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Abstract

In this paper we establish the definition of the generalized inverse A.2/T;S which is a {2} inverse of a
matrix A with prescribed image T and kernel S over an associative ring, and give necessary and sufficient
conditions for the existence of the generalized inverse A.1;2/T;S and some explicit expressions for A.1;2/T;S of
a matrix A over an associative ring, which reduce to the group inverse or {1} inverses. In addition, we
show that for an arbitrary matrix A over an associative ring, the Drazin inverse Ad , the group inverse Ag

and the Moore-Penrose inverse A†, if they exist, are all the generalized inverse A.2/T;S .

2000 Mathematics subject classification: primary 15A33, 15A09.

1. Introduction

It is a well known that, over the field of complex numbers, the Moore-Penrose inverse,
the Drazin inverse, the group inverse and so on, are all the generalized inverse A.2/

T ;S,
which is a {2} inverse of a matrix A with prescribed range T and null space S (see
[2, 10]). Y. Wei in [11] gave an explicit expression for the generalized inverse A.2/

T ;S

which reduces to the group inverse.
There are some results on generalized inverses of matrices, such as the Drazin

inverse, the group inverse and the Moore-Penrose inverse, over an associative ring
(see, for example, [3]–[8]). These results include necessary and sufficient conditions
for the existence of these generalized inverses. In [8], Corollary 1 implies that over an
associative ring, a von Neumann regular matrix A has a group inverse if and only if
A2 A.1/+ I − AA.1/ is invertible, if and only if A.1/A2+ I − A.1/A is invertible. Recently,
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similar results about the Moore-Penrose inverse and the Drazin inverse appeared in
[6, 7]. This is a motivation for our research.

Throughout this paper, R denotes an associative ring with identity 1 and Rm×n

denotes the set of m × n matrices over R. In particular, we write Rm for Rm×1 and
Mn.R/ for Rn×n, the ring of square n × n matrices over R. By a module we mean a
right R-module. If S is an R-submodule of an R-module M then we write S ⊂ M .

Let A ∈ Rm×n. We denote the image of A (that is {Ax |x ∈ Rn}) by R.A/ and the
kernel of A (that is {x ∈ Rn|Ax = 0}) by N .A/.

An m × n matrix A over R is said to be von Neumann regular if there exists an
n × m matrix X over R such that

(1) AX A = A.

In this case X is called a {1} inverse of A and is denoted by A.1/.
An n × n matrix A over R is said to be Drazin invertible if for some positive

integer k there exists a matrix X over R such that

(2) Ak X A = Ak ,

(3) X AX = X ,

(4) AX = X A.

If X exists then it is unique and is called the Drazin inverse of A and denoted by Ad .
If k is the smallest positive integer such that X and A satisfy (2), (3) and (4), then it is
called the Drazin index and denoted by k=Ind.A/. If k = 1 then Ad is denoted by Ag

and is called the group inverse of A.
Let ∗ be an involution on the matrices over R. Recall that an m × n matrix A

over R is said to be Moore-Penrose invertible (with respect to ∗) if there exists an
n × m matrix X such that (1) and (3) hold and

(6) .AX/∗ = AX ,

(7) .X A/∗ = X A.

If X exists then it is unique and is called the Moore-Penrose inverse of A and denoted
by A†. If a matrix X satisfies condition (3) then X is called a {2} inverse of A.

In Section 2 we shall establish the definition of the generalized inverse A.2/
T ;S , which

is a {2} inverse of a matrix A over an associative ring with prescribed image T and
kernel S, and show that for an arbitrary matrix A over an associative ring the Drazin
inverse Ad , the group inverse Ag and the Moore-Penrose inverse A†, if they exist,
are all the generalized inverse A.2/

T ;S . In Section 3, we give necessary and sufficient
conditions for the existence of the generalized inverse A.1;2/

T ;S . In Section 4 we study
some explicit expressions for A.1;2/

T ;S of a matrix A over an associative ring, which
reduce to the group inverse or {1} inverses, and some equivalent conditions for the
existence of A.1;2/

T ;S .
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2. The generalized inverse A(2)

T,S

Suppose that L ;M ⊂ Rn and L ⊕ M = Rn. Then every x ∈ Rn can be uniquely
written as x = x1 + x2, where x1 ∈ L , x2 ∈ M . Thus

PL ;M x = x1

defines a homomorphism PL ;M : Rn → Rn called the projection of Rn on L along M .
This homomorphism can be represented by a matrix with respect to the standard basis
of Rn, since the module Rn is free. The symbol PL ;M is used to denote the matrix as
well.

About PL ;M , we have the following results, whose proof is analogous to that over
the field of complex numbers.

LEMMA 2.1. If L ;M ⊂ Rn and L ⊕ M = Rn then

(i) PL ;M A = A if and only if R.A/ ⊂ L,
(ii) APL ;M = A if and only if N .A/ ⊃ M.

We now characterize the {2} inverse of a matrix A over R with prescribed im-
age T and kernel S. The proof of the following theorem is analogous to that of [13,
Theorem 1].

THEOREM 2.2. Let A be an m × n matrix over an associative ring R with identity
and T ⊂ Rn and S ⊂ Rm. Then the following conditions are equivalent.

(i) There exists some X ∈ Rn×m such that

X AX = X; R.X/ = T; N .X/ = S:(2.1)

(ii) AT ⊕ S = Rm and N .A/ ∩ T = {0}.
If these conditions are satisfied then X is unique.

PROOF. (i)⇒(ii) Since X AX = X , AX is an idempotent homomorphism from Rm

to Rm . So, by [1, Lemma 5.6],

R.AX/⊕ N .AX/ = Rm:

It is easy to see that R.AX/ = AR.X/ = AT and N .AX/ = N .X/ = S. Hence

AT ⊕ S = Rm:

Next we will show that N .A/∩ T = {0}. Let x ∈ N .A/∩ T . Then Ax = 0 and there
exists a y ∈ Rm such that x = Xy. So x = Xy = X AXy = X Ax = 0. Therefore we
have N .A/ ∩ T = {0}.
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(ii)⇒(i) Obviously A|T is an epimorphism from T to AT . Since N .A|T / =
N .A/∩T = 0, A|T is a monomorphism and so A|T has an inverse .A|T /

−1 : AT → T .
From AT ⊕S = Rm , we know that any y ∈ Rm , can be uniquely written as y = y1+y2,
where y1 ∈ AT , y2 ∈ S. So we define X : Rm → Rn by Xy = .A|T /

−1y1.
Obviously X is a homomorphism and satisfies{

Xy = .A|T /
−1y; if y ∈ AT ;

Xy = 0; if y ∈ S:
(2.2)

Because Rm and Rn are both free modules, there exists a matrix of the homomor-
phism X with respect to the standard bases of Rm and Rn, and we write X for the
matrix as well. It is easy to see that R.X/ = T and N .X/ = S by AT ⊕ S = Rm .

For every y ∈ Rm = AT ⊕ S we have y = y1 + y2 where y1 ∈ AT , y2 ∈ S. Then

X AXy = X AXy1 = X A.A|T /
−1y1 = Xy1 = Xy:

This implies that X AX = X .
Now we prove the uniqueness. Suppose that X1 and X2 both satisfy (2.1). Then

X1 A and AX2 are idempotent matrices of order m and n respectively, and

X1 A = PR.X1 A/;N .X1 A/ = PR.X1/;N .X1 A/ = PT ;N .X1 A/;

AX2 = PR.AX2/;N .AX2/ = PR.AX2/;N .X2/ = PR.AX2/;S:

By Lemma 2.1, we deduce that
X2 = PT ;N .X1 A/X2 = .X1 A/X2 = X1.AX2/ = X1 PR.AX2/;S = X1

A matrix X ∈ Rn×m is called the generalized inverse which is a {2} inverse of a
matrix A over R with prescribed image T and kernel S if it satisfies the equivalent
conditions in Theorem 2.2, and is denoted by A.2/

T ;S .
By (2.2), we have that

A.2/
T ;S = .A|T /

−1 PAT ;S:(2.3)

From the proof of uniqueness in the theorem above and Lemma 2.1, we have the
following corollary.

COROLLARY 2.3. Let A and G be matrices over an associative ring R. If the
generalized inverse A.2/

T ;S exists, then

(i) A.2/
T ;S AG = G if and only if R.G/ ⊂ T ;

(ii) G AA.2/
T ;S = G if and only if N .G/ ⊃ S.

About the generalized inverse, we also have the following property.
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THEOREM 2.4. Let A be a matrix over R. If A.2/
T ;S exists and there exists a matrix G

over R satisfying R.G/ = T and N .G/ = S then there exists a matrix W over R such
that

G AGW = G;(2.4)

A.2/
T ;S AGW = A.2/

T ;S:(2.5)

PROOF. Suppose A.2/
T ;S exists with R.G/ = T and N .G/ = S for a matrix G. Then

AR.G/⊕ N .G/ = Rm and so there exists an epimorphism Rm → N .G/ → 0. By
[1, Theorem 8.1], N .G/ has a finite spanning set whose elements constitute a matrix,
denoted by L . Thus GL = 0, and the columns of .AG; L/ generate Rm , that is, there
exists a matrix .W T ;W T

1 /
T such that

AGW + LW1 = Im:

If we multiply the left hand side by G and A.2/
T ;S respectively, then we obtain (2.4) and

(2.5).

The following theorem shows that for an arbitrary matrix A over an associative
ring, A†, Ad and Ag , if they exist, are all the generalized inverse A.2/

T ;S.

THEOREM 2.5. (i) Let A be an m × n matrix over R and let ∗ be an involution
on the matrices over R. If A† exists, then A† = A.2/

R.A∗/;N .A∗/.
(ii) Let A be an n × n matrix over R, and k =Ind.A/. If Ad exists, then

Ad = A.2/
R.Ak/;N .Ak/

.

(iii) Let A be an n × n matrix over R. If Ag exists, then Ag = A.2/
R.A/;N .A/.

PROOF. (i) Since A† ∈ A{1; 2} and A†∗ ∈ A∗{1; 2}, we easily see that

R.A†/ = R.A† A/ = R..A† A/∗/ = R.A∗ A†∗/ = R.A∗/;

N .A†/ = N .AA†/ = N ..AA†/∗/ = N .A†∗ A∗/ = N .A∗/;

and N .A/ = N .A† A/.
Since AA† and A† A are idempotent, we have

Rm = R.AA†/⊕ N .AA†/ = AR.A†/⊕ N .AA†/ = AR.A∗/⊕ N .A∗/

and

N .A/ ∩ R.A∗/ = N .A† A/ ∩ R.A† A/ = {0}

by [1, Lemma 5.6]. So, by Theorem 2.2, A.2/
R.A∗/;N .A∗/ exists and A† = A.2/

R.A∗/;N .A∗/.
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(ii) Firstly, we shall show that

R.Ad/ = R.AAd/ = R.Al/ and N .Ad/ = N .AAd/ = N .Al/

for any positive integer l ≥ k. Since

R.Ad/ = R.AA2
d/ ⊂ R.AAd/ = R.Ad A/ ⊂ R.Ad/;

we have R.Ad/ = R.AAd/ and so

R.AAd/ = AR.Ad/ = AR.AAd/ = A2 R.Ad/:

It is easy to obtain inductively that R.AAd/ = Ah R.Ad/ for any positive integer h.
This gives us that R.Ad/ = R.AAd/ = R.Al/ for any positive integer l ≥ k. Also,
since for any positive integer l ≥ k,

N .Ad/ ⊂ N .Al+1 Ad/ = N .Al/ ⊂ N .Al
d Al/ = N .Ad A/ ⊂ N .A2

d A/ = N .Ad/;

we get that N .Ad/ = N .AAd/ = N .Al/.
Since AAd is idempotent, by [1, Lemma 5.6], we have

Rn = R.AAd/⊕ N .AAd/ = AR.Ak/⊕ N .Ak/ = Rn:

Since

N .A/ ∩ R.Ak/ ⊂ N .Ak/ ∩ R.Ak+1/ = {0};
A.2/

R.Ak/;N .Ak/
exists and AR.Ak/;N .Ak/ = Ad by Theorem 2.2.

(iii) Take k = 1 in (ii).

3. The generalized inverse A(1,2)

T,S

If the generalized inverse A.2/
T ;S satisfies AA.2/

T ;S A = A then it is called the generalized
inverse which is a {1,2} inverse of a matrix A over R with prescribed image T and
kernel S, and is denoted by A.1;2/

T ;S . (Its uniqueness is guaranteed by the following
theorem.)

THEOREM 3.1. Let A be an m × n matrix over an associative ring R with identity
and T ⊂ Rn and S ⊂ Rm. Then the following conditions are equivalent.

(i) AT ⊕ S = Rm, R.A/ ∩ S = {0} and N .A/ ∩ T = {0}.
(ii) R.A/⊕ S = Rm, N .A/⊕ T = Rn.

(iii) There exists some X ∈ Rn×m such that

AX A = A; X AX = X; R.X/ = T; N .X/ = S:

If these conditions are satisfied then X is unique.
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PROOF. (ii) �⇒ (i) It is obvious that R.A/ ∩ S = {0} and N .A/ ∩ T = {0}. To
obtain AT ⊕ S = Rm, it suffices to prove AT = R.A/.

Obviously, AT ⊂ R.A/. For any x ∈ R.A/, we have x = Ay, where y ∈ Rn.
Since N .A/⊕ T = Rn, we can write y = y1 + y2, where y1 ∈ N .A/, y2 ∈ T . Thus,

x = Ay = Ay1 + Ay2 = Ay2 ∈ AT;

and therefore R.A/ ⊂ AT . Consequently, AT = R.A/.
(i) �⇒ (iii) By Theorem 2.2, from AT ⊕ S = Rm and N .A/ ∩ T = {0}, we know

that X = A.2/
T ;S exists and that R.X/ = T and N .X/ = S. We shall show AX A = A.

Since X AX = X , we have X AX A = X A and then X .AX A − A/ = 0. So

R.AX A − A/ ⊂ R.A/ ∩ N .X/ = R.A/ ∩ S = {0}:
Hence AX A = A.

(iii) �⇒(ii) From (iii), we have .AX/2 = AX , .X A/2 = X A, and

N .X/ ⊂ N .AX/ ⊂ N .X AX/ = N .X/;

N .X A/ ⊂ N .AX A/ = N .A/ ⊂ N .X A/;

R.X A/ ⊂ R.X/ = R.X AX/ ⊂ R.X A/;

R.AX/ ⊂ R.A/ = R.AX A/ ⊂ R.AX/:

So
N .AX/ = N .X/ = S; N .X A/ = N .A/;

R.X A/ = R.X/ = T; R.AX/ = R.A/:

By [1, Lemma 5.6] and the four equations above, we reach (ii).
By Theorem 2.2, X is unique.

The next result is concerning the equivalent conditions in Theorem 3.1.

THEOREM 3.2. Let A be an m × n matrix over an associative ring R with identity
and T ⊂ Rn and S ⊂ Rm.

(i) If N .A/+ T = Rn then AT = R.A/.
(ii) If AT ⊕ S = Rm then

AT = R.A/ if and only if R.A/ ∩ S = {0}:

PROOF. (i) From the proof of the theorem above (ii) implies (i).
(ii) Suppose that R.A/∩ S = {0}. Obviously, AT ⊂ R.A/. Now we will show the

inclusion in reverse. For any x ∈ R.A/,

x = x1 + x2 ∈ Rm = AT ⊕ S;
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where x1 ∈ AT , x2 ∈ S. By AT ⊂ R.A/, x1 ∈ R.A/. So

x2 = x − x1 ∈ R.A/ ∩ S = {0}:
Therefore, x2 = 0 and then x = x1 ∈ AT . Hence R.A/ ⊂ AT .

Conversely, suppose that AT = R.A/. Since AT ⊕ S = Rm and AT = R.A/, we
have R.A/ ∩ S = AT ∩ S = {0}.

We denote the maximal order of a nonvanishing minor of A over a commutative
ring R by ².A/. This is called the determinantal rank of A. Obviously ².AB/ ≤
min{².A/; ².B/} (see [9, Theorem 2.3]). When R is the complex number field,
².A/ = rank.A/.

THEOREM 3.3. Let A be an m × n matrix over an integral domain R and T ⊂ Rn

and S ⊂ Rm be free submodules. If AT ⊕ S = Rm then the following conditions are
equivalent.

(i) N .A/ ∩ T = {0} and R.A/ ∩ S = {0},
(ii) dim.T / = ².A/ and dim.S/ = m − dim.T /.

PROOF. Suppose that (i) holds and let the columns of U be a basis of T . From
the proof of [13, Theorem 2], we have dim.T / = dim.AT / = ².AU / ≤ ².A/
and dim.S/ = m − dim.T /. By Theorem 3.2, AT = R.A/. Thus there exists a
matrix X over R such that A = AU X . Thus ².A/ ≤ ².AU / = dim.AT /. Therefore
².A/ = dim AT = dim.T /.

Conversely, suppose that (ii) holds. We have that dim.T / = dim.AT / from the
proof of [13, Theorem 2]. Thus ².A/ = dim.T / = dim.AT /. By [12, Lemma 1],
the maximal number of linearly independent columns of A is dim.AT /. Since
AT ⊂ R.A/, R.A/ + S = Rm . Over the quotient field F of R, AT = R.A/
because ².A/ = dim.AT /, and R.A/ ⊕ S = Rm . Therefore x and y are linear
independent over F for any x ∈ R.A/, y ∈ S.

On the other hand, over an integral domain R, suppose that 0 �= z ∈ R.A/ ∩ S.
Then there exist ri ∈ R, i = 1; : : : ; s, such that

z =
s∑

i=1

þiri ;(3.1)

where {þ1; þ2; : : : ; þs} is a basis of S and s = dim.S/. But Equation (3.1) is true
over F . This is in contradiction to the above reasoning. Hence R.A/ ∩ S = {0}.

The remainder of the proof is obtained from [13, Theorem 2].

REMARK 1. A module over the field of complex numbers is a vector space. So
when R is the field of complex numbers, the above theorem ensures that Theorem 3.1
extends [2, Corollary 2.10].
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4. Explicit expressions for A(1,2)

T,S

We now consider some explicit expressions for A.1;2/
T ;S , which reduce to the group

inverse or {1} inverses. Firstly we shall prove the following lemma. In the proof, we
use the following fact.

PROPOSITION 4.1. If e is idempotent in a ring R with identity 1 and x; y ∈ eRe
then xy = e if and only if .x + 1 − e/.y + 1 − e/ = 1.

LEMMA 4.2. Let A be an m × n von Neumann regular matrix over R and G an
n × m matrix over R. Then U = AG AA.1/ + Im − AA.1/ is invertible if and only if
V = A.1/AG A + In − A.1/A is invertible.

PROOF. If U is invertible then there exists an X such that U X = XU = Im . That
is,

(
AG AA.1/ + Im − AA.1/

)
X = Im and X

(
AG AA.1/ + Im − AA.1/

) = Im:

Multiplying on the left by A.1/AA.1/ and the right by A and, since A = AA.1/A, we

have(
A.1/AG A

) (
A.1/AA.1/X A

) = A.1/A and
(
A.1/AA.1/X A

) (
A.1/AG A

) = A.1/A:

Since A.1/AG A = A.1/A.G A/A.1/A and A.1/AA.1/X A = A.1/A.A.1/X A/A.1/A, we
know that A.1/AG A has the inverse matrix A.1/AA.1/X A in A.1/AMn.R/A.1/A. Thus
V = A.1/AG A + In − A.1/A has the inverse matrix

A.1/A
(

A.1/AA.1/X A
)

A.1/A + In − A.1/A in Mn.R/:

The proof of the converse is analogous.

Next we shall show the main result of this section. The following theorem not only
shows some explicit expressions for A.1;2/

T ;S which reduce to the group inverse or {1}
inverses, but also gives some equivalent conditions for the existence of A.1;2/

T ;S .

THEOREM 4.3. Let A be an m × n matrix over R and G an n × m matrix over R.
Then the following conditions are equivalent.

(i) A is von Neumann regular, U = AG AA.1/ + Im − AA.1/ is invertible and
N .A/ ∩ R.G/ = {0}.

(ii) A is von Neumann regular, V = A.1/AG A + In − A.1/A is invertible and
N .A/ ∩ R.G/ = {0}.

(iii) A.1;2/
R.G/;N .G/ exists.
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When these conditions are satisfied we have

A.1;2/
R.G/;N .G/ = G.AG/g = .G A/gG(4.1)

= G.G AG/.1/G(4.2)

= G.AG/.1/A.G A/.1/G(4.3)

= GU−2 AG = GU−1 AV −1G = G AV −2G:(4.4)

PROOF. (i) and (ii) are equivalent by Lemma 4.2.
To show that (ii) implies (iii), set B = AV −2G. Using U A = AG A = AV , we

have B = .AG/g because

B.AG/ = AV −2G AG = U−2 AG AG = U−1 AG = AV −1G = AG AV −2G

= .AG/B;

B.AG/B = U −1 AG.AV −2G/ = AV −2G = B;

.AG/B.AG/ = .AG/AV −1G = AG:

Analogously, we deduce that .G A/g exists and .G A/g = GU−2 A. Let X = G.AG/g.
It is obvious that

X AX = X:(4.5)

Since

AG = .AG/2.AG/g = AG AX;

we have A.G − G AX/ = 0 and then

R.G − G AX/ = R.G.I − AX// ⊂ N .A/ ∩ R.G/ = {0}:
Therefore

G = G AX(4.6)

= G A.G.AG/g/ = G.AG/g AG

= X AG:(4.7)

Using (4.6) and (4.7), we have

R.X/ = R.G/ and N .X/ = N .G/:(4.8)

Since AV = AG A, we get

A = AG AV −1 = AG.AG/g AG AV −1 = AX A:

Using the equation above, together with (4.5) and (4.8), we deduce that A.1;2/
R.G/;N .G/

exists and A.1;2/
R.G/;N .G/ = X = G.AG/g by Theorem 3.1.
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To show that (iii) implies (i), we use Theorem 2.4 to obtain

.AG AA.1//.AGW 2 AA.1// = AG AGW 2 AA.1/ = AGW AA.1/

= AA.1;2/
R.G/;N .G/AGW AA.1/ = AA.1;2/

R.G/;N .G/AA.1/

= AA.1/:(4.9)

Therefore,

(
AG AA.1/

) (
AGW 2 AA.1/

) (
AG AA.1/

) = AA.1/
(
AG AA.1/

) = AG AA.1/

and then

AG

( (
AGW 2 AA.1/

) (
AG AA.1/

) − AA.1/

)
= 0:

By Theorem 3.1, R.A/ ∩ N .G/ = {0} and N .A/ ∩ R.G/ = {0} and so

R

(
G

( (
AGW 2 AA.1/

) (
AG AA.1/

) − AA.1/

))
⊂ R.G/ ∩ N .A/ = {0}:

Thus

G

( (
AGW 2 AA.1/

) (
AG AA.1/

) − AA.1/

)
= 0:

From this, we have

R

((
AGW 2 AA.1/

) (
AG AA.1/

) − AA.1/

)
⊂ R.A/ ∩ N .G/ = {0};

and then (
AGW 2 AA.1/

) (
AG AA.1/

) = AA.1/:(4.10)

By (4.9) and (4.10), AG AA.1/ is invertible in AA.1/Mm.R/AA.1/ and so is U in Mm.R/.
Also, obviously, A is von Neumann regular.

Now we shall prove that (4.1) ∼ (4.3). Since

G.AG/g = G.AV −2G/ = GU −1 AV −1G = .GU −2 A/G = .G A/gG;

we have A.1;2/
R.G/;N .G/ = .G A/gG and (4.4).

Next we will prove (4.2). Since

G AG = G AG
(
.AG/g

)2
AG AG;

G AG is von Neumann regular and then

AG = U−1U AG = U−1 AG AG = .U−1 A/G AG.G AG/.1/G AG

= AG.G AG/.1/G AG:
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Therefore

A
(
G − G.G AG/.1/G AG

) = 0:

Thus

R
(
G − G.G AG/.1/G AG

) ⊂ N .A/ ∩ R.G/ = {0}:
So we obtain

G = G.G AG/.1/G AG(4.11)

Since A.1;2/
R.G/;N .G/ exists, using (2.4) and (4.11), it follows that

G = G AGW = G AG.G AG/.1/G AGW

= G AG.G AG/.1/G:(4.12)

Let Z = G.G AG/.1/G. Using (4.11) and (4.12), it easily follows that Z AZ = Z ,
AZ A = A, R.Z/ = R.G/ and N .Z/ = N .G/. By Theorem 3.1 we have that
A.1;2/

R.G/;N .G/ = Z = G.G AG/.1/G.
Finally, we will verify (4.3). It is obvious that AG and G A are von Neumann

regular. By Proposition 4.1 and the invertibility of V there exists a matrix P ∈
A.1/AMn.R/A.1/A such that P.A.1/AG A/ = A.1/A. Thus

A = A
(
P A.1/AG A

) = AP A.1/A
(
G A.G A/.1/G A

) = A.G A/.1/G A:(4.13)

Using (4.13), we deduce that .AG/.1/A.G A/.1/ is a {1} inverse of G AG. Therefore,
using (4.2), we obtain (4.3).

REMARK 2. By (4.4), we can compute A.1;2/
R.G/;N .G/ using U or V .

REMARK 3. If G = A where A is such that V = A.1/A2 + In − A.1/A is invertible,
then N .A/ ∩ R.A/ = {0}. Indeed, let x ∈ N .A/ ∩ R.A/. Then there exists a y ∈ Rn

such that x = Ay and so A2 y = 0. Since V is invertible, there exists a matrix P such
that PV = In. Thus P A.1/A3 = A.1/A and then

0 = P A.1/A3 y = A.1/Ay:

Hence Ay = AA.1/Ay = 0. Consequently, x = Ay = 0.
Similarly, if we take G = A∗, where ∗ is an involution on the matrices over R such

that U = AA∗ AA.1/ + Im − AA.1/ is invertible, then N .A/∩ R.A∗/ = {0}. Indeed, let
x ∈ N .A/∩ R.A∗/. Then there exists a y ∈ Rm such that x = A∗ y and so AA∗ y = 0.
Since U is invertible, there exists a matrix Q such that AA∗ AA.1/Q = AA.1/ and thus

0 = Q∗.A.1//∗ A∗ AA∗y = .A.1//∗ A∗y:

So x = A∗ y = A∗.A.1//∗ A∗y = 0.
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When G takes the value A (respectively A∗) in the theorem above, we find that
A.1;2/

R.G/;N .G/ is Ag (respectively A†).

THEOREM 4.4. Let A be an m × n matrix over R. Then

(i) A.1;2/
R.A/;N .A/ exists if and only if Ag exists. Moreover, A.1;2/

R.A/;N .A/ = Ag.
(ii) If ∗ is an involution on the matrices over R then A.1;2/

R.A∗/;N .A∗/ exists if and only
if A† exists. Moreover, A.1;2/

R.A∗/;N .A∗/ = A†.

PROOF. To show the existence of A.1;2/
R.A/;N .A/ implies existence of Ag in (i), take G =

A in (4.1). Then A.1;2/
R.A/;N .A/ = A.A2/g = .A2/g A and then AA.1;2/

R.A/;N .A/ = A.1;2/
R.A/;N .A/A.

Hence A.1;2/
R.A∗/;N .A∗/ is the group inverse of A.

To show that existence of A.1;2/
R.A∗/;N .A∗/ implies existence of A† in (ii), take G = A∗

in (4.1). Then A.1;2/
R.A∗/;N .A∗/ = A∗.AA∗/g = .A∗ A/g A∗ and then

(
AA.1;2/

R.A∗/;N .A∗/

)∗ = AA.1;2/
R.A∗/;N .A∗/ and

(
A.1;2/

R.A∗/;N .A∗/A
)∗ = A.1;2/

R.A∗/;N .A∗/A:

Hence A.1;2/
R.A∗/;N .A∗/ is the Moore-Penrose inverse of A.

The converses follow from Theorem 2.5.

By Theorems 4.3 and 4.4 and Remark 3, we can obtain the following two corollaries,
in which the first is equivalent to [8, Corollary 2] and the second is almost the same
as [6, Theorem 1].

COROLLARY 4.5. Let A ∈ Rn×n. The following conditions are equivalent.

(i) A is von Neumann regular and U = A3 A.1/ + In − AA.1/ is invertible.
(ii) A is von Neumann regular and V = A.1/A3 + In − A.1/A is invertible.

(iii) Ag exists.

Moreover,

Ag = A.A2/g = .A2/g A(4.14)

= A.A3/.1/A(4.15)

= A.A2/.1/A.A2/.1/A:(4.16)

= AU−2 A2 = AU−1 AV −1 A = A2V −2 A:(4.17)

REMARK 4. The above corollary is unlike [8, Corollary 2], but they are equivalent.
This is because V is invertible if and only if T = A.1/A2 + In − A.1/A is invertible.
Indeed, if V is invertible, then there exists a matrix P ∈ Mn.R/ such that PV =
V P = In . From this and V = T 2, we get .PT /T = T .T P/ = In. Hence T is
invertible in Mn.R/. The converse is obvious from V = T 2.
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COROLLARY 4.6. Let A be an m × n matrix over R and let ∗ be an involution on
the matrices over R. The following conditions are equivalent.

(i) A is von Neumann regular and U = AA∗ AA.1/ + In − AA.1/ is invertible.
(ii) A is von Neumann regular and V = A.1/AA∗ A + In − A.1/A is invertible.

(iii) A† exists.

Moreover,

A† = A∗.AA∗/g = .A∗ A/g A∗ = A∗.A∗ AA∗/.1/A∗ = A∗.AA∗/.1/A.A∗ A/.1/A∗

= A∗U−2 AA∗ = A∗U−1 AV −1 A∗ = A∗ AV −2 A∗:
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