720
-
W. M. Kantor, ‘On unitary polarities of finite projective planes’, Canad. J. Math. 23 (1971), 1060–1077.
MR293491
-
W. M. Kantor, ‘Homogeneous designs and geometric lattices’, J. Combin. Theory Ser. A 38 (1985), 66–74.
MR773556
-
G. Karpilovsky, The Schur Multiplier (Clarendon Press, Oxford, 1987).
MR1200015
-
P. B. Kleidman, ‘The maximal subgroups of the chevalley groups G_{2}(q) with q odd, the Ree groups ^{2}G_{2}(q), and their automorphism groups’, J. Algebra 117 (1988), 30–71.
MR955589
-
P. B. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups (Cambridge University Press, Cambridge, 1990).
MR1057341
-
G. Korchmáros, ‘Collineation groups doubly transitive on the points at infinity in an affine plane of order 2^{r}’, Arch. Math. (Basel) 37 (1981), 572–576.
MR646518
-
X. Li, ‘A characterization of the finite simple groups’, J. Algebra 245 (2001), 620–649.
MR1863895
-
M. W. Liebeck, ‘On the order of maximal subgroups of the finite classical groups’, Proc. London Math. Soc. (3) 50 (1985), 426–446.
MR779398
-
I. Matulić-Bedenić, ‘The classification of projective planes of order 11 which possess an involution’, Rad. Mat. 1 (1985), 149–157.
MR791752
-
I. Matulić-Bedenić, ‘The classification of projective planes of order 13 which possess an involution’, Rad Hrvatske Akad. Znam. Umjet. 456 (1991), 9–13.
MR1211596
-
H. H. Mitchell, ‘Determination of ordinary and modular ternary linear groups’, Trans. Amer. Math. Soc. 12 (1911), 207–242.
MR1500887
-
B. Mwene, ‘On the subgroups of the group \operatorname{PSL}_{4}(2^{m}) ’, J. Algebra 41 (1976), 79–107.
MR409654
-
D. S. Passman, Permutation Groups (W. A. Benjamin, Inc., New York -Amsterdam, 1968).
MR237627
-
T. Penttila, G. F. Royle and M. K. Simpson, ‘Hyperovals in the known projective planes of order 16’, J. Combin. Des. 4 (1996), 59–65.
MR1364099
-
A. Reifart, ‘The classification of the translation planes of order 16. II’, Geom. Dedicata 17 (1984), 1–9.
MR771177
-
P. Ribenboim, Catalan's conjecture (Acad. Press, Boston, 1994).
MR1259738
-
P. Ribenboim, Fermat's last theorem for amateurs (Springer-Verlag, New York, 1999).
MR1719329
-
R. H. Schulz, ‘Über translationsebenen mit kollineationsgruppen, die die punkte der ausgezeichneten geraden zweinfach transitiv permutieren’, Math. Z. 122 (1971), 246–266.
MR287429
-
R. Shull, ‘Collineations of projective planes of order 9’, J. Combin. Theory Ser. A 37 (1984), 99–120.
MR757609
-
R. Shull, ‘The classification of projective planes of order 9 possessing a collineation group of order 5’, Algebras Groups Geom. 2 (1985), 365–379.
MR840903
-
M. Suzuki, ‘On a class of doubly transitive groups’, Ann. of Math. (2) 75 (1962), 105–145.
MR136646
-
L. Yu and M. Le, ‘On the diophantine equation (x^{n}-1)/(x-1)=y^{m}’, Acta Arith. 21 (1972), 299–301.
MR302559