PERIODIC SOLUTION OF THE CAUCHY PROBLEM TRUNG DINH TRAN

(Received 13 February 2006; revised 5 July 2006)

Communicated by J. Koliha

Abstract

We derive necessary and sufficient conditions for the existence of a time-periodic solution to the abstract Cauchy problem.

2000 Mathematics subject classification: primary 47A10, 47A60; secondary 34G10.

1. Introduction

We study the existence of time-periodic solution to the differential equation

(1.1)
$$\frac{du(t)}{dt} = Au(t) + f(t), \quad t \ge 0,$$
$$u(0) = x,$$

where A is the infinitesimal generator of an eventually norm continuous semigroup T(t) and f is a continuous function in a Banach space X. We say f is *w*-periodic if w is the infimum of the set of all $\tau > 0$ such that $f(t) = f(t + \tau)$ for all $t \ge 0$. If f is w-periodic then, by uniqueness, $u(\cdot)$ the mild solution of (1.1) is w-periodic if and only if u(0) = u(w). We say (1.1) has a *w*-periodic solution if there exists $x \in X$ such that

$$x = u(w) = T(w)x + \int_0^w T(w - s)f(s) \, ds.$$

When A is the infinitesimal generator of a C_0 -semigroup T(t), it was shown in Prüss [4] that (1.1) admits a unique w-periodic solution for any given w-periodic continuous function f if and only if 1 is not in the spectrum of T(w).

^{© 2007} Australian Mathematical Society 1446-8107/07 \$A2.00 + 0.00

The aim of this paper is to derive necessary and sufficient conditions for existence of periodicity when A is the infinitesimal generator of an eventually norm continuous semigroup T(t) and 1 is a pole of T(w). Our conditions do not rely on explicit knowledge of the semigroup, but only of its generator.

In a Banach space setting, when T(t) is a C_0 -semigroup generated by A and 1 is a pole of order greater than one, the problem of existence of a periodic solution to (1.1) is non-trivial, since 1 being a simple pole of T(w) (pole of order one) characterizes a w-periodic semigroup. This observation can be deduced from Engel [2, Theorem IV 2.26, Corollary IV 3.8], and the decomposition theorem that characterizes poles. In Straškraba [5], the general case of isolated spectral points was considered for a self-adjoint generator of a C_0 -semigroup in a Hilbert space. More results on periodic solutions to abstract evolution problems were obtained in Daners [1].

Let *A* be a closed linear operator in a Banach space *X*. The set of all $\lambda \in \mathbb{C}$ such that $\lambda I - A$ is invertible is called the *resolvent set* of *A*, denoted by $\rho(A)$. The complement of $\rho(A)$ in \mathbb{C} is the *spectrum* $\sigma(A)$ of *A*. We call μ a *pole of A* if μ is a pole of $(\lambda I - A)^{-1}$. A bounded linear operator *A* is *nilpotent of order* $k \in \mathbb{N}$ if $A^k = 0$ and $A^n \neq 0$ for all n < k. For relevant facts from the operator theory of linear operators, see Kato [3] and Taylor [6].

A C_0 -semigroup T(t) is *eventually norm continuous* if there exists $t_0 \ge 0$ such that T(t) is norm continuous for all $t > t_0$. We call a C_0 -semigroup T(t) *w-periodic* if there exists $t_0 > 0$ such that $T(t_0) = I$ and

$$w = \inf_{t_0 > 0} \{T(t_0) = I\}.$$

For relevant facts and properties of eventually norm continuous semigroups and periodic C_0 -semigroups, see Engel [2].

2. Necessary and sufficient conditions for periodic solutions

Let T(t) be an eventually norm continuous semigroup generated by A and 1 be a pole of T(w). We give necessary and sufficient conditions that ensure (1.1) has a periodic solution. The conditions only depend on the knowledge of the generator. We first need two propositions. For $j \in \mathbb{N}$, the function $F^{(j)}$ is a *j*-th primitive of *f* if $dF^{(n)}(t)/dt = F^{(n-1)}(t)$ for each natural number $n \leq j$ and $F^{(0)}(t) = f(t)$.

PROPOSITION 2.1. Let A be a nilpotent operator of order k + 1, where $k \in \mathbb{N}$. If $\int_0^w f(t)dt = 0$ then (1.1) has a w-periodic solution.

PROOF. Firstly we observe that for each $j \in \mathbb{N}$ there exists a *j*-th primitive of f

such that $F^{(j)}(w) = F^{(j)}(0)$. For if $\int_0^w F^{(j-1)}(t)dt = d \neq 0$, let

$$H^{(j-1)}(t) = F^{(j-1)}(t) - \frac{d}{w}.$$

Then $\int_0^w H^{(j-1)}(t)dt = 0$, and $dH^{(j-1)}(t)/dt = dF^{(j-1)}(t)/dt$. Hence $H^{(j-1)}$ is a (j-1)-th primitive of f and $H^{(j)}(w) = H^{(j)}(0)$. Secondly we observe that $u(t) = \sum_{j=1}^k A^j F^{(j)}(t)$ satisfies System (1.1) if $x = \sum_{j=1}^k A^j F^{(j)}(0)$. Therefore u(0) = u(w).

PROPOSITION 2.2. If A is a nilpotent operator of order k + 1 then (1.1) has a *w*-periodic solution if and only if

$$Ax = \sum_{n=1}^{k-1} A^{n+1} G^{(n)}(0) - \frac{1}{w} \int_0^w f(t) dt$$

where $G^{(n)}$ is the n-th primitive of g such that $G^{(n)}(w) = G^{(n)}(0)$, and

$$g(t) = f(t) - \frac{1}{w} \int_0^w f(t) dt.$$

PROOF. Let $\int_0^w f(t)dt = c$ and g(t) = f(t) - c/w. Then $\int_0^w g(t)dt = 0$. By Proposition 2.1, the equation

(2.1)
$$\frac{dv(t)}{dt} = Av(t) + g(t), \quad t \ge 0, \\ v(0) = v_0,$$

has a *w*-periodic solution if $v_0 = \sum_{j=1}^k A^j G^{(j)}(0)$.

Now let u(t) be the solution of (1.1) with f(t) = g(t) + c/w and v(t) be the solution of (2.1). Put y(t) = u(t) - v(t). Then y(t) is the solution of

(2.2)
$$\frac{dy(t)}{dt} = Ay(t) + \frac{c}{w}, \quad t \ge 0,$$
$$y(0) = y_0 = x - v_0.$$

Since A is nilpotent of order k + 1, we have

$$y(t) = \exp(At)y_0 + \int_0^t \sum_{n=0}^k \frac{A^n}{n!} (t-s)^n \frac{c}{w} ds,$$

We can therefore express y(t) as a polynomial in t

$$y(t) = y_0 + \left(Ay_0 + \frac{c}{w}\right)t + \left(\frac{A^2y_0}{2!} + \frac{A(w^{-1}c)}{2!}\right)t^2 + \cdots$$

Since (2.1) has a periodic solution (when $v_0 = \sum_{j=1}^k A^j G^{(j)}(0)$), Equation (2.2) has a periodic solution if and only if $Ay_0 + c/w = 0$. This completes the proof.

[3]

We can now prove our main theorem.

THEOREM 2.3. Let A be the infinitesimal generator of an eventually norm continuous semigroup T(t) and 1 be a pole of order k + 1 of T(w) with the spectral projection P. Then there exists a bounded subset J of \mathbb{Z} such that $P = \sum_{j \in J} P_j$ and $P_j P_k = \delta_{jk} P_j$, where P_j is the spectral projection of A at the pole $(2\pi i/w)j$, and δ_{jk} is the Kronecker symbol. Let A_j be the restriction of A to $P_j X$ and $B_j = A_j - (2\pi i/w)jI$. Then (1.1) has a w-periodic solution if and only if for each $j \in J$

$$B_j P_j x = \sum_{n=1}^{k-1} B_j^{n+1} G_j^{(n)}(0) - \frac{1}{w} \int_0^w \exp\left(-\frac{2\pi i}{w} jt\right) P_j f(t) dt,$$

where $G_{i}^{(n)}$ is the *n*-th primitive of

$$P_jg(t) = \exp\left(-\frac{2\pi i}{w}jt\right)P_jf(t) - \frac{1}{w}\int_0^w \exp\left(-\frac{2\pi i}{w}jt\right)P_jf(t)\,dt$$

such that $G_{j}^{(n)}(w) = G_{j}^{(n)}(0)$.

PROOF. On the subspace (I - P)X, (1.1) has a unique *w*-periodic solution since 1 is in the resolvent set of the restriction of T(w) to (I - P)X. The existence of a finite subset *J* of \mathbb{Z} such that $P = \sum_{j \in J} P_j$ and $P_j P_k = \delta_{jk} P_j$ is a direct consequence of Engel [2, Theorem II.4.18]. Further, it follows from Engel [2, Page 283] that on each PX_j , the point $(2\pi i/w)j$ is a pole of maximal order k + 1.

On each $P_i X$ observe that,

(2.3)
$$\frac{du_j(t)}{dt} = A_j u_j(t) + f_j(t), \quad t \ge 0,$$
$$u_j(0) = P_j x,$$

has a *w*-periodic solution if and only if

(2.4)
$$\frac{du_j(t)}{dt} = B_j u_j(t) + \exp\left(-\frac{2\pi i}{w}jt\right) f_j(t), \quad t \ge 0,$$
$$u_j(0) = P_j x,$$

has a *w*-periodic solution. This can be seen through the identities

$$P_{j}x = \exp(A_{j}w) P_{j}x + \int_{0}^{w} \exp(A_{j}(w-s)) f_{j}(s) ds$$

= $\exp(B_{j}w) P_{j}x + \int_{0}^{w} \exp(B_{j}(w-s)) \exp\left(-\frac{2\pi i}{w}js\right) f_{j}(s) ds.$

We can complete the proof by applying Proposition 2.2 to Equation (2.4).

When 1 is a simple pole of T(w), we have the following result.

COROLLARY 2.4. Let A be the infinitesimal generator of an eventually norm continuous semigroup T(t) and 1 be a simple pole of T(w). Then (1.1) has a w-periodic solution if and only if

$$\int_0^w \sum_{j \in J} \exp\left(-\frac{2\pi i}{w} js\right) P_j f(s) \, ds = 0,$$

where J is a finite subset of \mathbb{Z} and P_i is the spectral projection of A at $(2\pi i/w)j$.

When the range of f is restricted in $\mathcal{D}(A)$, the domain of A, we have a similar result to Corollary 2.4 for general C_0 -semigroups.

THEOREM 2.5. Let T(t) be a C_0 -semigroup generated by A and 1 be a simple pole of T(w). If $f(t) \in \mathcal{D}(A)$ for all $t \ge 0$ then (1.1) has a w-periodic solution in $\mathcal{D}(A)$ if and only if

$$\int_0^w \sum_{n=-\infty}^\infty \exp\left(-\frac{2\pi i}{w}ns\right) P_n f(s) ds = 0,$$

where P_n is the spectral projection of A at $(2\pi i/w)n$.

PROOF. Let *P* be the spectral projection of T(w) at 1. We can write $T(t) = T_1(t) \oplus T_2(t)$, where $T_1(t)$ and $T_2(t)$ are C_0 -semigroups generated by A_1 and A_2 , the restrictions of *A* to the invariant subspaces *PX* and (I - P)X, respectively. On (I - P)X, 1 is in $\rho(T_2(w))$, thus (1.1) has a unique *w*-periodic solution. On *PX*, since 1 is a simple pole of $T_1(w)$, the spectrum of A_1 consists of at most simple poles at $(2\pi i/w)n, n \in \mathbb{Z}$ (see Engel [2, Page 283]). By Engel [2, Theorem IV.2.26], $T_1(t)$ is a *w*-periodic C_0 -semigroup, that is $T_1(0) = T_1(w)$, and for $f(t) \in \mathcal{D}(A)$, $t \ge 0$, the mild solution of (1.1) on *PX* is

$$u_{1}(t) = T_{1}(t)Px + \int_{0}^{t} T_{1}(t-s)Pf(s) ds$$

= $T_{1}(t)Px + \int_{0}^{t} \sum_{n=-\infty}^{\infty} \exp\left(\frac{2\pi i}{w}n(t-s)\right) P_{n}f(s) ds.$

Since $T_1(0) = T_1(w)$, $u_1(0) = u_1(w)$ if and only if

$$\int_0^w \sum_{n=-\infty}^\infty \exp\left(-\frac{2\pi i}{w}ns\right) P_n f(s) \, ds = 0.$$

Acknowledgements

The author would like to thank Professor Ivan Straškraba for drawing his attention to the subject of this paper.

References

- D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, volume 279 of Pitman Research Notes in Mathematics Series (Longman Scientific & Technical, Harlow, 1992).
- [2] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, volume 194 of Graduate Texts in Mathematics (Springer-Verlag, New York, 2000).
- [3] T. Kato, *Perturbation Theory for Linear Operators*, Die Grundlehren der Mathematischen Wissenschaften, Band 132 (Springer-Verlag, New York, 1966).
- [4] J. Prüss, 'On the spectrum of C₀-semigroups', Trans. Amer. Math. Soc. 284 (1984), 847–857.
- [5] I. Straškraba and O. Vejvoda, 'Periodic solutions to abstract differential equations', *Czechoslovak Math. J.* 23(98) (1973), 635–669.
- [6] A. E. Taylor and D. C. Lay, *Introduction to Functional Analysis*, 2nd edition (John Wiley & Sons, New York-Chichester-Brisbane, 1980).

Foundation Program Qatar University P. O. Box 2713 Doha Qatar e-mail: tran@qu.edu.ga