J. Aust. Math. Soc. 83 (2007), no. 3, pp. 335–355.
Laguerre geometries and some connections to generalized quadrangles
Matthew R. Brown
School of Mathematical Sciences University of Adelaide SA 5005 Australia
matthew.brown@adelaide.edu.au
Received 15 November 2005; revised 30 September 2006
Communicated by L. Batten

Abstract

A Laguerre plane is a geometry of points, lines and circles where three pairwise non-collinear points lie on a unique circle, any line and circle meet uniquely and finally, given a circle C and a point Q not on it for each point P on C there is a unique circle on Q and touching C at P. We generalise to a Laguerre geometry where three pairwise non-collinear points lie on a constant number of circles. Examples and conditions on the parameters of a Laguerre geometry are given.

A generalized quadrangle (GQ) is a point, line geometry in which for a non-incident point, line pair (P,m) there exists a unique point on m collinear with P. In certain cases we construct a Laguerre geometry from a GQ and conversely. Using Laguerre geometries we show that a GQ of order (s,s^2) satisfying Property (G) at a pair of points is equivalent to a configuration of ovoids in three-dimensional projective space.

Download the article in PDF format (size 212 Kb)

2000 Mathematics Subject Classification: primary 51E20, 51E12
(Metadata: XML, RSS, BibTeX)

References

  1. A. Barlotti, ‘Un'estensione del teorema di Segre–Kustaanheimo’, Boll. Unione Mat. Ital. 10 (1955), 96–98. MR75606
  2. S. G. Barwick, M. R. Brown and T. Penttila, ‘Flock generalized quadrangles and tetradic sets of elliptic quadrics of \operatorname{PG}(3,q)\,’, J. Combin. Theory Ser. A 113 (2006), 273–290. MR2199275
  3. W. Benz, Vorlesung über Geometrie der Algebren, volume 197 of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen (Springer, Berlin, 1937). MR353137
  4. R. C. Bose and S. S. Shrikhande, ‘Geometric and pseudo-geometric graphs (q^{2}+1,q+1,q)\,’, J. Geom. 2 (1972), 74–94. MR302468
  5. M. R. Brown, ‘Projective ovoids and generalized quadrangles’, Adv. Geom. 7 (2007), 65–81. MR2290640
  6. F. Buekenhout, ‘Le plans de benz: Une approach unifiée des plans de Moebius, Laguerre et Minkowski’, J. Geom. 17 (1981), 61–68. MR647084
  7. L. R. A. Casse, J. A. Thas and P. R. Wild, ‘(q^{n+1})-sets of \operatorname{PG}(3n-1,q), generalized quadrangles and Laguerre planes’, Bull. Belg. Math. Soc. Simon Stevin 59 (1985), 21–42. MR795269
  8. Y. Chen and G. Kaerlein, ‘Eine bemerkung über endliche Laguerre- und Minkowski-Ebenen’, Geom. Dedicata 2 (1973), 193–194. MR407718
  9. W. Cherowitzo, ‘Bill Cherowitzo's hyperoval page’, http://www-math.cudenver.edu/~wcherowi/research/hyperoval/hypero.html.
  10. P. Dembowski, Finite Geometries (Springer, Berlin, 1968). MR233275
  11. W. M. Kantor, ‘Some generalized quadrangles with parameters (q^{2},q)\,’, Math. Z. 192 (1986), 45–50. MR835389
  12. R. Löwen, ‘Topological pseudo-ovals, elation Laguerre planes and elation generalized quadrangles’, Math. Z. 216 (1994), 347–369. MR1283074
  13. C. M. O'Keefe, ‘Ovoids in \operatorname{PG}(3,q): a survey’, Discrete Math. 151 (1996), 175–188. MR1391265
  14. G. Panella, ‘Caratterizzazione dell quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito’, Boll. Unione Mat. Ital. 10 (1955), 507–513. MR75607
  15. S. E. Payne, ‘A new infinite family of generalized quadrangles’, Congr. Numer. 49 (1985), 115–128. MR830735
  16. S. E. Payne, ‘An essay on skew translation generalized quadrangles’, Geom. Dedicata 32 (1989), 93–118. MR1025204
  17. S. E. Payne and J. A. Thas, ‘Generalized quadrangles with symmetry’, Bull. Belg. Math. Soc. Simon Stevin 49 (1975/76), 3–32. MR419266
  18. S. E. Payne and J. A. Thas, ‘Generalized quadrangles with symmetry. II’, Bull. Belg. Math. Soc. Simon Stevin 49 (1975/76), 81–103. MR419267
  19. S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Research Notes in Mathematics, 110 (Pitman, Boston, MA, 1984). MR767454
  20. B. Segre, ‘Sulle ovali nei piani lineari finiti’, Atti. Accad. Naz. Lincei. Rendic 17 (1954), 141–142. MR71035
  21. B. Segre, ‘Ovals in a finite projective plane’, Canad. J. Math. 7 (1955), 414–416. MR71034
  22. B. Segre, ‘On complete caps and ovaloids in three-dimensional Galois spaces of characteristic two’, Acta Arith. 5 (1959), 282–286. MR114153
  23. G. F. Steinke, ‘On the structure of finite elation Laguerre planes’, J. Geom. 41 (1991), 162–179. MR1116911
  24. J. A. Thas, ‘Generalized quadrangles and flocks of cones’, European J. Combin. 8 (1987), 441–452. MR930180
  25. J. A. Thas, ‘Generalized quadrangles of order (s,s^{2}) I’, J. Combin. Theory Ser. A 67 (1994), 140–160. MR1284404
  26. J. A. Thas, ‘Generalized polygons’, in: Handbook of Incidence Geometry (ed. F. Buenkenhout) (Elsevier, Amsterdam, 1995) chapter 9, 383–431. MR1360724
  27. J. A. Thas, ‘Generalized quadrangles of order (s,s^{2}), III’, J. Combin. Theory Ser. A 87 (1999), 247–272. MR1704261
  28. J. Tits, ‘Sur le trialité et certains groupes qui s'en déduisent’, Inst. Hautes Etudes Sci. Publ. Math. 2 (1959), 14–60. MR1557095
  29. J. Tits, ‘Ovoïdes à translations’, Rendic. Mat. 21 (1962), 37–59. MR143086