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Abstract

An element in a free group is a proper power if and only if it is a proper power in every nilpotent factor
group. Moreover there is an algorithm to decide if an element in a finitely generated torsion-free nilpotent
group is a proper power.

2000 Mathematics subject classification: primary 20F18.

1. Introduction

One of the questions that arose in the development of the software package MAGNUS
was whether it is possible to discern that an element in a free group is not a proper
power in one of its nilpotent quotients. This question has also arisen in an ongoing
attempt to prove that free Q–groups are residually torsion–free nilpotent. One of the
objects of this note is to settle the first question by proving the following.

THEOREM 1.1. An element in a free group is a proper power if and only if it is a
proper power in all of its nilpotent images.

A key idea involved in the proof of Theorem 1.1 goes back to Wilhelm Magnus and
is a critical step in his solution to the word problem for groups with a single defining
relation (see a detailed discussion of Magnus’ method in [4]).

As a companion theorem we also prove the following much easier result.

THEOREM 1.2. There is an algorithm to decide if an element in a finitely generated
torsion-free nilpotent group is a proper power.
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2. The proof of Theorem 1.1

2.1. The groups H(Y, n, c) We shall have need of a family of torsion–free nilpotent
groups H.Y; n; c/ which depend on three parameters: a set Y and two positive
integers n and c. Each of the groups H.Y; n; c/ is an extension of a free nilpotent
group N = N .Y; n; c/ of class c by the infinite cyclic group T =< t > generated
by t . N is freely generated by the set

{yh|y ∈ Y; h = 1; : : : ; n};
indexed by Y and {1; : : : ; n}. The action of T on N is defined as follows

t−1 y1t = y1 y2; : : : ; t−1yn−1t = yn−1 yn; t−1 ynt = yn(2.1)

for y ∈ Y . In order to ensure that the action − of T on N given by (2.1) defines
an automorphism of N we need first to observe that in a nilpotent group any set
of elements that generates the group modulo its derived group, generates the group
itself. Consequently − is an epimorphism. Next we observe that an epimorphism of
a finitely generated nilpotent group is an automorphism. Notwithstanding the fact
that N need not be finitely generated, the very nature of N allows one to deduce that −
is monic. Thus the definition (2.1) makes sense (for some additional explanation, see
the proof of Lemma 2.2, if desired). Denoting the cth term of the lower central series
of a group G by �c.G/, we observe that, modulo �2.N /, H.Y; n; c/ is nilpotent of
class n. Hence, by a theorem of P. Hall [2], H.Y; n; c/ is also nilpotent. It is clearly
torsion–free. So we have proved the following.

LEMMA 2.1. The groups H.Y; n; c/ are torsion–free nilpotent for every choice of
Y , n and c.

The following lemma is a consequence of the fact that N is free nilpotent of class c
(here we denote the conjugate u−1vu of v by u by vu).

LEMMA 2.2. Let N be as above and let

z.y; h/ = yth

1 .h = 0; : : : ; n − 1/:

Then

z.y; 0/; : : : ; z.y; n − 1/ .y ∈ Y /

freely generate N .

PROOF. In order to prove Lemma 2.2, observe first that in a free nilpotent group any
set of elements which are independent modulo the derived group, freely generate a free
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nilpotent group (see, e.g., [5]). Notice that H.Y; n; c/=�2.H.Y; n; c// ∼= H.Y; n; 1/.
Thus it suffices for the proof of Lemma 2.2 to prove that that in H.Y; n; 1/ the elements
z.y; h/ = yth

1 (h = 0; : : : ; n − 1, y ∈ Y ) freely generate N . Now H.Y; n; 1/ is an
extension of the free abelian group N on y1; : : : ; yn (y ∈ Y ) by the infinite cyclic
group T on t , where t acts on N as above:

t−1 y1t = y1 y2; : : : ; t−1yn−1t = yn−1 yn; t−1 ynt = yn

for every y ∈ Y . Observe that for each integer 0 ≤ k ≤ n − 1 we have

z.y; k/ = y.
k
0/

1 y.
k
1/

2 · · · y.
k
k/

k+1 :

It follows that for 1 ≤ k ≤ n we have

gp.y1; : : : ; yk/ = gp.z.y; 0/; : : : ; z.y; k − 1//

and thence that

z.y; 0/; : : : ; z.y; n − 1/ .y ∈ Y /

generate N . So, by the remark at the outset of the proof, z.y; 0/; : : : ; z.y; n − 1/
freely generate N .

Finally we shall have need of the following simple observation.

LEMMA 2.3. Let F be a free group in a variety � of groups, freely generated by a
set X. Let f be an element of F and suppose that f can be written as a word in the
finitely many elements x1; : : : ; xq of X. If f is not a proper power in the subgroup S
of F generated by the elements x1; : : : ; xq, then f is not a proper power in F.

PROOF. Suppose if possible that f = f m
1 , for some f1 ∈ F , where m > 1. Let ² be

the retraction of F onto S defined by mapping each of the xi to itself for i = 1; : : : ; q
and the remaining elements of X to the identity. Then ² maps f to itself and hence

f = f² = . f m
1 /² = . f1²/

m :

Since f1² ∈ S, this contradiction proves the lemma.

2.2. The main step The main step in the proof of Theorem 1.1 is the following
lemma, which will be used in the inductive step in the proof. This will be made clear
in what follows.

LEMMA 2.4. Let F be a free group freely generated by a set X, let s ∈ X and let
X ′ = X − {s}. Furthermore, let K be the normal closure in F of X ′ and suppose that
f ′ ∈ K . If f ′ is not a proper power modulo some term of the lower central series
of K , then f ′ is not a proper power modulo some term of the lower central series of F.
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PROOF. Observe that K is freely generated by the elements

xi = s−i xsi .x ∈ X ′; i ∈ Z/:
We can assume, replacing f ′ by one of its conjugates if necessary, that f ′ can be
expressed as a word in the generators

xi = s−i xsi .x ∈ X ′; i ∈ {0; : : : ; n − 1}/
for a suitably large choice of the integer n. By hypothesis, there exists an integer c
such that f ′�c+1.K / is not a proper power in K=�c+1.K /.

We now choose the set Y in Lemma 2.3 in such a way that there is a one-to-one
correspondence � between X ′ and Y . Next we define a homomorphism � from F
into H.Y; n; c/ by sending s to t and x ∈ X ′ to .x�/1. In the event that � maps
x ∈ X ′ to y ∈ Y , we will denote y1 also by y.x; 1/. Thus .x�/1 = y.x; 1/.
Consequently xi maps onto .y.x; 1/t i

/ for i = 0; : : : ; n − 1. Now as y ranges over Y ,
by Lemma 2.2, the conjugates of the elements y1 by the powers t h (h = 0; : : : ; n − 1)
of t generate N . Consequently � is onto. Hence � induces a homomorphism �?

of F=�c+1.K / onto H.Y; n; c/. Observe that �? maps the elements xi�c+1.K / onto
.y.x; 1/t i

/ where here i = 0; : : : ; n − 1 and x ∈ X ′. Now, by Lemma 2.2, the
elements .y.x; 1/t i

/ where again i = 0; : : : ; n − 1 and x ∈ X ′, freely generate the
free nilpotent group N . Thus �? when restricted to gp.x0�c+1.K /; : : : ; xn−1�c+1.K //
with x ranging over X ′, is an isomorphism. Hence . f ′�c+1.K //�? is not a proper
power in gp..x0�c+1.K //�?; : : : ; .xn−1�c+1.K //�?/. Since the elements

.x0�c+1.K //�?; : : : ; .xn−1�c+1.K //�?

are part of a free basis for N , it follows from Lemma 2.3 that . f ′�c+1.K //�? is not
a proper power in N . But H.Y; n; c/=N is infinite cyclic. Hence . f ′�c+1.K //�? is
not a proper power in H.Y; n; c/. Now H.Y; n; c/ is nilpotent of class, say j . It
follows that f ′� j+1.F/ is not a proper power in F=� j+1.F/ since its image under the
homomorphism from F=� j+1.F/ onto H.Y; n; c/ induced by � is not a proper power
in H.Y; n; c/. This completes the proof of Lemma 2.4

2.3. The proof of Theorem 1.1 Suppose again that F is a free group, freely
generated by a set X and that f ∈ F is not a proper power. The proof that f is not a
proper power modulo some term of the lower central series of F will be by induction
on the length ` of f . If ` = 1, f �2.F/ is not a proper power in F=�2.F/. So we can
focus on the case where ` > 1. Inductively then we assume that an element of length
at most ` − 1 in a free group is a proper power if and only if it is a proper power in
every nilpotent image of that free group. We will make this assumption in the lemma
that follows.
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LEMMA 2.5. Let F be a free group, freely generated by a set X and let s be an
element of X. Furthermore, let f ∈ F be of length `, suppose that f is not a proper
power and suppose that s occurs in f with exponent sum zero. Then there exists an
integer j such that f � j+1.F/ is not a proper power in F=� j+1.F/.

PROOF. In order to prove Lemma 2.5, put X ′ = X − {s} and let K be the normal
closure in F of X ′. Let, as before,

xi = s−i xsi .x ∈ X ′; i ∈ Z/:
Then K is freely generated by the xi and f ∈ K . So we can express f as a word f ′

in terms of the xi . Moreover, because s occurs with exponent sum 0 in f , f ′ has
length at most ` − 2. So, inductively, there exists a nilpotent quotient of K in which
the image of f ′ is not a proper power. It follows then from Lemma 2.4 that there is a
nilpotent quotient F=� j+1.F/ of F such that f � j+1.F/ = f ′� j+1.F/ is not a proper
power in F=� j+1.F/, as required.

In order to complete the proof of Theorem 1.1, we are left with the case of an
element f of length ` > 1 in the free group F freely generated by the set X which
is not a proper power and such that none of the elements of X occurs in f with
exponent sum 0. It follows that f must involve at least two elements of X . We can,
by appealing to Lemma 2.3, also assume that X is finite. Suppose then that f involves
the elements a and b of X and inductively that in a free group any element of length
less than ` is a proper power only if it is a proper power in every nilpotent factor group.
We express the involvement of a and b in f by using functional notation, that is, by
writing f = f .a; b; : : : /. Suppose that a occurs with exponent sum Þ and b with
exponent sum þ in f . We freely adjoin a þ th root r to a, so rþ = a. The resultant
group E is free on X − {a} ∪ {r}. Moreover, f now takes the form

f = f .rþ; b; : : : /

and r occurs with exponent sum Þþ in f = f .rþ; b; : : : /. Next put u = brÞ. Then we
find that E is free on r; u and all of the elements of X exclusive of a and b. Observe
next that

f = f .rþ; ur−Þ; : : : /:

It follows that r now occurs with exponent sum 0 in this new form for f . Let L be
the normal closure of X ′ = {u} ∪ .X − {a; b}/. Then f ∈ L . In addition, L is free
on the conjugates xi = r−i xr i , where x ranges over X ′ and i over the integers. If we
now express f as a word f ′ in terms of these free generators of L , we find that the
length of f ′ is at most `− 1. On appealing now to Lemma 2.4 and making use of the
induction hypothesis, we find that f is not a proper power modulo some term of the
lower central series of E . Consequently f is not a proper power modulo some term
of the lower central series of F . This completes the proof of Theorem 1.1.
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3. The proof of Theorem 1.2

Let G be a finitely generated, torsion–free nilpotent group given by a consistent
polycyclic presentation (see [1]). We take for granted here the notions and results in
that paper [1].

The proof that there is an algorithm to decide if an element g in G is a proper power
will be by induction on the class c of G. If c = 1, that is, if G is abelian, then we
can decompose G into a direct product of finitely many infinite cyclic groups. This
allows us to express g as a product of powers of the generators of these infinite cyclic
groups. Then g is a proper power if and only if these powers have a common divisor
d > 1.

Now suppose that c > 1 and that C is the centre of G. By [1] we can compute
a consistent polycyclic presentation for C and one for G=C . By a theorem of Kan-
torovich (see, for example, [3]), G=C is again a torsion–free nilpotent group. So
inductively we can determine if gC is a proper power in G=C . If gC is not a proper
power in G=C then g is not a proper power in G. Suppose that gC is a proper
power in G=C . Now, according to Kantorovich, extraction of roots in torsion–free
nilpotent groups is unique in so far as they exist (see again [3]). It follows that we
can express gC uniquely in the form gC = .hC/n, where n is chosen maximal. Thus
if gC is a proper power, then g can be written in the form g = heh ′, where h ′ ∈ C .
Let A = gp.C; h/. Then A is an isolated subgroup of G (see [3] for this notion of
isolated). Now g ∈ A and g is a proper power in G if and only if it is a proper power
in A. A is a finitely generated torsion–free abelian group. Since we can effectively
find a consistent polycyclic presentation for A, it follows that we can decide if g is a
proper power in A. This completes the proof of Theorem 1.2.

It should be noted that since the torsion subgroup of a finitely generated nilpotent
group is finite, the restriction in Theorem 1.2 that G be torsion–free can easily be
omitted. Moreover one can, also easily, fashion a proof that there is an algorithm to
decide if an element in a finitely generated nilpotent group is a proper power by using
two facts. First that in a nilpotent group of class c > 1 an element together with the
derived group generates a nilpotent subgroup of class at most c − 1. The second fact
is that in a torsion–free nilpotent group the isolator of a nilpotent subgroup has the
same class as the subgroup itself.
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