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Abstract

In this paper, using pseudo path algebras, we generalize Gabriel’s Theorem on elementary algebras
to left Artinian algebras over a field k when the quotient algebra can be lifted by a radical. Our particular
interest is when the dimension of the quotient algebra determined by the nth Hochschild cohomology is
less than 2 (for example, when k is finite or char k = 0). Using generalized path algebras, a generalization
of Gabriel’s Theorem is given for finite dimensional algebras with 2-nilpotent radicals which is splitting
over its radical. As a tool, the so-called pseudo path algebra is introduced as a new generalization of path
algebras, whose quotient by ker � is a generalized path algebra (see Fact 2.6).

The main result is that

(i) for a left Artinian k-algebra A and r = r.A/ the radical of A, if the quotient algebra A=r can be
lifted then A ∼= P SEk.1;� ; ²/ with J s ⊂ 〈²〉 ⊂ J for some s (Theorem 3.2);

(ii) If A is a finite dimensional k-algebra with 2-nilpotent radical and the quotient by radical can be
lifted, then A ∼= k.1;� ; ²/ with J̃ 2 ⊂ 〈²〉 ⊂ J̃ 2 + J̃ ∩ ker '̃ (Theorem 4.2),

where 1 is the quiver of A and ² is a set of relations.
For all the cases we discuss in this paper,we prove the uniqueness of such quivers1 and the generalized

path algebras/pseudo path algebras satisfying the isomorphisms when the ideals generated by the relations
are admissible (see Theorem 3.5 and 4.4).

2000 Mathematics subject classification: primary 16G10.

1. Introduction

In this paper, k will always denote a field and all modules will be unital. An algebra
is said to be left Artinian if it satisfies the descending chain condition on left ideals.

It is well-known that for a finite dimensional algebra A over an algebraically closed
field k and the nilpotent radical N = J .A/, the quotient algebra A=N is semisimple,
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that is, there are uniquely determined positive integers n1 ≤ n2 ≤ · · · ≤ nr such that
A=N ∼= Mn1.k/⊕ · · · ⊕ Mnr .k/, where Mni .k/ denotes the algebra of ni × ni matrices
with entries in k, which is trivially a k-simple algebra. In the special case that A is an
elementary algebra [1], every ni = 1, that is Mni

∼= k, so that A=N , as a k algebra, is
a direct sum of some copies of k and we can write A=N = ∐

r.k/.
Obviously, every finite dimensional path algebra is elementary. Conversely, by

Gabriel’s famous theorem [1], for each elementary algebra 3 one can construct the
corresponding quiver 0.3/ of3 such that3 is isomorphic to a quotient algebra of the
path algebra k0.3/. On the other hand, the module category of any algebra A is always
Morita-equivalent to that of some elementary algebra [3]. Therefore, from the point
of view of representation theory, it should be enough to consider representations of
elementary algebras, or equivalently, quotient algebras of path algebras. In particular,
this approach has provided the description of finitely generated modules over some
given algebras (see for instance [1, 5]).

However, from the point of view of the structure of algebras, finite dimensional
algebras cannot be replaced by elementary algebras. This applies, for example, if one
wishes to make a classification of finite dimensional algebras.

For this reason, Shao-xue Liu, one of the authors of [2], raised an interesting
problem, that is, how to find a generalization of path algebras so as to obtain a
generalization of Gabriel’s Theorem to arbitrary finite dimensional algebras which
would allow these algebras to be represented as quotient algebras of generalized path
algebras. The first step in this direction was taken in [2], where an appropriate concept
of generalized path algebra was introduced (see Section 2), but results of the desired
type could not be found.

In this paper, we hope to solve the Liu’s problem by using pseudo path algebras
and generalized path algebras in the sense of [2].

Some preparation is given in Section 2. In fact, we find that generalized path alge-
bras are not sufficient to characterize finite-dimensional algebras other than those with
2-nilpotent radicals. For this reason, so-called pseudo path algebras are introduced
as a new generalization of path algebras, which can cover generalized path algebras
(see Fact 2.6). In Section 3, using pseudo path algebras, we generalize Gabriel’s
Theorem on elementary algebras to cover left Artinian algebras over a field k in the
case that the quotient algebra is lifted by a radical, in particular, when the dimension
of the quotient algebra determined by the nth Hochschild cohomology is less than 2
(for example, when k is finite or char k = 0). On the other hand, in Section 4,
relying on generalized path algebras, a Generalized Gabriel’s Theorem is given for
finite dimensional algebras with 2-nilpotent radicals in the case where the quotient
algebra is lifted. In all the cases we discuss, we prove the uniqueness of the relevant
quivers 1 and generalized path algebras/pseudo path algebras if the ideals generated
by the relations are admissible (see Theorems 3.5 and 4.4).
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Under some conditions, the generalized forms of Gabriel’s Theorems are not de-
pendent on the ground field and this offers the possibility of an approach to modular
representations of algebras and groups.

Note that when A ∼= k.1;� /=〈²〉 or A ∼= P SEk.1;� /=〈²〉, the structure of A is
determined by the ideal 〈²〉 generated by a set of relations ². From this, one can try to
classify those associative algebras satisfying the theorems, including many important
kinds of algebras. We intend to address these questions in future papers which will
shed further light on the significance of the present work.

2. On generalized path algebras and pseudo path algebras

In this section, we first introduce the definitions of generalized path algebra [2] and
pseudo path algebra and then discuss their properties and relationship.

A quiver1 is given by two sets10 and11 together with two maps s; e : 11 → 10.
The elements of 10 are called vertices, while the elements of 11 are called ar-
rows. For an arrow Þ ∈ 11, the vertex s.Þ/ is the start vertex of Þ and the ver-
tex e.Þ/ is the end vertex of Þ, and we write s.Þ/

Þ→ e.Þ/. A path p in 1 is
.a|Þ1 · · · Þn|b/, where Þi ∈ 11, for i = 1; : : : ; n, and s.Þ1/ = a, e.Þi / = s.Þi+1/ for
i = 1; : : : ; n + 1, and e.Þn/ = b. s.Þ1/ and e.Þn/ are also called respectively the
start vertex and the end vertex of p. Write s.p/ = s.Þ1/ and e.p/ = e.Þn/. The
length of a path is the number of arrows in it. To each arrow Þ, one can assign an
edge Þ where the orientation is forgotten. A walk between two vertices a and b is
given by .a|Þ1 · · ·Þn|b/, where a ∈ {s.Þ1/; e.Þ1/}, b ∈ {s.Þn/; e.Þn/}, and for each
i = 1; : : : ; n − 1, {s.Þi /; e.Þi/} ∩ {s.Þi+1/; e.Þi+1/} �= ∅. A quiver is said to be
connected if there exists a walk between any two vertices a and b.

In this paper, we will always assume the quiver1 is finite, that is, the number |10|
of vertices and the number |11| of arrows are both finite.

DEFINITION 2.1. For two algebras A and B, the rank of a finitely generated A-B-
bimodule M is defined as the least cardinal number of a set of generators. In particular,
if M = 0, it is said to have rank 0 as a finitely generated A-B-bimodule.

Clearly, every finitely generated A-B-bimodule has a uniquely determined rank.

2.1. Generalized path algebra and tensor algebra Let1 = .10; 11/ be a quiver
and � = {Ai : i ∈ 10} be a family of k-algebras Ai with identity ei , indexed by the
vertices of 1. The elements ai of

⋃
i∈10

Ai are called the � -paths of length zero,
whose start vertex s.ai / and end vertex e.ai/ are both i . For each n ≥ 1, an� -path P
of length n is given by a1þ1a2þ2 · · · anþnan+1, where .s.þ1/|þ1 · · ·þn|e.þn// is a path
in 1 of length n and ai ∈ As.þi / for i = 1; : : : ; n and an+1 ∈ Ae.þn/. The terms s.þ1/
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and e.þn/ are also called respectively the start vertex and the end vertex of P . Write
s.P/ = s.Þ1/ and e.P/ = e.Þn/. Now consider the quotient R of the k-linear space
with basis the set of all � -paths of 1 by the subspace generated by all the elements
of the form

a1þ1 · · ·þ j−1.a
1
j + · · · + am

j /þ j a j+1 · · ·þnan+1 −
m∑

l=1

a1þ1 · · · þ j−1a
l
jþ j a j+1 · · ·þnan+1

where .s.þ1/|þ1 · · ·þn|e.þn// is a path in 1 of length n, ai ∈ As.þi / for each i =
1; : : : ; n and an+1 ∈ Ae.þn/ and al

j ∈ As.þ j / for l = 1; : : : ;m.
Given two elements [a1þ1a2þ2 · · · anþnan+1] and [b1�1b2�2 · · · bn�nbn+1] in R, de-

fine the product [a1þ1a2þ2 · · · anþnan+1] · [b1�1b2�2 · · · bn�nbn+1] to be equal to
[a1þ1a2þ2 · · · anþn.an+1b1/�1b2�2 · · · bn�nbn+1] if an+1 and b1 are in the same Ai , and 0
otherwise.

It is easy to check that the above multiplication is well-defined and makes R into a
k-algebra, called the � -path algebra of 1. Denote it by R = k.1;� /. Clearly, R
is an A-bimodule, where A = ⊕i∈10 Ai0 . All such algebras are said to be generalized
path algebras.

We note the following facts.

(i) R = k.1;� / has an identity if and only if 10 is finite.
(ii) Any path .s.þ1/|þ1 · · ·þn|e.þn// in 1 can be considered as an � -path with

ai = ei . Hence the usual path algebra k1 can be embedded into the � -path algebra
k.1;� /. If Ai = k for all i ∈ 10 then k.1;� / = k1.

(iii) For R = k.1;� /, dimk R < ∞ if and only if dimk Ai < ∞ for each i ∈ 10

and 1 is a finite quiver without oriented cycles.

Associated with the pair .A;A MA/ for a k-algebra A and an A-bimodule M , we
write the n-fold A-tensor product M ⊗A M ⊗ · · · ⊗A M as Mn. Then

T .A;M/ = A ⊕ M ⊕ M 2 ⊕ · · · ⊕ Mn ⊕ · · ·
is an abelian group. Writing M0 = A, T .A;M/ becomes a k-algebra with multiplica-
tion induced by the natural A-bilinear maps Mi × M j → Mi+ j for i ≥ 0 and j ≥ 0.
T .A;M/ is called the tensor algebra of M over A.

We now define a special class of tensor algebras so as to characterize generalized
path algebras. An � -path-type tensor algebra is defined to be a tensor algebra
T .A;M/ satisfying

(i) A = ⊕
i∈10

Ai for a family of k-algebras � = {Ai : i ∈ 10},
(ii) M = ⊕

i; j∈I i M j for finitely generated Ai -A j -bimodules i M j for all i and j
in I and Ak · i M j = 0 if k �= i and i M j · Ak = 0 if k �= j .

A free � -path-type tensor algebra is an � -path-type tensor algebra T .A;M/ in
which each finitely generated Ai -A j -bimodule i M j for i and j in I is a free bimodule
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with a basis and the rank of this basis is equal to the rank of i M j as a finitely generated
Ai -A j -bimodule.
� -path-type tensor algebras and generalized path algebras can be constructed from

each other as follows.
For an � -path algebra k.1;� /, let A = ⊕

i∈10
Ai . For any i and j , let i M F

j

be the free Ai -A j -bimodule with basis given by the arrows from i to j . It is easy
to see that the number of free generators in the basis is the rank of i M F

j as a finitely
generated bimodule. Define Ak · i M F

j = 0 if k �= i and i M F
j · Ak = 0 if k �= j . Let

M F = ⊕
i→ j i M F

j , which is clearly an A-bimodule. Then we get uniquely the free
� -path-type tensor algebras T .A;M F/.

Conversely, assume that T .A;M/ is an � -path-type tensor algebra with a family
of k-algebras � = {Ai : i ∈ I } and finitely generated Ai -A j -bimodules i M j for
i; j ∈ I such that A = ⊕

i∈I Ai and M = ⊕
i; j∈I i M j and Ak · i M j = 0 if k �= i and

i M j · Ak = 0 if k �= j . Trivially, i M j = Ai M A j . Let the rank of i M j be ri j . Now we
can associate with T .A;M/ a quiver 1 = .10; 11/ and its generalized path algebra
R = k.1;� / in the following way. Let 10 = I as the set of vertices. For i; j ∈ I ,
let the number of arrows from i to j in 1 be the rank ri j of the finitely generated
Ai -A j -bimodules i M j . Obviously, if i M j = 0 then there are no arrows from i to j .
Thus we get a quiver 1 = .10; 11/ which is called the quiver of T .A;M/, and its
� -path algebra R = k.1;� / which is called the corresponding � -path algebra of
T .A;M/.

One can find two nonisomorphic finitely generated bimodules which possess the
same rank, therefore there exist two � -path-type tensor algebras T .A;M1/ and
T .A;M2/, with nonisomorphic bimodules M1 and M2, such that their induced quivers
and � -path algebras are the same in the above way.

From the above discussion, every � -path-type tensor algebra T .A;M/ can be
used to construct its corresponding � -path algebra k.1;� /; but, from this � -path
algebra k.1;� /, we can get uniquely the free� -path-type tensor algebra T .A;M F /.
Thus, we have the following lemma.

LEMMA 2.2. Every � -path-type tensor algebra T .A;M/ can be used to con-
struct uniquely the free � -path-type tensor algebra T .A;M F/. There is a surjective
k-algebra morphism ³ : T .A;M F/ → T .A;M/ such that ³.i M F

j / = i M j for any
i; j ∈ I .

PROOF. We need only prove the second conclusion. For T .A;M/, let the rank
of i M j be ri j . Thus, for the corresponding � -path algebra k.1;� /, the number
of arrows from i to j is ri j , and then, in T .A;M F/, the rank of the free generators
of i M F

j given by the arrows is also ri j . Define ³ : T .A;M F/ → T .A;M/ by giving
a bijection between the set of the free generators of i M F

j and the set of the chosen
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generators of i M j with cardinal number equal to the rank. Then ³ can be expanded
to become a surjective k-algebra morphism with ³.i M F

j / = i M j for any i; j ∈ I .

Next, we will show in the following Proposition 2.10 that every� -path-type tensor
algebra is a homomorphic image of its corresponding � -path algebra.

The following criterion (see [1, Lemma III.1.2]) is useful for constructing algebra
morphisms from tensor algebras to other algebras.

LEMMA 2.3. Let A be a k-algebra and M an A-bimodule. Let3 be a k-algebra and
f : A ⊕ M → 3 a map such that the following two conditions are satisfied:

(i) f |A : A → 3 is an algebra morphism;
(ii) viewing f .M/ as an A-bimodule via f |A : A → 3, f |M : M → f .M/ ⊂ 3

is an A-bimodule map.

Then there is a unique algebra morphism f̃ : T .A;M/ → 3 such that f̃ |A⊕M = f and
generally, f̃

(∑∞
n=0 mn

1 ⊗· · ·⊗mn
n

) = ∑∞
n=0 f .mn

1/ · · · f .mn
n/ for mn

1 ⊗· · ·⊗mn
n ∈ Mn.

Note that the condition that f .M/ is an A-bimodule via f |A : A → 3 is sufficient
for the proof of (ii) in [1].

Clearly, all � -paths of length zero, that is, the elements of
⋃

i∈10
Ai , can generate

a subalgebra of k.1;� /, which is denoted by k.10;� /. Also, denote by k.11;� /

the k-linear space consisting of all � -paths of length 1 and by J the ideal in an
� -path algebra k.1;� / generated by all elements in k.11;� /. It is easy to see that
k.11;� / is an A-subbimodule of k.1;� /.

2.2. Pseudo path algebra and pseudo tensor algebra Let 1 = .10; 11/ be a
quiver and � = {Ai : i ∈ 10} be a family of k-algebras Ai with identity ei , indexed
by the vertices of 1. The elements ai of

⋃
i∈10

Ai are called the � -pseudo-paths of
length zero, whose start vertex s.ai / and the end vertex e.ai / both are i . For each
n ≥ 1, a pure � -pseudo-path P of length n is given by a1þ1b1 · a2þ2b2 · : : : · anþnbn,
where .s.þ1/|þ1 · · ·þn|e.þn// is a path in 1 of length n and for each i = 1; : : : ; n,
bi−1 ∈ Ae.þi−1/ and ai ∈ As.þi / with s.þi / = e.þi−1/. s.þ1/ and e.þn/ are also called
respectively the start vertex and the end vertex of P . Write s.P/ = s.þ1/ and
e.P/ = e.þn/. A general � -pseudo-path Q of length n is given in the form

Þ1 · c1 · Þ2 · c2 · : : : · ck · Þk or c0 · Þ1 · c1 · Þ2 · c2 · : : : · ck · Þk or

Þ1 · c1 · Þ2 · c2 · : : : · ck · Þk · ck+1 or c0 · Þ1 · c1 · Þ2 · c2 · : : : · ck · Þk · ck+1

where Þi is a pure � -pseudo-path of length ni and
∑k

i=1 ni = n, and the start vertex
of Þi+1 is just the end vertex of Þi , that is, e.Þi/ = s.Þi+1/ and ci ∈ Ae.Þi /.

Let V be the k-linear space with basis the set of all general � -paths of 1.
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Consider the quotient R of the k-linear space V by the subspace generated by all
the elements of the form

a1þ1b1 · · · a jþ j

(
b1

j + · · · + bm
j

) · � −
m∑

l=1

a1þ1b1 · · · a jþ j b
l
j · �(2.1)

Þ · (a1
1 + · · · + am

1

)
þ1b1 · · · anþnbn −

m∑
l=1

Þ · al
1þ1b1 · · · anþnbn(2.2)

.ab/ · cþd − a · .b · cþd/; aþb · .cd/− .aþb · c/ · d(2.3)

aþb · 1 − aþb; 1 · aþb − aþb(2.4)

where a; b; c; d; bl
j; al

1 ∈ ⋃i∈10
Ai and 1 is the identity of A = ⊕i∈10 Ai .

In R, define the following multiplication. Given two elements

[a1þ1b1 · a2þ2b2 · · · anþnbn] and [c1�1d1 · c2�2d2 · · · cn�mdm]

in which at least one is of length n ≥ 1, define [a1þ1b1 · a2þ2b2 · · · anþnbn] · [c1�1d1 ·
c2�2d2 · · · cn�mdm] to be equal to [a1þ1b1 ·a2þ2b2 · · · anþnbn ·c1�1d1 ·c2�2d2 · · · cn�mdm]
if bn and c1 are in the same Ai , and 0 otherwise.

Given two elements a, b of length zero, that is, a; b ∈ ⋃i∈10
Ai , define

a · b =
{

ab; if a, b are in the same Ai , where ab means the product of a, b in Ai ,

0; otherwise:

It is easy to check that the above multiplication in R is well-defined and makes R into
a k-algebra, called the� -pseudo path algebra of1. Denote it by R = P SEk.1;� /.
Clearly, R is an A-bimodule.

Note the following facts.

(i) R = P SEk.1;� / has identity if and only if 10 is finite.
(ii) Any path .s.þ1/|þ1 · · ·þn|e.þn// in 1 can be considered as an � -path with

ai = ei the identity of Ai . Hence the usual path algebra k1 can be embedded
into the � -pseudo path algebra P SEk.1;� /. If Ai = k for each i ∈ 10 then
P SEk.1;� / = k1.

(iii) For R = P SEk.1;� /, dimk R < ∞ if and only if dimk Ai is finite for each
i ∈ 10 and 1 is a finite quiver without oriented cycles.

Associated with the pair .A; A MA/ for a k-algebra A and an A-bimodule M , we
write the n-fold k-tensor product M ⊗k M ⊗ · · · ⊗k M as Mn and we denote by
M.n/ the sum

∑
M1;M2;··· ;Mn

M1 ⊗k M2 ⊗k · · · ⊗k Mn where each Mi is either M or A
but no two As are neighbouring and at least one Mi is equal to M . Then we define
�� .A;M/ = A ⊕ M.1/⊕ M.2/⊕ · · · ⊕ M.n/⊕ · · · as an abelian group. Denote
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by M.n; l/ the sum of these items M1 ⊗k M2 ⊗k · · · ⊗k Mn of M.n/ in which there
are l Mis equal to M . Clearly, .n − 1/=2 ≤ l ≤ n and M.n/ = ∑

.n−1/=2≤l≤n M.n; l/.
Writing M0 = A, �� .A;M/ becomes a k-algebra with multiplication induced by
the natural k-bilinear maps:

Mi × M j → Mi+ j for i ≥ 1; j ≥ 1;

Mi × A → Mi ⊗k A for i ≥ 1;

A × M j → A ⊗k M j for j ≥ 1

and the natural A-bilinear map:

A × A → A ⊗A A = A:

The associative law of�� .A;M/ follows from .A ⊗A A/⊗k M ∼= A ⊗A .A ⊗k M/.
We call�� .A;M/ a pseudo tensor algebra.

Now, we define a special class of pseudo tensor algebras so as to characterize
pseudo path algebras. An � -path-type pseudo tensor algebra is defined to be the
pseudo tensor algebra�� .A;M/ satisfying

(i) A = ⊕
i∈10

Ai for a family of k-algebras � = {Ai : i ∈ 10},
(ii) M = ⊕

i; j∈I i M j for finitely generated Ai -A j -bimodules i M j for all i and j
in I and Ak · i M j = 0 if k �= i and i M j · Ak = 0 if k �= j .

A free� -path-type pseudo tensor algebra is the� -path-type pseudo tensor algebra
�� .A;M/ in which each finitely generated Ai -A j -bimodule i M j for i and j in I is
a free bimodule with a basis and the rank of this basis is equal to the rank of i M j as a
finitely generated Ai -A j -bimodule.
� -path-type pseudo tensor algebras and pseudo path algebras can be constructed

from each other as follows.
Given an � -pseudo path algebra P SEk.1;� /, let A = ⊕

i∈10
Ai . For any i

and j , let i M F
j be the free Ai -A j -bimodule with basis given by the arrows from i to j .

It is easy to see that the number of free generators in the basis is the rank of i M F
j as

a finitely generated bimodule. Define Ak · i M F
j = 0 if k �= i and i M F

j · Ak = 0 if
k �= j . Let M F = ⊕

i→ j i M F
j , which is clearly an A-bimodule. This gives a uniquely

defined free � -path-type pseudo tensor algebra denoted�� .A;M F /.
Conversely, assume that�� .A;M/ is an� -path-type pseudo tensor algebra with

a family of k-algebras � = {Ai : i ∈ I } and finitely generated Ai -A j -bimodules i M j

for all i and j in I such that A = ⊕
i∈I Ai and M = ⊕

i; j∈I i M j and Ak · i M j = 0
if k �= i and i M j · Ak = 0 if k �= j . Trivially, i M j = Ai M A j . Let the rank of i M j

be ri j . Now we can associate with�� .A;M/ a quiver1 = .10; 11/ and its pseudo
path algebra R = P SEk.1;� / in the following way. Let 10 = I as the set of
vertices. For i; j ∈ I , let the number of arrows from i to j in 1 be the rank ri j of
the finitely generated Ai -A j -bimodules i M j . Obviously, if i M j = 0 then there are no
arrows from i to j . Thus, we get a quiver 1 = .10; 11/ which is called the quiver of
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�� .A;M/, and its � -pseudo path algebra R = P SEk.1;� / which is called the
corresponding � -pseudo path algebra of�� .A;M/.

One can find two non-isomorphic finitely generated bimodules which possess the
same rank, therefore there exist two� -path-type pseudo tensor algebras�� .A;M1/

and �� .A;M2/, with non-isomorphic M1 and M2, such that their induced quivers
and � -pseudo path algebras are the same.

From the above discussion, every� -path-type pseudo tensor algebra�� .A;M/
can be used to construct its corresponding� -pseudo path algebra P SEk.1;� /; but,
from this� -pseudo path algebra P SEk.1;� /, we can get uniquely the free� -path-
type pseudo tensor algebra�� .A;M F/. Thus, we have the following lemma.

LEMMA 2.4. Every � -path-type pseudo tensor algebra �� .A;M/ can be used
to construct uniquely the free � -path-type pseudo tensor algebra �� .A;M F /.
There is a surjective k-algebra morphism ³ : �� .A;M F/ → �� .A;M/ such
that ³.i M F

j / = i M j for any i; j ∈ I .

PROOF. We need only prove the second conclusion. For�� .A;M/, let the rank
of i M j be ri j . Thus, for the corresponding � -pseudo path algebra P SEk.1;� /, the
number of the arrows from i to j is ri j , and then, in �� .A;M F/, the rank of the
free generators of i M F

j given by the arrows is also ri j . Define ³ : �� .A;M F/ →
�� .A;M/ by giving a bijection between the set of the free generators of i M F

j and
the set of the chosen generators of i M j with cardinal number equal to the rank. Then ³
can be expanded to become a surjective k-algebra morphism with ³.i M F

j / = i M j for
any i; j ∈ I .

Next, we will show (in Proposition 2.9) that every � -path-type pseudo tensor
algebra is a homomorphic image of its corresponding � -pseudo path algebra.

The following criterion for constructing algebra morphisms from pseudo tensor
algebras to other algebras is useful, which is modified from [1, Lemma III.1.2].
Contrast it with Lemma 2.3.

LEMMA 2.5. Let A be a k-algebra and M an A-bimodule. Let 3 be a k-algebra
and f : A ⊕ M → 3 a k-linear map such that f |A : A → 3 is an algebra morphism.
Then there is a unique algebra homomorphism f̃ : �� .A;M/ → 3 such that
f̃ |A⊕M = f and generally, f̃

(∑∞
n=0 mn

1 ⊗k · · · ⊗k mn
n

) = ∑∞
n=0 f .mn

1/ · · · f .mn
n/ for

mn
1 ⊗k · · · ⊗k mn

n ∈ M.n/.

PROOF. Consider the map � : M × M → 3 defined by �.m1;m2/ = f .m1/ f .m2/

for m1 and m2 in M . We have for Þ ∈ k that

�.m1Þ;m2/ = f .m1Þ/ f .m2/ = f .m1/ f .Þm2/ = �.m1; Þm2/:
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Hence there is a unique group morphism f2 : M ⊗k M → 3 such that

f2.m1 ⊗k m2/ = f .m1/ f .m2/:

Moreover, f2 is a k-linear map. Similarly, for the map � : M × A → 3 defined
by �.m; a/ = f .m/ f .a/ for m ∈ M and a ∈ A, one can induce the k-linear map
f2 : M ⊗k A → 3 satisfying f2.m ⊗k a/ = f .m/ f .a/.

By induction, we can obtain the unique k-linear map fn : M.n/ → 3 satisfying
fn.v1 ⊗k · · · ⊗k vn/ = f .v1/ · · · f .vn/. Since f |A is a k-algebra homomorphism, we
define f̃ :�� .A;M/ → 3 by f̃ |A⊕M = f and

f̃

( ∞∑
n=0

mn
1 ⊗k · · · ⊗k mn

n

)
=

∞∑
n=0

f .mn
1/ · · · f .mn

n/

for mn
1⊗k · · ·⊗k mn

n ∈ M.n/, which can easily be seen to be a k-algebra homomorphism
uniquely determined by f .

In fact, for m1 ⊗k · · · ⊗k mn ∈ M.n/ and m̄1 ⊗k · · · ⊗k m̄l ∈ M.l/, if mn; m̄1 ∈ A,
then

f̃
(
.m1 ⊗k · · · ⊗k mn/ · .m̄1 ⊗k · · · ⊗k m̄l/

)
= f̃ .m1 ⊗k · · · ⊗k mn−1 ⊗k mn ⊗A m̄1 ⊗k m̄2 ⊗k · · · ⊗k m̄l/

= f̃ .m1 ⊗k · · · ⊗k mn−1 ⊗k mnm̄1 ⊗k m̄2 ⊗k · · · ⊗k m̄l/

= f .m1/ · · · f .mn−1/ f .mnm̄1/ f .m̄2/ · · · f .m̄l/

= f .m1/ · f .mn−1/ f .mn/ f .m̄1/ f .m̄2/ · · · f .m̄l/

= f̃ .m1 ⊗k · · · ⊗k mn/ f̃ .m̄1 ⊗k · · · ⊗k m̄l/:

In the other cases, it can be proved similarly.

Comparing the definitions of generalized path algebra, tensor algebra and pseudo
path algebra, pseudo tensor algebra, the following facts hold:

FACT 2.6. (1) There is a natural surjective homomorphism

� : P SEk.1;� / −→ k.1;� / with

ker � = 〈aþb · c − aþbc; c · aþb − caþb; aÞb · cþd − aÞ1 · bc · 1þd〉

for any a; b; c; d ∈ A = ⊕i Ai , Þ; þ ∈ 11, where 1 is the identity of A. It follows that

P SEk.1;� /= ker � ∼= k.1;� /

as algebras.
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(2) There is a natural surjective homomorphism

− :�� .A;M/ −→ T .A;M/ with

ker − = 〈m ⊗ c − mc ⊗ 1; c ⊗ m − 1 ⊗ cm; mb ⊗ cn − m ⊗ bc ⊗ n〉
for any b; c ∈ A, m; n ∈ M , where 1 is the identity of A. It follows that

�� .A;M/= ker − ∼= T .A;M/

as algebras.

Clearly, all � -pseudo-paths of length zero (equivalently, � -paths of length zero),
that is, the elements of

⋃
i∈10

Ai , can generate a subalgebra of P SEk.1;� / (respec-
tively, k.1;� /). Denote this subalgebra by P SEk.10;� / (respectively, k.10;� /).
Then, P SEk.10;� / = k.10;� /, or say, �P SEk .10;� / = id . Denote by P SEk.11;� /

(respectively, k.11;� /) the k-linear space consisting of all pure� -pseudo-paths (re-
spectively, all� -paths) of length 1 and by J (respectively, J̃ ) the ideal in P SEk .1;� /

(respectively, k.1;� /) generated by all elements in P SEk.11;� / (respectively,
k.11;� /).

It is easy to see that P SEk.11;� / (respectively, k.11;� /) is an A-sub-bimodule
of P SEk.1;� / (respectively, k.1;� /), and

(i) �
(
P SEk.11;� /

) = k.11;� /;
(ii) �J = J̃ , �−1 J̃ = J .

We will now show some useful properties of � -pseudo-path algebras which hold
similarly for � -path algebras under the relationships in Fact 2.6.

LEMMA 2.7. Let�� .A;M F/ be the free� -path-type pseudo tensor algebra built
by an � -pseudo path algebra P SEk.1;� /. Then there is a k-algebra isomorphism
� :�� .A;M F / → P SEk.1;� / such that for any t ≥ 1,

�

(⊕
n;l≥t

M F.n; l/

)
= J t :

PROOF. By the multiplication in P SEk.1;� /, [ai ]·[a j ] = 0 for i �= j and ai ∈ Ai ,
a j ∈ A j . Obviously, we have a k-algebra isomorphism

f : A =
⊕
i∈I

Ai → P SEk.10;� /

by f .a1 + · · · + an/ = [a1] + · · · + [an]. Also we can define

f : M F =
⊕
i; j∈I

i M F
j → P SEk.11;� /
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by giving a bijection between a chosen basis for each i M F
j and the set of arrows

from i to j , that is, f .amÞi j b/ = aÞi j b where Þi j is an arrow from i to j and mÞi j

is the corresponding element in the basis of i M F
j , a; b ∈ A. Since P SEk.10;� /

is a k-subalgebra of P SEk.1;� /, there is, by Lemma 2.5, a k-algebra morphism
f̃ :�� .A;M F/ → P SEk.1;� / such that

f̃ |A⊕M F = f and f̃

( ∞∑
n=0

mn
1 ⊗ · · · ⊗ mn

n

)
=

∞∑
n=0

f .mn
1/ · · · f .mn

n/

for mn
1 ⊗ · · · ⊗ mn

n ∈ M F.n/. Thus, f̃
(
.A ⊗k M F ⊗k A/t

) = (
A · P SEk.11;� / · A

)t

and moreover, f̃
(⊕

n;l≥t M F.n; l/
) = J t , in particular, f̃

(⊕
k≥1 M F.k/

) = J . But,

P SEk.1;� / = P SEk.10;� / ∪ J ∪ · · · ∪ J t ∪ · · · . Hence f̃ is surjective.
Let {x½} denote a k-basis of A. For M F.n; l/, we have a k-basis formed by some

elements of the form

x½i1
⊗ x½ j1

m1x½k1
⊗ x½i2

⊗ x½ j2
m2x½k2

⊗ · · · ⊗ x½il
⊗ x½ jl

ml x½kl
⊗ · · ·

where there is some � -pseudo-path

[x½i1
· x½ j1

þ1x½k1
· x½i2

· x½ j2
þ2x½k2

· · · x½il
· x½ jl

þx½kl
· · · ]

in P SEk.1;� / such that, for j = 1; : : : ; t , m j is amongst the chosen basis elements
in s.þ j /M

F
s.þ j+1/

for the corresponding arrow þ j . Then

f̃
(
x½i1

⊗ x½ j1
m1x½k1

⊗ x½i2
⊗ x½ j2

m2x½k2
⊗ · · · ⊗ x½it

⊗ x½ jl
ml x½kl

⊗ · · · )
= [

x½i1
· x½ j1

þ1x½k1
· x½i2

· x½ j2
þ2x½k2

· · · x½il
· x½ jl

þl x½kl
· · · ]

This implies that distinct basis elements are mapped to distinct � -pseudo-paths and,
for a1+· · ·+an �= 0 in A, f .a1+· · ·+an/ = [a1]+· · ·+[an] �= 0. Hence f̃ is injective.
Therefore � = f̃ is a k-algebra isomorphism with the desired properties.

By Lemma 2.7, P SEk.1;� /
�−1∼= �� .A;M F/. Then ker �

�−1∼= ker − . Thus a
natural induced algebra homomorphism �−1 is obtained from �−1 so that

P SEk.1;� /= ker �
�−1∼= �� .A;M F/= ker −:

Moreover, by Fact 2.6, we get the following �̃ from �−1 as above so as to obtain the
result on � -path algebras analogous to Lemma 2.7 for � -pseudo-path algebras.

LEMMA 2.8. Let T .A;M F / be the free� -path-type tensor algebra built by an� -
path algebra k.1;� /. There is a k-algebra isomorphism �̃: T .A;M F/ → k.1;� /
such that for any t ≥ 1,

�̃

(⊕
j≥t

M F j

)
= J̃ t :
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From this, we obtain the commutative diagram

�� .A;M F/
∼=; �−−−−→ P SEk.1;� /⏐⏐�− ⏐⏐��

T .A;M F/
∼=; �̃−−−−→ k.1;� /:

(2.5)

PROPOSITION 2.9. Let�� .A;M/ be an� -path-type pseudo tensor algebra with
the corresponding � -pseudo path algebra P SEk.1;� /. Then there is a surjective
k-algebra homomorphism ' : P SEk.1;� / →�� .A;M/ such that for any t ≥ 1,

'.J t/ =
⊕
n;l≥t

M.n; l/:

PROOF. Let �� .A;M F/ be the free � -path-type pseudo tensor algebra built
by the � -pseudo path algebra P SEk.1;� /. Then, by Lemma 2.7, there is a k-
algebra isomorphism � : �� .A;M F / → P SEk.1;� / such that for any t ≥ 1,
�
(⊕

n; l≥t M F.n; l/
) = J t :

On the other hand, by Lemma 2.4, there is a surjective k-algebra morphism
³ : �� .A;M F/ → �� .A;M/ such that ³

(
i M F

j

) = i M j for all i; j ∈ I , so
³.M F/ = M .

Therefore, ' = ³�−1 : P SEk.1;� / → �� .A;M/ is a surjective k-algebra
morphism with '.J t/ = ³

(⊕
n; l≥t M F.n; l/

) = ⊕
n; l≥t M.n; l/ for any t ≥ 1.

From the equation ' = ³�−1 and the description of ker � and ker − in Fact 2.6,
we have '.ker �/ = ker − . Then, by Proposition 2.9, we naturally induce a surjective
k-algebra homomorphism

'̃ : P SEk.1;� /= ker � → '
(

P SEk.1;� /
)
='.ker �/ =�� .A;M/= ker −:

Thus the following analogue of Proposition 2.9 holds for� -path-type tensor algebras.

PROPOSITION 2.10. Let T .A;M/ be an � -path-type tensor algebra with the cor-
responding� -path algebra k.1;� /. Then there is a surjective k-algebra homomor-
phism '̃ : k.1;� / → T .A;M/ such that for any t ≥ 1,

'̃
(

J̃ t
) =

⊕
j≥t

M j :

Also, we obtain the commutative diagram

P SEk.1;� /
'−−−−→ �� .A;M/⏐⏐�� ⏐⏐�−

k.1;� /
'̃−−−−→ T .A;M/:

(2.6)
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A relation ¦ on an � -pseudo path algebra P SEk.1;� / (respectively, � -path
algebra k.1;� /) is a k-linear combination of some general � -pseudo paths (re-
spectively, some � -paths) Pi with the same start vertex and the same end ver-
tex, that is, ¦ = k1 P1 + · · · + kn Pn with ki ∈ k and s.P1/ = · · · = s.Pn/ and
e.P1/ = · · · = e.Pn/. If² = {¦t}t∈T is a set of relations on P SEk .1;� / (respectively,
k.1;� /), the pair .P SEk.1;� /; ²/ (respectively, .k.1;� /; ²/) is called an � -
pseudo path algebra with relations (respectively,� -path algebra with relations). As-
sociated with .P SEk.1;� /; ²/ (respectively, .k.1;� /; ²/) is the quotient k-algebra

P SEk.1;� ; ²/
def= P SEk.1;� /=〈²〉 (respectively, k.1;� ; ²/

def= k.1;� /=〈²〉),
where 〈²〉 denotes the ideal in P SEk.1;� / (respectively, in k.1;� /) generated by
the set of relations ². When the length l.Pi / of each Pi is at least j , we have 〈²〉 ⊂ J j

(respectively, 〈²〉 ⊂ J̃ j ).
For an element x ∈ P SEk.1;� / (respectively, ∈ k.1;� /), we denote by x̄ the

corresponding element in P SEk.1;� ; ²/ (respectively, k.1;� ; ²/).

FACT 2.11. Ž ∈ k.1;� / is a relation if and only if all ¦ ∈ �−1.Ž/ are relations on
P SEk.1;� /.

This fact can easily be seen from the definition of �. Note that the lengths of paths
in a relation are not restricted here, so we have the following.

PROPOSITION 2.12. Suppose that 1 is a finite quiver. Then

(i) each element x in P SEk.1;� / (respectively, k.1;� /) is a sum of some
relations;

(ii) every ideal I of P SEk.1;� / (respectively, k.1;� /) can be generated by a
set of relations.

PROOF. (i) Let 1 be the identity of A and ei the identity of Ai for i ∈ 10.
Then 1 = ∑

i∈1 ei is a decomposition into orthogonal idempotents ei and we have
x = 1 · x · 1 = ∑

i; j∈10
ei · x · e j . Due to the multiplication of |10| = n < ∞,

ei · x · e j can be expanded as a k-linear combination of some such � -paths which
have the same start vertex i and the same end vertex j , so ei · x · e j is a relation on
P SEk.1;� /.

(ii) Assume I is generated by {x½}½∈3. By (i), each x½ is a sum of some relations
{¦½;i}. Then I is generated by all {¦½;i}.

By the definition of J , we have

P SEk.1;� ; ²/= J̄ = (
P SEk.1;� /=〈²〉)=.J=〈²〉/ ∼= P SEk.1;� /=J ∼= ⊕i∈10 Ai :

Suppose all Ai are k-simple algebras and J t ⊂ 〈²〉 for some integer t . Then
P SEk.1;� ; ²/= J̄ ∼= ⊕i∈10 Ai is semisimple and J̄ t = 0. It follows that
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J̄ = rad P SEk.1;� ; ²/. Similar reasoning holds for J̃ of k.1;� /. Hence we
get the following.

PROPOSITION 2.13. (i) Let .P SEk.1;� /; ²/ be an � -pseudo path algebra
with relations where Ai is simple for all i ∈ 10. Assume that J t ⊂ 〈²〉 for
some t. Then the image J̄ of J in P SEk.1;� ; ²/ is rad P SEk.1;� ; ²/, that is,
J̄ = rad P SEk.1;� ; ²/;

(ii) Let .k.1;� /; ²/ be an� -path algebra with relations where Ai is simple for

each i ∈ 10. Assume that J̃ t ⊂ 〈²〉 for some t. Then the image J̃ of J̃ in k.1;� ; ²/

is rad k.1;� ; ²/, that is, J̃ = rad k.1;� ; ²/.

Now, suppose that A is a left Artinian algebra over k and r = r.A/ is the radical of A.
Then, for all l ≥ 0, the ring rl=rl+1 is an A-bimodule by a · .rl=rl+1/ · b = arlb=rl+1

for a; b ∈ A. From r · rl=rl+1 = 0 and rl=rl+1 · r = 0, we know that rl=rl+1 is a
semisimple left and right A-module. For x̄ = x + r ∈ A=r , let

x̄ · .r l=rl+1/
def= x · .r l=rl+1/ = xrl=rl+1 and

.r l=rl+1/ · x̄ = .r l=rl+1/ · x = r l x=rl+1:

Then rl=rl+1 is also an A=r -bimodule and a semisimple left and right A=r -module.

PROPOSITION 2.14. Let A be a left Artinian algebra over k and let r = r.A/ be
the radical of A. Write A=r = ⊕s

i=1 Ai where Ai is a simple subalgebra for each i.
Then, for all l ≥ 0,

(i) rl=rl+1 is finitely generated as an A=r-bimodule;

(ii) i M .l/
j

def= Ai ·rl=rl+1 · A j is finitely generated as Ai -A j -bimodule for each .i; j/.

PROOF. (i) Since A is left Artinian, rl=rl+1 is finitely generated as a left A-
module by [1, Corollary I.3.2], so we can write rl=rl+1 = ∑w

p=1 Ax p with some
x p ∈ rl=rl+1. But, due to the definitions of actions,

Ax p = .A=r/x p and rl=rl+1 =
w∑

p=1

.A=r/x p:

Moreover,

rl=rl+1 = rl=rl+1 · A=r =
(

w∑
p=1

.A=r/x p

)
.A=r/ =

w∑
p=1

.A=r/x p.A=r/;

which means that rl=rl+1 is finitely generated as an A=r -bimodule.
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(ii) We note that

i M .l/
j = Ai · rl=rl+1 · A j = Ai ·

(
w∑

p=1

.A=r/x p.A=r/

)
· A j =

w∑
p=1

s∑
u;v=1

Ai Au x p Av A j

=
w∑

p=1

Ai x p A j :

Hence, i M .l/
j is finitely generated as an Ai -A j -bimodule.

In particular, for l = 1, i M j
def= Ai · r=r2 · A j is finitely generated as an Ai -A j -

bimodule for each pair .i; j/. Henceforth the rank of i M j will be denoted by ti j .
For k �= i , we have

Ak · i M j = Ak · (Ai · r=r2 · A j

) = (
Ak Ai

) · (r=r2 · A j

) = 0 · r=r2 · A j = 0

and similarly, for k �= j , we have i M j ·Ak = 0. Thus we obtain the� -path-type pseudo
tensor algebra�� .A=r; r=r2/, the� -path-type tensor algebra T .A=r; r=r2/ and the
corresponding � -pseudo path algebra P SEk.1;� / and � -path algebra k.1;� /,
with � = {Ai : i ∈ 10}, where 1 is called the quiver of the left Artinian algebra A.

In what follows, A is always a left Artinian algebra. We will firstly show that
under some important conditions, a left Artinian algebra A is isomorphic to some
P SEk.1;� ; ²/.

3. When the quotient algebra can be lifted

Firstly, we introduce the concept of the set of primitive orthogonal simple subalge-
bras of a left Artinian algebra. For a left Artinian algebra A and A=r = ⊕s

i=1 Ai with
simple subalgebras Ai for all i , where r = r.A/ is the radical of A, assume that there
are simple k-subalgebras B1; · · · ; Bs of A such that, for all i , Bi

∼= Ai as k-algebras
under the canonical morphism � : A → A=r and

Bi Bj =
{

Bi ; if i = j

0; if i �= j .

Then, B̂ = {B1; · · · ; Bs} is said to be the set of primitive orthogonal simple subalge-
bras of A.

Obviously,

Ai A j =
{

Ai ; if i = j

0; if i �= j .
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By the definition, �.Bi/ = Ai for all i . Every Bi is a simple k-subalgebra of A, so
B = B1 + · · · + Bs is a semisimple subalgebra of A.

Our original idea is to introduce the concept of primitive orthogonal simple subal-
gebras as a generalization of primitive orthogonal idempotents and then transplant the
method of primitive orthogonal idempotents in elementary algebras into a left Artinian
algebras.

In a left Artinian algebra A, we will show the existence of the set of primitive
orthogonal simple k-subalgebras when A=r can be lifted.

An algebra morphism ": A=r → A satisfying �" = 1 will be called a lifting of the
quotient algebra A=r . In this case, we say that A=r can be lifted. Evidently, a lifting "
is always a monomorphism and im " = B is a subalgebra of A which is isomorphic to
A=r . Then B is semisimple. Moreover, A = B ⊕ r as a direct sum of k-linear spaces.
Hence A=r can be lifted if and only if A is split over its radical r .

Now, we assume that A=r can be lifted such that A = B ⊕ r as above. For the
canonical morphism �: A → A=r , im �|B = .B +r/=r = A=r , and ker �|B = 0 since

r ∩ B = 0. Thus �.B/ = A=r and B
�|B∼= A=r as k-algebras. Since B is semisimple,

we write B = ⊕s
i=1 Bi with simple k-subalgebras Bi for all i . Then

Bi Bj =
{

Bi ; if i = j

0; if i �= j .

Moreover, �.B/ = ∑s
i=1 �.Bi/ where �.Bi/ is a simple k-subalgebra of A=r for all i .

Let Ai denote �.Bi/. Then B̂ = {B1; · · · ; Bs} is the set of primitive orthogonal simple
subalgebras of A.

LEMMA 3.1. Assume that A is a left Artinian k-algebra with r = r.A/ the radical
of A, and that A=r can be lifted so that A = B ⊕ r with B̂ = {B1; · · · ; Bs} the
set of primitive orthogonal simple subalgebras of A as constructed above. Write
A=r = ⊕s

i=1 Ai where Ai is a simple algebra for all i . The following statements
hold.

(i) Let {r½ : ½ ∈ I } be a set of elements in r with the index set I such that
the images r½ in r=r2 for all ½ ∈ I generate r=r2 as an A=r-bimodule. Then
B1 ∪ · · · ∪ Bs ∪ {r½ : ½ ∈ I } generates A as a k-algebra.

(ii) There is a surjective k-algebra homomorphism f̃ : �� .A=r; r=r2/ → A
with ⊕

n≥rl.A/

⊕
max{rl.A/; .n−1/=2}≤l≤n

M.n; l/ ⊂ ker f̃ ⊂
⊕
j≥2

M. j/;

where rl.A/ denotes the Loewy length of A as a left A-module.
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PROOF. (i) Since r is nilpotent, there is a least m such that rm = 0 but rm−1 �= 0.
It is easy to see that m is just the Loewy length rl.A/.

In what follows, we will prove this result by using induction on m.
When m = 1, we have r = 0 and A is semisimple. Thus Bi = Ai . Hence A is

generated as a k-algebra by B1 ∪ · · · ∪ Bs .
When m = 2, we have r 2 = 0 and, for the canonical morphism �, we have

�.Bi/ = Ai . So, as a k-algebra, A=r can be generated by .B1 + r/ ∪ · · · ∪ .Bs + r/.
Write A=r = 〈B1 + r; · · · ; Bs + r〉=r . We have

〈B1 + r; · · · ; Bs + r〉=r = .〈B1; · · · ; Bs〉 + r/=r:

Thus, A=r = .〈B1; · · · ; Bs〉 + r/=r . Hence A = 〈B1; · · · ; Bs〉 + r . But,

r=r2 =
∑
½∈I

A=r · r½ =
∑
½∈I

A=r · (r½ + r 2
) =

∑
½∈I

(
Ar½ + r 2

) =
(∑
½∈I

Ar½

)
+ r 2:

Then from r 2 = 0 we get r = ∑
½∈I Ar½. It follows that

A = 〈B1; · · · ; Bs〉 + r = 〈B1; · · · ; Bs〉 +
∑
½∈I

.〈B1; · · · ; Bs〉 + r/ r½

= 〈B1; · · · ; Bs〉 +
∑
½∈I

〈B1; · · · ; Bs〉r½ = 〈B1 ∪ · · · ∪ Bs ∪ {r½ : ½ ∈ I }〉

as a k-algebra.
Assume now that the claim holds for m = l ≥ 2. Then consider the claim in the

case m = l + 1.
Let P be the k-subalgebra of A generated by B1 ∪ · · · ∪ Bs ∪ {r½ : ½ ∈ I }. Firstly,

we will show that P=.P ∩ r l/ = A=rl .
Since .A=rl/=.r=rl/ ∼= A=r is semisimple, r.A=rl/ = r=rl holds. By the induction

assumption, rl+1 = 0 and r i �= 0 for any i ≤ l. For any t , .r=rl/t.A=rl/ = r t A=rl =
r t=rl since r t A = r t due to the existence of the identity of A. Thus .r=rl/t.A=rl/ = 0
if and only if t ≥ l. (If there were t < l such that rt = rl , then r t+1 = rl+1 = 0, which
contradicts rl.A/ = m = l + 1). Therefore rl.A=rl/ = l.

Let � : A → A=rl be the canonical morphism and B̃i = �.Bi/ be simple alge-
bras for all i and ³ the canonical morphism from A=rl to .A=rl/=.r=rl/ = A=r .
Then ³� = �. It follows that ³.B̃i / = Ai . This means that ̂̃B = {

B̃1; · · · ; B̃s

}
is the

set of primitive radical-orthogonal simple algebras of A=rl . We have that all elements
in {r½ : ½ ∈ I } in r=r2 generate r=r2 as an A=r -module. But, A=r ∼= .A=rl/=.r=rl/

and r=r2 ∼= .r=rl/=.r=rl/2. So, all elements in {r½ : ½ ∈ I } in .r=rl/=.r=rl/2 generate
.r=rl/=.r=rl/2 as an .A=rl/=.r=rl/-module. Let r̃½ = �.r½/ ∈ r=rl . Then ³.̃r½/ = r ½.
Thus, by the induction assumption, B̃1 ∪· · ·∪ B̃s ∪

{̃
r½ : ½ ∈ I

}
generates the k-algebra

A=rl .
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On the other hand, B1 ∪ · · · ∪ Bs ∪ {r½ : ½ ∈ I } generates P . It follows that
B̃1 ∪ · · · ∪ B̃s ∪ {r̃½ : ½ ∈ I } generates the k-algebra P=.P ∩ r l/. But P=.P ∩ r l/ can
be embedded into A=rl . Therefore, we deduce that P=.P ∩ r l/ = A=rl .

It will be proved below that in fact P = A, which means that A is generated by
B1 ∪ · · · ∪ Bs ∪ {r½ : ½ ∈ I }.

Let x ∈ A. Then there exists y ∈ P such that x + r l = y + P ∩ r l . It follows that
x − y ∈ rl . Thus there are Þi ∈ rl−1 and þi ∈ r such that x − y = ∑q

i=1 Þiþi . But
Þi + rl and þi + rl in A=rl and A=rl = P=.P ∩ r l/. Then there are ai and bi in P
such that Þi + rl = ai + P ∩ r l and þi + rl = bi + P ∩ r l . Since Þi ∈ rl−1 and þi ∈ r ,
we have ai ∈ rl−1 and bi ∈ r . Let a′

i = Þi − ai and b′
i = þi − bi . Then a′

i ; b′
i ∈ rl .

Hence Þiþi = .ai +a′
i /.bi +b′

i / = ai bi +a′
i bi +ai b′

i +a′
i b

′
i = ai bi ∈ P for all i where

a′
i bi ∈ rl+1 = 0, ai b′

i ∈ r 2l−1 = 0, a′
i b

′
i ∈ r 2l = 0. It follows that x − y ∈ P . Hence

x ∈ P .

(ii) r=r2 = A=r · r=r2 · A=r = ∑s
i; j=1 Ai · r=r2 · A j is a direct sum decomposition

since A
2

i = Ai and Ai A j = 0 for i �= j . Corresponding to this, in A, we let

W = ∑s
i; j=1 Bir Bj , where Bi

�∼= Ai . W is a direct sum of Bir Bj since B2
i = Bi and

Bi Bj = 0 for i �= j . Obviously W is a subalgebra of r and then of A. Also r=r2 is an
.A=r/-bimodule with the action of A=r as above.

.A=r/ ⊕ .r=r2/ is a k-algebra in which the multiplication is derived from that of
A=r and r=r2 and the A=r -bimodule action of r=r2.

For each pair of integers i , j with 1 ≤ i; j ≤ s, choose elements {yi j
u }u∈�i j in

Bir Bj such that {yi j
u }u∈�i j is a k-basis for Ai · r=r2 · A j where yi j

u = yi j
u + r 2 is the

image in r=r2. Then
⋃s

i; j=1{yi j
u }u∈�i j is a basis for r=r2. It follows from (i) that⋃

i; j;u{yi; j
u }u∈�i j ∪ B1 ∪ · · · ∪ Bs generates A as a k-algebra.

It is easy to see that {yi j
u }u∈�i j is k-linear independent in Bir Bj . From the fact that W

is a direct sum of Bir Bj , it follows that
⋃s

i; j=1{yi j
u }u∈�i j is a k-linear independent set

in W .
Define f : .A=r/ ⊕ .r=r2/ → A by f |Ai

= �−1 and f .yi j
u / = yi j

u . Then

f |A=r : A=r → B = f .A=r/ is a k-algebra isomorphism since B
�|B∼= A=r , and

f |r=r2 : r=r2 → f .r=r2/ .⊂ W ⊂ r/ is an isomorphism of k-linear spaces. Thus
f : .A=r/⊕ .r=r2/ → A is a k-linear map. Hence, by Lemma 2.5, there is a unique
algebra morphism f̃ : �� .A=r; r=r2/ → A such that f̃ |.A=r/⊕.r=r 2/ = f . As said
above,

⋃
i; j;u{yi; j

u }u∈�i j ∪ B1 ∪ · · · ∪ Bs generates A as a k-algebra. Therefore f̃ is
surjective.

By the definition of f̃ , we have f̃
(
.r=r2/ j

) = f .r=r2/ j ⊂ r j ⊂ r 2 for j ≥ 2,
where .r=r2/ j denotes r=r2 ⊗k r=r2 ⊗k · · · ⊗k r=r2 with j copies of r=r2. Also f |A=r

and f |r=r2 are monomorphic. By the definition of f on A=r and r=r2, it is easy to see
that f̃ |.A=r/⊕.r=r 2/: .A=r/⊕.r=r2/ → A is a monomorphism with image intersecting r 2
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trivially. In the notation of Section 2, M.n/ = ∑
M1;M2 ;··· ;Mn

M1 ⊗k M2 ⊗k · · · ⊗k Mn

where each Mi is either r=r2 or A=r but no two A=r ’s are neighbouring and at least
one Mi equals M . Then�� .A=r; r=r2/ = A=r ⊕ M.1/⊕ M.2/⊕· · ·⊕ M.n/⊕· · · .
It follows that ker f̃ ⊂ ⊕

j≥2 M. j/.
On the other hand, M.n; l/ equals the sum of those items M1 ⊗k M2 ⊗k · · · ⊗k Mn

of M.n/ in which there are l Mi s equal to r=r2 and M.n/ = ∑
.n−1/=2≤l≤n M.n; l/ as

in Section 2. Also f̃ ..r=r2/ j/ = 0 for j ≥ rl.A/ since r j = 0 in this case. It follows
that f̃ .M.n; l// = 0 for any n and any possible l ≥ rl.A/. Therefore we get⊕

n≥rl.A/

⊕
max{rl.A/; .n−1/=2}≤l≤n

M.n; l/ ⊂ ker f̃ :

THEOREM 3.2 (Generalized Gabriel’s Theorem Under Lifting). Assume that A is
a left Artinian k-algebra and A=r can be lifted. Then A ∼= P SEk.1;� ; ²/ with
J s ⊂ 〈²〉 ⊂ J for some s, where 1 is the quiver of A and ² is a set of relations on
P SEk.1;� /.

PROOF. Let1 be the associated quiver of A. By Lemma 3.1(ii), there is a surjective
k-algebra morphism f̃ :�� .A=r; r=r2/ → A with⊕

n≥rl.A/

⊕
max{rl.A/; .n−1/=2}≤l≤n

M.n; l/ ⊂ ker f̃ ⊂
⊕
j≥2

M. j/:

By Proposition 2.9, there is the surjective k-algebra homomorphism

' : P SEk.1;� / →�� .A=r; r=r2/

such that for any t ≥ 1,

'.J t/ =
⊕
n;l≥t

M.n; l/:

Then f̃ ' : P SEk.1;� / → A is a surjective k-algebra morphism with the kernel
I = ker. f̃ '/ = '−1.ker f̃ /.

But, '.J rl.A// = ⊕
n;l≥rl.A/ M.n; l/ and '.J 2/ = ⊕

n;l≥2 M.n; l/. So, by
Lemma 3.1(ii), '.J rl.A// ⊂ ker f̃ ⊂ '.J 2/+ M.2; 1/+ M.3; 1/.

One can show

J t ⊂ '−1'.J t / ⊂ J t + �

(⊕
n

⊕
l≤t−1

M F.n; l/

)
∩ �.ker³/

for t ≥ 1. In fact, trivially, J t ⊂ '−1'.J t /. On the other hand, ' = ³�−1 and
'−1 = �³−1. By Proposition 2.9, '.J t/ = ⊕

n; l≥t M.n; l/. From the definition of ³
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in Lemma 2.4, it can be seen that

³−1

(⊕
n; l≥t

M.n; l/

)
⊂
⊕
n; l≥t

M F.n; l/+
(⊕

n

⊕
l≤t−1

M F.n; l/

)
∩ ker³:

Thus, by Lemma 2.4, we have

'−1'.J t/ = �³−1

(⊕
n; l≥t

M.n; l/

)

⊂ �

(⊕
n; l≥t

M F.n; l/

)
+ �

(⊕
n

⊕
l≤t−1

M F.n; l/

)
∩ �.ker³/

= J t + �

(⊕
n

⊕
l≤t−1

M F.n; l/

)
∩ �.ker³/:

Hence,

J rl.A/ ⊂ '−1'
(

J rl.A/
) ⊂ '−1

(
ker f̃

) = I ⊂ '−1'
(

J 2
)+ '−1 .M.2; 1/+ M.3; 1//

⊂ J 2 + �
(
M F.3; 1/+ M F.2; 1/+ M F.1; 1/

) ∩ �.ker³/

+ '−1.M.2; 1/+ M.3; 1//

= J 2 + A · P SE.11;� / · A

since �.M F.1; 1// ∩ �.ker³/ = 0, and then

�
(
M F.3; 1/+ M F.2; 1/+ M F.1; 1/

) ∩ �.ker³/+ '−1.M.2; 1/+ M.3; 1//

= A · P SE.11;� / · A:

But it is clear that J 2 + A · P SE.11;� / · A = J . Therefore, we get:

J rl.A/ ⊂ '−1
(
ker f̃

) = I ⊂ J:

Lastly, by Proposition 2.12, there is a set ² of relations such that I can be generated
by ², that is, I = 〈²〉. Hence, P SEk.1;� ; ²/ = P SEk.1;� /=〈²〉 ∼= A with
〈²〉 = ker. f̃ '/ and J rl.A/ ⊂ 〈²〉 ⊂ J .

Usually, for a left Artinian algebra A, the set ² of relations in Theorem 3.2 is
infinite. But when A is finite dimensional, we can show that ² is finite.

In fact, suppose that A is finite dimensional, so that Ai is finite dimensional for
all i . Thus the k-space consisting of all � -pseudo paths of a certain length is finite
dimensional. It follows that J rl.A/ is the ideal finitely generated in P SEk.1;� / by all
� -pseudo paths of length rl.A/. Similarly, P SEk.1;� /=J rl.A/ is generated finitely
as a k-space by all � -paths of length less than rl.A/, and so also is I=J rl.A/ as a
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k-subspace. Then it is easy to see that I is a finitely generated ideal in P SEk.1;� /.
Assume {¦1; : : : ; ¦p} is a set of finite generators for the ideal I . For the identity 1 of
A=r , we have the decomposition into orthogonal idempotents as 1 = e1 + · · · + es ,
where ei is the identity of Ai . Then ¦l = 1 · ¦l · 1 = ∑

1≤i; j≤s ei · ¦l · e j , where ei¦le j

can be expanded as a k-linear combination of some such� -pseudo paths which have
the same start vertex i and the same end vertex j . So ¦ il j = ei · ¦l · e j is a relation on
the � -pseudo path algebra P SEk.1;� /. Moreover, I is generated by all ¦ il j since
¦l = ∑

i; j ¦
il j . Therefore we have a finite set ² = {¦ il j : 1 ≤ i; j ≤ s; 1 ≤ l ≤ p}

with I = 〈²〉 such that P SEk.1;� ; ²/ = P SEk.1;� /=〈²〉 ∼= A. Therefore the
following holds.

COROLLARY 3.3. Assume that A is a finite dimensional k-algebra and A=r can be
lifted. Then A ∼= P SEk.1;� ; ²/ with J s ⊂ 〈²〉 ⊂ J for some s, where 1 is the
quiver of A and ² is a finite set of relations on P SEk.1;� /.

When A is elementary, Ai = A j = k and i M j = r=r2 is free as a k-linear space.
Thus ³ is an isomorphism, so ker³ = 0 and ker ' = 0. According to the classical
Gabriel Theorem, we have J rl.A/ ⊂ 〈²〉 ⊂ J 2, which is a special case of the results of
Theorem 3.2 and Corollary 3.3.

By the famous Wedderburn-Malcev Theorem (see [4]), for a left Artinian k-
algebra A and its radical r , if Dim A=r ≤ 1 then A=r can be lifted. Here, Dim A is
the dimension of a k-algebra A and

Dim A = sup{n : Hn
k .A;M/ �= 0 for some A-bimodule M}

where Hn
k .A;M/means the nth Hochschild cohomology module of A with coefficients

in M . In particular, Dim A=r = 0 if and only if A=r is a separable k-algebra. By [4,
Corollary 10.7b], when k is a perfect field (for example, char k = 0 or k is a finite
field), A is separable. So, we have the following.

PROPOSITION 3.4. Assume that A is a left Artinian k-algebra. Then
A ∼= P SEk.1;� ; ²/with J s ⊂ 〈²〉 ⊂ J for some s, where1 is the quiver of A and ²
is a set of relations of P SEk.1;� /, if one of the following conditions holds:

(i) Dim A=r ≤ 1, where r is the radical of A;
(ii) A=r is separable;

(iii) k is a perfect field (for example, when char k = 0 or k is a finite field).

Note that in Proposition 3.4, the condition (ii) is a special case of (i), and (iii) is a
special case of (ii).

In Theorem 3.2, A ∼= P SEk.1;� ; ²/ holds where 1 is the quiver of A from
the corresponding � -pseudo path algebra of the � -path-type pseudo tensor alge-
bra �� .A=r; r=r2/ by the definitions in Section 2. Moreover, in the case where
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〈²〉 ⊂ J 2
1, we will discuss the uniqueness of the corresponding pseudo path algebra

and quiver of a left Artinian algebra under isomorphism, that is, whether there ex-
ists another quiver and its related pseudo path algebra so that the same isomorphism
relation is satisfied. In fact, we have the following statement on the uniqueness.

THEOREM 3.5. Assume that A is a left Artinian k-algebra. Let A=r.A/ = ⊕p
i=1 Ai

with simple algebras Ai . If there is a quiver1 and a pseudo path algebra P SEk .1;�/

with a set of simple algebras � = {B1; · · · ; Bq} and ² a set of relations such that
A ∼= P SEk.1;�; ²/with J t

1 ⊂ 〈²〉 ⊂ J 2
1 for some t and J1 the ideal in P SEk.1;�/

generated by all pure paths in P SEk.11;�/, then1 is just the quiver of A and p = q
and Ai

∼= Bi for i = 1; : : : ; p after reindexing.

PROOF. P SEk.1;�/=J1 = B1 +· · ·+ Bq by the definition of J1. Since J t
1 ⊂ 〈²〉,

it follows that .J1=〈²〉/t = J t
1=〈²〉 = 0. Also,

P SEk

(
1;�; ²

)
=
(

J1=〈²〉) = (
P SEk.1;�/=〈²〉)=(J1=〈²〉) = P SEk.1;�/=J1

= B1 + · · · + Bq

is semisimple. Hence J1=〈²〉 is the radical of P SEk.1;�; ²/. Thus, from
A ∼= P SEk.1;�; ²/, it follows that A=r.A/ ∼= P SEk.1;�/=J1. However,
A=r.A/ = ⊕p

i=1 Ai and P SEk.1;�/=J1 = B1 + · · · + Bq where Ai and Bj are
simple algebras. Therefore p = q and Ai

∼= Bi for i = 1; : : : ; p after reindexing,
according to the Wedderburn-Artin Theorem.

On the other hand, A=r.A/2 ∼= P SEk.1;�/=J 2
1. Thus the quivers of A=r.A/2

and P SEk.1;�/=J 2
1 are the same.

But

P SEk.1;�/=J 2
1 = (

P SEk.1;�/=〈²〉)=(J 2
1=〈²〉) = P SEk.1;�; ²/=

(
J 2
1=〈²〉)

and the radical of P SEk.1;�; ²/ is J1=〈²〉. Then the radical of P SEk.1;�/=J 2
1

is .J1=〈²〉/=.J 2
1=〈²〉/ ∼= J1=J 2

1. So, the quivers of P SEk.1;�/=J 2
1 are that of the

� -path-type pseudo tensor algebra

��
(
.P SEk.1;�/=J 2

1/=.J1=J 2
1/; .J1=J 2

1/=.J
2
1=J 2

1/
)

∼=�� (P SEk.1;�/=J1; J1=J 2
1

)
:

Now, we consider the quiver 0 of��
(
P SEk.1;�/=J1; J1=J 2

1

)
. From the defini-

tion of the quiver associated to an� -path-type pseudo tensor algebra in Section 2, we
know that 00 = {1; · · · ; q} = 10. For any i; j ∈ 00, the number of arrows from i to j
in 0 is the rank ri j of i M j = Bi · J1=J 2

1 · Bj as a finitely generated Bi -Bj -bimodule.
However, by the definition of J1, Bi · J1=J 2

1 · Bj can be constructed as an Bi -Bj -linear
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expansion of all � -pseudo-paths of length 1 from i to j in P SEk.11;�/. It means
that ri j is equal to the number of arrows from i to j in 1. Thus the number of arrows
from i to j in 0 is equal to the number of arrows from i to j in 1. Then 01 = 11.
Therefore 0 = 1.

The above discussion implies that the quiver of A=r.A/2 is just 1. Moreover,

A=r.A/ = (
A=r.A/2

)
=
(
r.A/=r.A/2

)
and

r.A/=r.A/2 = (
r.A/=r.A/2

)
=
(
r.A/=r.A/2

)2
;

where r.A/=r.A/2 is the radical of A=r.A/2. So the quiver1 of A=r.A/2 is also that
of

��

((
A=r.A/2

)
=
(
r.A/=r.A/2

)
;
(
r.A/=r.A/2

)
=
(
r.A/=r.A/2

)2
)
:

But

��
(
A=r.A/; r.A/=r.A/2

)
∼=��

((
A=r.A/2

)
=
(
r.A/=r.A/2

)
;
(
r.A/=r.A/2

)
=
(
r.A/=r.A/2

)2
)
:

It follows that 1 is the quiver of A.

According to this theorem, we see that for a left Artinian algebra A, the existence
of the pseudo path algebra such that A is isomorphic to its quotient algebra (see
Theorem 3.2) can imply its uniqueness. That is, such pseudo path algebra, whose
quotient is isomorphic to A, is uniquely determined by the quiver and the semisimple
decomposition of A.

Our main result, Theorem 3.2, means that when the quotient algebra of a left
Artinian algebra is lifted, the algebra can be covered by a pseudo path algebra under
an algebra homomorphism. We know that a generalized path algebra must be a
homomorphic image of a pseudo path algebra and its definition seems to be more
concise than that of pseudo path algebra. So it is natural to ask why we do not look for
a generalized path algebra to cover a left Artinian algebra. In fact, this is our original
idea. However, unfortunately, in general, as shown by the following counter-example,
a left Artinian algebra with lifted quotient may not be a homomorphic image of its
corresponding � -path-type tensor algebra. Thus one cannot use the above method
(that is, through Proposition 2.10) to gain a generalized path algebra in order to cover
the left Artinian algebra. The following counter-example was given by W. Crawley-
Boevey.

EXAMPLE 1. There is an example of a finite dimensional algebra A over a field k
such that

(a) A is split over its radical r , that is, A=r can be lifted;



[25] Pseudo path algebras 409

(b) there is no surjective algebra homomorphism from T .A=r; r=r2/ to A, that is, A
cannot be equivalent to some quotient of T .A=r; r=r2/.

Concretely, we describe A in the following eight steps.

(1) Let F=k be a finite field extension, and let Ž : F → F be a nonzero k-derivation.
For example, one can take k = Z2.t/, F = Z2.

√
t/ and Ž.p + q

√
t/ = q for

p; q ∈ Z2.t/ where Z2 denotes the prime field of characteristic 2. It is easy to check
that Ž is a k-derivation since char k = 2.
(2) Define E = F ⊕ F and consider it as an F-F-bimodule with the actions:

f .x; y/ = . f x; f y/; .x; y/ f = .x f + yŽ. f /; y f /

for x; y; f ∈ F . Let � and � be F-F-bimodule homomorphisms respectively from F
to E and from E to F satisfying

�.x/ = .x; 0/; �.x; y/ = y

for x; y ∈ F . Then we have a nonsplitting extension of F-F-bimodules:

0 → F
�→ E

�→ F → 0

In fact, if there were an F-F-bimodule homomorphism : E → F with ·� = 1F

then for all f ∈ F we would have

Ž. f / =  �.Ž. f // =  .Ž. f /; 0/ =  .Ž; f /−  .0; f / =  ..0; 1/ f /−  . f .0; 1//

=  .0; 1/ f − f .0; 1/ = 0;

and hence Ž = 0, which contradicts the assumption on Ž.

(3) Define A = F ⊕ F ⊕ E with multiplication given by

.x; y; e/
(
x ′; y′; e′) = (

xx ′; xy′ + yx ′; xe′ + �.yy ′/+ ex ′) :
Let S = {.x; 0; 0/ : x ∈ F}. Then S is a subalgebra of A isomorphic to F .
Let r = {.0; y; e/ : y ∈ F; e ∈ E}. Then r is an ideal in A with

r 2 = {.0; 0; e/ : e ∈ im.�/} and r 3 = 0:

Thus r is the radical of A, and A = S ⊕ r , so A is split over r .

(4) As an F-F-module, r=r 2 is isomorphic to F ⊕ F due to the surjective F-F-
module homomorphism ³ : r → F ⊕ F satisfying ³.0; y; e/ = .y; �.e// with
ker³ = r 2.
(5) By (3) and (4), the � -path-type tensor algebra T .A=r; r=r2/ ∼= T .F; F ⊕ F/.

Let s = .1; 0/ and t = .0; 1/, so that F ⊕ F ∼= Fs ⊕ Ft . Thus T .F; F ⊕ F/ (equiv-
alently, say T .A=r; r=r2/) can be considered as the free associative algebra F〈s; t〉
generated by two variables s, t over F . It follows that the centre Z

(
T .A=r; r=r2/

)
of

T .A=r; r=r2/ is equal to F .
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(6) If .x; y; e/ ∈ Z.A/ the centre of A, then for all e′ ∈ E , .x; y; e/ commutes
with .0; 0; e′/, thus .0; 0; xe′/ = .0; 0; e′x/, so xe′ = e′x . Taking e′ = .0; 1/, we get
x.0; 1/ = .0; 1/x . But by (2), x.0; 1/ = .0; x/ and .0; 1/x = .Ž.x/; x/. It follows
that Ž.x/ = 0. Therefore, we have

Z.A/ ⊂ {.x; y; e/ : x; y ∈ F; e ∈ E; Ž.x/ = 0}:

(7) If L is a subalgebra of Z.A/ and is a field, then dimk L
<�= dimk F .

In fact, the composition

L ,→ Z.A/ ,→ {.x; y; e/ : x; y ∈ F; e ∈ E; Ž.x/ = 0} → {x : Ž.x/ = 0}

is an algebra homomorphism. Assume that l = .x; y; e/ ∈ L is in the kernel of
this composition. Then x = 0 and l = .0; y; e/, so l ∈ r the radical of A. By (3),
l3 = 0. But L is a field, so l = 0 which means that this composition is a one-one map.
Therefore,

dimk L ≤ dimk{x : Ž.x/ = 0} <�= dimk F

where “�=” is from Ž �= 0.

(8) If there were a surjective algebra homomorphism ½ : T .A=r; r=r2/ → A, it
would induce a homomorphism of the centre Z

(
T .A=r; r=r2/

)
of T .A=r; r=r2/ into

the centre Z.A/ of A. By (5), Z
(
T .A=r; r=r2/

) = F . Thus, L = ½.F/ would be

a field and a subalgebra of Z.A/. By (7), we have dimk L
<�= dimk F . On the other

hand, if there is an x satisfying 0 �= x ∈ ker ½|F , that is, ½.x/ = 0, then, since F is
a field, we get ½.1/ = ½.1=x/½.x/ = 0, which implies ½ = 0 since ½ is an algebra
homomorphism. This is impossible since ½ is surjective. Hence ker ½|F = 0, that is,

½|F is injective, so F
½|F∼= L which contradicts dimk L

<�= dimk F .

This completes the description of Example 1. Due to this example, we know
that a general left Artinian algebra with lifted quotient cannot be covered by its
corresponding � -path-type tensor algebra. This is the reason that we introduce
pseudo path algebras and � -path-type pseudo tensor algebras to replace generalized
path algebras and� -path-type tensor algebras in order to cover left Artinian algebras
with lifted quotients.

However, there still exist some special classes of left Artinian algebras which can
be covered by the corresponding � -path-type tensor algebras and moreover by a
generalized path algebra. This point can be seen in the next section, but we will have
to restrict a left Artinian algebra to be finite dimensional.
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4. When the radical is 2-nilpotent

In this section, we will always assume that the radical r of a finite dimensional
algebra A is 2-nilpotent, that is, r �= 0 but r2 = 0. Also, suppose that A is split over its
radical r such that A = B ⊕ r with B̂ = {B1; : : : ; Bs} the set of primitive orthogonal
simple subalgebras of A as constructed in Section 3. For x̄ = x + r ∈ A=r , let

x̄ · r
def= xr and r · x̄ = r x . Then r is a finitely generated A=r -bimodule. If

A=r = ⊕s
i=1 Ai where Ai is a simple subalgebra for each i , then, for each pair .i; j/,

r is a finitely generated Ai -A j -bimodule whose rank is written as li j . Now

r = A=r · r · A=r =
s∑

i; j=1

Ai · r · A j =
s∑

i; j=1

i M j

where i M j
def= Ai · r · A j . Then, for k �= i ,

Ak · i M j = Ak · (Ai · r · A j

) = Bk Bir Bj = 0;

so Ak · i M j = 0; similarly, for k �= j , i M j · Ak = 0. Hence, we get the � -path-
type tensor algebra T .A=r; r/ and the corresponding � -path algebra k.1;� / with
� = {Ai : i ∈ 10}. 1 is called the quiver of A. In a manner similar to the proof of
Lemma 3.1, we obtain the following results.

LEMMA 4.1. Assume that A is a finite dimensional k-algebra with 2-nilpotent
radical r = r.A/ and A is split over the radical r . Let B̂ = {B1; : : : ; Bs} be the set
of primitive radical-orthogonal simple subalgebras of A as constructed above. Write
A=r = ⊕s

i=1 Ai , where Ai are simple algebras for all i . Then the following statements
hold.

(i) If {r1; : : : ; rt} is a set of generators of the A=r-bimodule r then B1 ∪· · ·∪ Bs ∪
{r1; · · ·; rt} generates A as a k-algebra;

(ii) There is a surjective k-algebra homomorphism f̃ : T .A=r; r/ → A with
ker f̃ = ⊕

j≥2.r/
j , where .r/ j denotes r ⊗A=r r ⊗A=r · · · ⊗A=r r with j copies of r .

PROOF. It is easy to see that r is an .A=r/-bimodule with the action given
by Ai · r = Bir . Note that Ai A j · r = 0 · r = 0 and, on the other hand,

Ai A j · r = .Bi Bj + r/ · r = Bi Bjr ⊂ rr = 0;

so that this action is well-defined. The proof of (i) can be given in a manner similar to
the proof of Lemma 3.1(i) in the case rl.A/ = 2.

Next, we prove (ii). r = A=r · r · A=r = ∑s
i; j=1 Ai · r · A j = ∑s

i; j=1 Bir Bj is a
direct sum decomposition since B2

i = Bi and Bi Bj = 0 for i �= j .
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.A=r/⊕r is a k-algebra in which the multiplication is derived from the A=r -module
action of r and the multiplication of A=r and r .

For each pair of integers i; j with 1 ≤ i; j ≤ s, choose elements {yi j
u } to form a

k-basis in Bir Bj . Then
⋃s

i; j=1{yi j
u } is a basis for r .

Define f : .A=r/ ⊕ r → A by f |r = idr , that is, f .yi j
u / = yi j

u , and f |Ai
= �−1.

Then, f |A=r : A=r → B = f .A=r/ is a k-algebra isomorphism since B
�|B∼= A=r , and

f |r : r → f .r/ = r ⊂ A is an embedded homomorphism of A=r -bimodules. Hence,
by Lemma 2.3, there is a unique algebra morphism f̃ : T .A=r; r/ → A such that
f̃ |.A=r/⊕r = f .

Firstly,
⋃

i; j;u{yi; j
u } ⊂ f̃ .r/ and B1 ∪ · · · ∪ Bs ⊂ f̃ .A=r/. From (i), it follows that⋃

i; j;u{yi; j
u } ∪ B1 ∪ · · · ∪ Bs generates A as a k-algebra and then f̃ is surjective. On

the other hand, f |A=r and f |r are monomorphic, so f̃ |.A=r/⊕r : .A=r/ ⊕ r → A is a
monomorphism. Then ker f̃ ⊂ ⊕

j≥2.r/
j . Moreover, f̃

(
.r/ j

) = 0 for j ≥ 2 since
r j = 0 in this case. Therefore,

⊕
j≥2.r/

j ⊂ ker f̃ . Thus, ker f̃ = ⊕
j≥2.r/

j .

In the proof of this lemma, since f |r = idr , it is naturally a A=r=homomorphism.
So, the condition of Lemma 2.2 is satisfied by T .A=r; r/. In general, this is not true
for T .A=r; r/ in the case that r2 �= 0.

THEOREM 4.2 (Generalized Gabriel’s Theorem With 2-Nilpotent Radical). Assume
that A is a finite dimensional k-algebra with 2-nilpotent radical r = r.A/ and A is
split over the radical r . Then, A ∼= k.1;� ; ²/ with J̃ 2 ⊂ 〈²〉 ⊂ J̃ 2 + J̃∩ ker '̃
where 1 is the quiver of A and ² is a set of relations of k.1;� /, '̃ is defined as in
Proposition 2.10.

PROOF. Let 1 be the associated quiver of A. By Lemma 4.1(ii), we have the
surjective k-algebra homomorphism f̃ : T .A=r; r/ → A. By Proposition 2.10,
there is a surjective k-algebra homomorphism '̃ : k.1;� / → T .A=r; r/ such that
'̃. J̃ t/ = ⊕

j≥t.r/
j for all t ≥ 1. Then f̃ '̃ : k.1;� / → A is a surjective k-algebra

morphism where I = ker
(

f̃ '̃
) = '̃−1

(⊕
j≥2.r/

j
)

since ker f̃ = ⊕
j≥2.r/

j = '̃. J̃ 2/.
As a special case of the corresponding part of the proof of Theorem 3.2, we have

J̃ t ⊂ '̃−1'̃
(
J̃ t
) ⊂ J̃ t + �̃

(⊕
j≤t−1

.r/F j

)
∩ �̃.ker³/

for t ≥ 1. Hence,

J̃ 2 ⊂ '̃−1'̃
(
J̃ 2
) = '̃−1

(
ker f̃

) = I ⊂ J̃ 2 + �̃

(⊕
j≤1

.r/F j

)
∩ �̃.ker³/

⊆ J̃ 2 + J̃ ∩ �̃.ker³/:
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But, �̃.ker³/ = �̃.³−1.0// = '̃−1.0/ = ker '̃. Then we get J̃ 2 ⊂ I ⊂ J̃ 2 + J̃ ∩ker '̃.
The ideal J̃ 2 is finitely generated in k.1;� / by all� -paths of length 2, while the

k-linear space k.1;� /= J̃ 2 is finitely generated by all � -paths of length less than 2,
as is I= J̃ 2 as a k-subspace. Then I is a finitely generated ideal in k.1;� /. Assume
that {¦1; : : : ; ¦p} is its finite set of generators. Moreover, ¦l = ∑

1≤i; j≤s ei¦l e j where
ei¦le j is a relation on the � -path algebra k.1;� /. Therefore, for

² = {
ei¦le j : 1 ≤ i; j ≤ s; 1 ≤ l ≤ p

}
;

we get I = 〈²〉. Hence k.1;� ; ²/ = k.1;� /=〈²〉 ∼= A with 〈²〉 = ker
(

f̃ '̃
)

and
J̃ 2 ⊂ 〈²〉 ⊂ J̃ 2 + J̃ ∩ ker '̃.

COROLLARY 4.3. Assume that A is a finite dimensional k-algebra with 2-nilpotent
radical r = r.A/. Then, A ∼= k.1;� ; ²/, with J̃ 2 ⊂ 〈²〉 ⊂ J̃ where 1 is the
quiver of A and ² is a set of relations of k.1;� /, if one of the following conditions
hold:

(i) Dim A=r ≤ 1 for the radical r of A;
(ii) A=r is separable;

(iii) k is a perfect field (for example, when char k = 0 or k is a finite field).

As in the case of Theorem 3.5, in the case that 〈²〉 ⊆ J 2
1, we have the uniqueness

of the corresponding � -path algebra and quiver of a finite dimensional algebra. That
is, we have the following statement.

THEOREM 4.4. Assume that A is a finite dimensional k-algebra. Let A=r.A/ =⊕p
i=1 Ai , where each Ai is a simple algebra. If there is a quiver 1 and a generalized

path algebra k.1;�/ with a set of simple algebras � = {B1; : : : ; Bq} and a set ²
of relations such that A ∼= k.1;�; ²/ with J t

1 ⊂ 〈²〉 ⊂ J 2
1 for some t and J1 the

ideal in k.1;�/ generated by all elements in k.11;�/, then 1 is the quiver of A
and p = q such that Ai

∼= Bi for i = 1; : : : ; p after reindexing.

This theorem can be proved in the same way as Theorem 3.5: we only need
to replace � -path-type tensor algebra and � -path with � -path-type pseudo tensor
algebra and � -pseudo path respectively.

By Fact 2.6, an � -path-type tensor algebra or an � -path algebra can be covered
respectively by � -path-type pseudo tensor algebra or � -pseudo path algebra. Thus
we can also state a Generalized Gabriel’s Theorem With 2-Nilpotent Radical for
� -pseudo path algebras. As a corollary of Theorem 4.2, one has the following.

PROPOSITION 4.5. Assume that A is a finite dimensional k-algebra with 2-nilpotent
radical r = r.A/ and A=r can be lifted. Then

A ∼= P SEk.1;� ; ²/ with J 2 ⊂ 〈²〉 ⊂ J 2 + J ∩ ker'



414 Fang Li [30]

where 1 is the quiver of A, ² is a set of relations on P SEk.1;� / and ' is defined
as in Proposition 2.9.

PROOF. We have the composition of surjective homomorphisms:

P SEk.1;� /
�→ k.1;� /

f̃ '̃→ A:

Then A ∼= P SEk.1;� /= ker
(

f̃ '̃�
)
, where ker

(
f̃ '̃�

) = �−1
(

ker. f̃ '̃/
)
.

By Theorem 4.2, J̃ 2 ⊂ ker. f̃ '̃/ ⊂ J̃ 2 + J̃ ∩ ker '̃. Thus,

�−1
(
J̃ 2
) ⊂ �−1

(
ker

(
f̃ '̃
)) ⊂ �−1

(
J̃ 2
)+ �−1

(
J̃ ∩ ker '̃

)
:

But, since �−1. J̃ / = J , it follows that �−1. J̃ 2/ = J 2 and �−1
(

J̃ ∩ ker '̃
) = J ∩ ker'.

Thus we get

J 2 ⊂ ker
(

f̃ '̃�
) ⊂ J 2 + J ∩ ker':

By Proposition 2.12(ii), there is a set ² of relations on P SEk.1;� / such that
ker

(
f̃ '̃�

) = 〈²〉. Then

A ∼= P SEk.1;� /= ker
(

f̃ '̃�
) = P SEk.1;� /=〈²〉 = P SEk.1;� ; ²/

and J 2 ⊂ 〈²〉 ⊂ J 2 + J ∩ ker'.

So far, in Section 3 and this section, we have established isomorphisms between
an algebra and its � -pseudo path algebra or � -path algebra with relations (see
Theorem 3.2 and Proposition 4.5) in the cases where this algebra is left Artinian
with splitting over its radical or moreover, is finite-dimensional with 2-nilpotent
radical. However, it seems to be difficult to discuss the same question for an arbitrary
algebra. Our question is whether it would be possible to characterize an arbitrary
finite-dimensional algebra which is split over its radical through the combination
of the two methods for a left Artinian algebra with splitting over its radical and a
finite-dimensional algebra with 2-nilpotent radical.

In fact, for such a finite-dimensional algebra A, we can start from B = A=r2

where r = r.A/ is the radical of A. Consider r.A=r2/ = r=r2, denoted by r̂ . Then
r̂ 2 = r 2=r2 = 0. By Lemma 4.1(ii), there is a surjective homomorphism of algebras
f̃ : T

(
.A=r2/=.r=r2/; r=r2

) → A=r2.
But we have .A=r2/=.r=r2/ ∼= A=r , so

f̃ : T
(

A=r; r=r2
) → A=r2

is a surjective homomorphism of algebras.



[31] Pseudo path algebras 415

On the other hand, according to the method in Section 3, in order to obtain the cor-
responding Gabriel Theorem for this A, the key is to find an algebra homomorphism Þ

corresponding to f̃ in Lemma 3.1. Therefore, this problem may be regarded as the
problem of finding a surjective homomorphism of algebras Þ such that the following
diagram commutes

T .A=r; r=r2/

A A=r2 0;

�
�

�
��

Þ

�

f̃

�³ �

where ³ denotes the natural homomorphism. If such an Þ exists, the generalized
Gabriel Theorem should hold for this finite-dimensional algebra A.
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