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Abstract

Several rather general sufficient conditions for the extrapolation of the calculus of generalized Dirac
operators from L2 to L p are established. As consequences, we obtain some embedding theorems,
quadratic estimates and Littlewood–Paley theorems in terms of this calculus in Lebesgue spaces. Some
further generalizations, utilised in Part II devoted to applications, which include the Kato square root
model, are discussed. We use resolvent approach and show the irrelevance of the semigroup one.
Auxiliary results include a high order counterpart of the Hilbert identity, the derivation of new forms
of ‘off-diagonal’ estimates, and the study of the structure of the model in Lebesgue spaces and its
interpolation properties. In particular, some coercivity conditions for forms in Banach spaces are used
as a substitution of the ellipticity ones. Attention is devoted to the relations between the properties of
perturbed and unperturbed generalized Dirac operators. We do not use any stability results.

2000 Mathematics subject classification: primary 46E15, 46E30, 47A60, 47A65; secondary 47A05,
47A55, 46B20, 46C99, 42C99.
Keywords and phrases: functional calculus, generalized embedding, Littlewood-Paley theorem, extrap-

olation of singular operators, generalized Dirac operator, Hilbert identity, off-diagonal estimates, Kato
square root model.

1. Introduction

The recent complete solution of the long standing square root problem of Kato for ellip-
tic operators and systems by Auscher, Hofmann, Lacey, McIntosh and Tchamitchian
in [7, 8, 20], was preceded by works of McIntosh [23] and Coifman, McIntosh,
Meyer [13], as well as a book due to Auscher and Tchamitchian [9] devoted to the
boundedness of the square roots of elliptic operators on L2.
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Later Auscher [5] together with Coulhon, Duong and Hofmann [6] extended this
result for elliptic operators to a range of Lebesgue spaces employing ideas originating
from the recent results of Blunck and Kunstman [12] and Martell [22] with Hofmann
[19]. The former source was, in turn, improving results of Duong, McIntosh [16],
Duong, Robinson [17] and Hebisch [18]. Other generalizations of extrapolation
results [12], intersecting partly with [5], were also obtained in [2, 3] using a different
approach.

The above mentioned developments are known to be partly based and intimately
related to the theory of H∞-calculus developed by McIntosh [24], Albrecht, Duong,
McIntosh [4], and Cowling, Doust, McIntosh, Yagi [14] in the abstract settings of
Hilbert and Banach spaces correspondingly.

Contemporary development of the L2-theory is represented by the work [10] due to
Axelsson, Keith and McIntosh, where the model of generalized Dirac operator, which
is more general than one associated with the Kato Square root problem, was investi-
gated. They established the existence of H∞-functional calculus of a perturbed Dirac
operator on L2.Rn/ and related quadratic estimates, including a possible approach to
the solution of the Square root problem of Kato as a particular case.

The results of this paper are extensions and generalizations of [2, Chapter IV],
where the case of ‘lower’ extrapolation was considered in the case of an injective5B .

The majority of the article is, roughly speaking, related to [10] in a similar way as
[5, 6, 19] is related to the recent solution of the Kato problem. More precisely, we
find several groups of the conditions are sufficient to extrapolate the existence of H∞-
functional calculus in L2, of the generalized Dirac operator in the form considered
in [10], to its existence in L p and to establish quadratic estimates and Littlewood–
Paley theorems in terms of this calculus for a reasonably wide range of p contained
in .1;∞/. To extend the range of the possible applications considered in Part II, a
sufficiently high level of generality is maintained, and some approaches to further
extensions and generalizations are discussed in Section 6. Other results of Section 3
are generalized embedding theorems for generalized Dirac operators written in the
form of the boundedness of its powers from Besov and Lizorkin–Triebel spaces into
Lebesgue (Lorentz) ones.

For this purpose, we use the resolvent approach in the derivation of new generalized
off-diagonal estimates without any stability considerations. Some of these conditions
are given a weighted form permitting us to deal with subspaces of L p. The usual
off-diagonal conditions cannot be used due to their local nature. As collateral results,
our approach delivers the extensions of the Hilbert resolvent identity to the case of
differences of a high order (in Section 4).

To demonstrate the irrelevance of the traditionally more popular semigroup ap-
proach in our settings, in Section 6, we develop a one-dimensional model case sug-
gested by McIntosh.
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The transference of the model of the generalized Dirac operator, introduced in [10]
in the Hilbert space L2, to L p-spaces is achieved with the idea of the form coercivity
originating from [21]. This is a weaker hypothesis than the ellipticity assumption used
in [10] to establish L2-calculus. Despite the fact that our form coercivity condition
for an operator B : L p → L p is stronger than that considered in [25] (which is
equivalent to the boundedness of B−1), it is still weaker for p = 2 than the restriction
|. f; B f /| ≥ C‖ f |L2‖2.

2. Definitions and designations

In this section, we define two types of off-diagonal families of functions with
respect to some operators and the main assumptions on the operators employed, such
as properties: General G.p/, Coercivity C, Idempotence I, Projectivity P.q/, Weak
Projectivity WP, Local Closure LC, Bounded Coercivity BC.p/, and some of their
adjoint properties. Some of them are trivially valid for particular applications, but
required to maintain the level of generality.

The next designations are used extensively:

R.z/ := .1 − z/−1; � ±
¹ := {te±i¹}t>0; �¹ = � +

¹ ∪ � −
¹ ; � d

¹ = −�¹ ∪ �¹;
S¼ := {z ∈ C \ {0} : | arg z| < ¼} for ¼ ∈ [0; ³=2/; Sd

¼ := −S¼ ∪ S¼;

and S̄d
¼ is the closure of Sd

¼ without 0, S̄d
0 := R \ {0}. The symbol H∞.Sd

¼/ denotes
the space of all bounded and holomorphic functions on Sd

¼; and 4.Sd
¼/ is the subset

of the functions f ∈ H∞.Sd
¼/ such that f .z/ = O.|z|−Þ/ for |z| → ∞ and some

Þ > 0; By 9.Sd
¼/ we denote the subset of functions f ∈ H∞.Sd

¼/ such that | f .z/| ≤
C|z=.1 + z2/|Þ for any z ∈ Sd

¼ and some Þ > 0. Let Q.Sd
¼/ be the subset of functions

f ∈ H∞.Sd
¼/ such that

Q.Sd
¼/ :=

{
f ∈ H∞.Sd

¼/ : sup
z∈Sd

¼

∫ ∞

0

| f .zt/|dt=t < ∞
}
:

Let F.Sd
¼/ be the class of all holomorphic functions f on Sd

¼ satisfying, for some
Þ ∈ R, | f .z/| ≤ C.|z|Þ + |z|−Þ/. By means of H̄∞.Sd

¼ ∪ {0}/, we denote the subspace
of L∞.Sd

¼ ∪ {0}/ containing all everywhere-finite functions holomorphic on Sd
¼,

H̄ 0
∞.S

d
¼ ∪ {0}/ = {

f ∈ H̄∞.Sd
¼ ∪ {0}/ : f .0/ = 0

}
:

We shall use the term linear (sub)space if the corresponding (sub)space is not
required to be complete (closed). Because, along with L p, other Banach spaces
with a few parameters will be dealt with, we adopt some traditional notation from
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the theory of function spaces. For a Banach space A and some x ∈ A, let ‖x |A‖
denote the norm of x in A. For example, if B is a Banach space, and G and f is a
measurable subset of Rn and some Bochner-measurable function defined on it, then
‖ f |L p.G; B/‖ is the norm of the function f in the vector-valued Lebesgue space
L p.G; B/. When there is no ambiguity concerning G and B, sometimes we use the
designation ‖ f ‖p := ‖ f |L p.G; B/‖.

For p ∈ .0;∞/, let Mp f := .M| f |p/1=p, where M f is the Hardy–Littlewood
maximal function.

For N ∈ N, p; t > 0, and w; x ∈ Rn , let ²t;w.x/ := min.1; t=|x − w|/ and
L p;²N

t;w
be the weighted Lebesgue space of the measurable functions f with finite norm

‖ f²N
t;w.·/|L p.Rn/‖.

Let w1
p = w1

p.R
n;Rm/ be a seminormed (homogeneous) Sobolev space of func-

tions f with the finite ‖ f |w1
p‖ = ‖∇ f |L p.Rn;Cmn/‖. We say that a pair .p; q/ ∈ R2

+
is in the Sobolev relation �1 ⊂ R2

+ if W 1
p ⊂ Lq , where W 1

p is defined by

‖ f |W 1
p‖ = ‖ f |L p‖ + ‖ f |w1

p‖:

For p; q ∈ [1;∞], s > 0, the symbols bs
p;q and ls

p;q denote, correspondingly,
the seminormed (homogeneous) spaces of Besov and Lizorkin–Triebel type of the
functions f defined on Rn and possessing, respectively, the finite norms:

‖ f |bs
p;q‖ : =

(∫ ∞

0

(
t−s‖Žm.t; ·; f /|L p.R

n/‖)q dt

t

)1=q

and

‖ f |ls
p;q‖ : =

∥∥∥∥∥
(∫ ∞

0

(
t−sŽm.t; ·; f /

)q dt

t

)1=q
∣∣∣∣∣ L p.R

n/

∥∥∥∥∥ ;
where the integer m > s and

Žm.t; x; f / := 2−n

∫
Q0

|1m
th f .x/|dh for Q0 := [−1; 1]n:

DEFINITION 2.1. For a measurable function f , let ¦.t; f / = |{x : | f .x/| > t}| and
f ∗.t/ := inf{− : ¦.−; f / ≤ t} for some t > 0. Following [1], a measurable Cm-valued
function f on Rn is Chebyshev-regular if limt→∞.‖ f |Cm‖/∗.t/ = 0. For an arbitrary
function space Y = Y .Rn;Cm/, we designate its subspace of all Chebyshev-regular
functions endowed with the inherited (semi)norm by Ẏ = Ẏ .Rn;Cm/.

Let X and Y be Banach spaces and A be an operator with E ∪ D.A/ ⊂ X
and R.A/ ⊂ Y . Then the symbol A|E denotes the restriction of A to E , that is
D.A|E/ = E ∩ D.A/ and A|E x = Ax for every x ∈ E ∩ D.A/. For subspaces M
and N of a Banach space X with M ∩ N = 0, M ⊕ N denotes its topological sum.
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For Banach spaces X and Y , let � .X; Y / be the space of all closed linear operators
with domains in X and ranges in Y ; � .X/ := � .X; X/. For operators A : D.A/ → Y
and B : D.B/ → Y , one writes A ⊂ B if D.A/ ⊂ D.B/ and A = B|D.A/. For a
Banach space X and a linear space E , the set X E := X ∩ E is a well defined linear
subspace of X , we denote the normed space X E with the norm ‖ · |X‖ by X ∩ E .

For any p; q ∈ .0;∞] and an operator A from L p into Lq , let Dp;q.A/, Np;q.A/ and
Rp;q.A/ be the domain, kernel and range of A respectively, and Dp.A/ := Dp;p.A/,
Np.A/ := Np;p.A/ and Rp.A/ := Rp;p.A/. We write Np;²N

t;w
.A/ and Np;²N

t;w
.A/ if

the corresponding Lebesgue space L p.Rn/ is substituted for its weighted counter-
part L p;²N

t;w
.Rn/.

For Banach spaces X and Y and their linear subspaces DX ⊂ X and DY ⊂ Y , a
semi-linear form b : DX × DY → C is understood to be bounded if

|b.x; y/| ≤ C‖x|X‖ · ‖y|Y‖
for any .x; y/ ∈ DX × DY . The form b is also understood to be coercive if there is a
mapping � = �b : DY → DX satisfying

‖�.y/|X‖ ≤ C‖y|Y‖ and ‖y|Y‖2 ≤ C|b.�.y/; y/| for all y ∈ DY :

Let b∗.y; x/ := b.x; y/ be the corresponding adjoint form.
Dealing with functions of a closed operator A, we assume or describe the presence

of a mapping � := �A : f �→ f .A/ from a set of functions D.� / into � .X; Y /,
where X and Y are Banach spaces. The mapping� satisfies the conditions:

(1) � .0/ = 0 if 0 ∈ D.� /;
(2) � .1/ = I if 1 ∈ D.� /;
(3) � .z/ = A if z ∈ D.� /;
(4) � .Þ f + þg/ = Þ� . f /+ þ� .g/ if Þ; þ ∈ C and f; g; Þ f + þg ∈ D.� /;
(5) � . f g/ = � . f /� .g/ if f; g; f g ∈ D.� /.

REMARK 1. (a) In most cases, D.� / is a subset of a normed space X with
Ž0 : f �→ f .0/ being in X ∗ and R.� / ⊂ � .Y; Z/, where Y; Z are Banach spaces
and Y ⊂ Z (that is I ∈ � .Y; Z/). Therefore, to establish that the mapping� is well
defined on D.� /, we consider its action on the set D0.� / = D.� / ∩ N .Ž0/ only.
Indeed, one has

� f = � . f − Ž0. f //+ Ž0. f /�1:

Therefore,

�|D0.� / ∈ � .X ∩ D0.� /;� .Y; Z// ⇒ � ∈ � .X ∩ D.� /;� .Y; Z//;

because Ž0 ∈ X ∗ and�1 = I ∈ � .Y; Z/.
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(b) This approach appears to be especially useful in the settings where N .A/ is
complemented in Y , Y = N .A/ ⊕ Y1, and there is another mapping �1 with
R.�1/ ⊂ � .Y1; Z/. We intend to construct a functional calculus on Y . Namely, it co-
incides, in this case, with the degenerate spectral projector approach from [10], that is,
� : f .z/ �→ f .0/P0 + f .A|Y1/.I − P0/, where P0 is the bounded projector in X
with R.P0/ = N .A/ and N .P0/ = Y1 and �A|Y is defined as in the injective case
(N .A/ = {0}).

For ! ∈ [0; ³=2/ and Banach spaces X and Y , we assume that an operator
A ∈ � .X; Y / is of type ! if, for any z ∈ C \ S̄d

!, one has R.z A/ ∈ � .X; Y /
and

‖R.z A/|� .X; Y /‖ ≤ C.arg z/;

where the resolvent R.z A/ := .I − z A/−1. Note that (see Definition 2.10)

F.A; X; Y; Sd
!/ �⇒ A is of type !:

Let us define ‘off-diagonal’ by summability and ‘double off-diagonal’, or ‘off-
diagonal’ by space and summability, classes of families of functions.

DEFINITION 2.2. Let p; q ∈ [1;∞],� = �A, R ⊂ C, and X ⊂ L p is a linear sub-
space. We say that a function family { fz}z∈R ⊂ D.� / is in the class D̄.A; R; p; q; X/
for some ¼1 ∈ [0; ³=2/ and an operator A and write

{ fz}z∈R ∈ D̄.A; R; p; q; X/

if, for any � ∈ X , one has

‖ fz.A/�|Lq.R
n/‖ ≤ C|z|n=q−n=p‖�|L p.R

n/‖ for all z ∈ S¼1 ;

D̄.A; S¼1 ; p; q/ := D̄.A; S¼1 ; p; q; L p/:

We say that a function family { fz}z∈R ⊂ D.� / is in the class D̄.A; R; p; q; N ; X/
for some p; q ∈ [1;∞], N > 0, an operator A and a linear subspace X ⊂ L p and
write

{ fz}z∈R ∈ D̄.A; R; p; q; N ; X/

if for any � ∈ X , one has

‖ fz.A/�|Lq.Q |z|.w//‖ ≤ C|z|n=q−n=p‖�|L p;²N
|z|;w .R

n/‖

for all z ∈ S¼1 , w ∈ Rn and � ∈ X .
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Therefore, one has D̄.A; S¼1 ; p; q; X/ = D̄.A; S¼1 ; p; q; X; 0/.
We make the following geometric observations because they help avoid introducing

unnecessary restrictions.

REMARK 2. Consider

(a) { fz}z∈S¼1
∈ D̄.A; S¼1 ; p; q; N ; X/;

(b) for some N1 ∈ N and any w0; w1 ∈ Rn and � ∈ X with supp� ⊂ Q |z|.w0/, one
has

∥∥ fz.A/�
∣∣Lq .Qt.w1//

∥∥ ≤ C|z|n=q−n=p
(
²|z|;w0.w1/

)N1 ‖�|L p‖ for all z ∈ S¼1 ;

(c) for some N2 ∈ N and any w ∈ Rn and � ∈ X with supp� ⊂ Q |z|.w/, one has∥∥∥ fz.A/�
∣∣∣Lq;²

−N2
|z|;w
.Rn/

∥∥∥ ≤ C|z|n=q−n=p
∥∥� ∣∣L p.Q |z|.w//

∥∥ for all z ∈ S¼1 :

Using the notation of the previous definition, one has the implications:

(1) (a) implies (b) implies (c) for N ≥ N1 ≥ N2 + n;
(2) (a) if and only if (b) if and only if (c) for X = L p and N , N1, N2 chosen

appropriately for each particular implication.

DEFINITION 2.3. For p; q ∈ .0;∞], p ≤ q and a linear subspace X ⊂ Lq , let
A : Dq;p → L p be an injective operator. Then we say that S.A; p; q; X/, or the
Sobolev property, holds if

‖ f |Lq‖ ≤ C.A/‖A f |L p‖ for all f ∈ X ⊂ Dq;p.A/:

We designate 1k f .z/ := ∑k
l=0.−1/l

(k
l

)
f .lz/, k ∈ N for any (operator-valued)

function f .z/.
We shall often deal with operators 0; 0∗ ∈ � .L p/ where Dp.0/ and Dp.0

∗/ are
dense in L p for some p ∈ .1;∞/ and their combinations 5 = 5I = 0 + 0∗,
0B∗ := B∗

20B∗
1 , 0∗

B := B10
∗ B2, 5B := 0 + 0∗

B , and 5∗
B∗ := 0∗ + 0B∗ with operators

B1; B2 ∈ � .L p/ or B∗
1 ; B∗

2 ∈ � .L p/ imposing some of the following conditions and
assuming

Dp.0/ = Dp.0
2/ = Dp.0B∗

1 B∗
20/

and Dp.0
∗/ = Dp.0

∗2/ = Dp.0
∗ B2 B10

∗/;
for all p ∈ [1;∞/

and 02 ⊂ 0; 0∗2 ⊂ 0 and 0B∗
1 B∗

20 ⊂ 0; 0∗ B2 B10
∗ ⊂ 0:

When the inclusions of the previous line take place, we say that I, or the idempotence
condition, holds.
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DEFINITION 2.4. Let p ∈ .0;∞]. We say that G.p/, or the general condition holds
if

B1; B2 ∈ � .L p/; there exists bounded
(
B1|Rp.0∗/

)−1
;
(
B2|Rp.0/

)−1
; and

Dp.5B/ = Dp.0/ ∩ Dp.0
∗
B/ is dense in L p;

where the closures of Rp.0/ and Rp.0
∗/ in L p have inherited the L p-topology. We

say that G∗.p/, or the adjoint general condition, holds if

B∗
1 ; B∗

2 ∈ � .L p′/; there exists bounded
(

B∗
1 |Rp′ .0∗/

)−1

;
(

B∗
2 |Rp′ .0/

)−1

; and

Dp′.5∗
B∗/ = Dp′.0∗/ ∩ Dp′.0B∗/ is dense in L p′;

where the closures of Rp′.0/ and Rp′.0∗/ in L p′ have inherited the L p′-topology.
If G.p/ or G∗.p/ is true with the density requirement omitted, we say that the

restricted general condition holds.
We say that C, or the coercivity condition, holds if

‖5 f |L2 ‖ C ≥ ∥∥ f
∣∣w1

2

∥∥ for all f ∈ D2.5/ ∩ R2.5/ and

∩qs≤p≤q ′
s
Dp.5/ is dense in L p

for every p ∈ [qs; q ′
s] and .qs; 2/ ∈ �1.

REMARK 3. (a) One should point out that the proofs of the results in Sec-
tions 3 and 4 show that we can use the appropriate Sobolev property (of the form
S.5; 2; q; X/) instead of the Coercivity property (C).
(b) Under the conditions G.p/ and P.p/ (G∗.p/ and P∗.p/), the operators 0∗

B and
5B (0B∗ and 5∗

B∗) are closed if 0 and 0∗ are closed, or 0 is closed and D.p/ holds.
(c) The smoothness of the order 1 (w1

2 and�1) is taken for the sake of simplicity.

DEFINITION 2.5. For p ∈ [1;∞], i = 1; 2 and A1 = 0∗, A2 = 0, let the forms
bi : L p′ × L p → C be defined by bi . f; g/ := ∫

Rn f Bi g. Then we say that BC.p/, or
the bounded coercivity condition, holds if, for i = 1; 2:

bi is bounded on L p′ × L p and coercive on Rp′.Ai /× Rp.Ai/:

We also say that BC∗.p/, or the adjoint bounded coercivity condition, holds if, for
i = 1; 2:

b∗
i is bounded on L p × L p′ and coercive on Rp.Ai /× Rp′.Ai /:
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DEFINITION 2.6. We say that D.p/, or the duality condition, holds if∫
Rn

f 0g =
∫
Rn

g0∗ f and
∫
Rn

f Bi g =
∫
Rn

gB∗
i f ; i = 1; 2

for . f; g/ ∈ Dp′.0∗/× Dp.0/
⋃

Dp.0
∗/× Dp′.0/.

DEFINITION 2.7. We say that P.p/, or the projectivity condition, holds if

L p = Np.5B/⊕ Rp.5B/; Rp.5B/ = Rp.0/⊕ Rp.0
∗
B/:

We also say that P∗.p/, or the adjoint projectivity condition, holds if

L p′ = Np′.5∗
B∗/⊕ Rp′.5∗

B∗/; Rp′.5∗
B∗/ = Rp′.0∗/⊕ Rp′.0B∗/:

We designate the corresponding projections on Np.5B/, Rp.0/, Rp.0
∗
B/, Np′.5∗

B∗/,
Rp′.0∗/ and Rp′.0B∗/ by means of P0 = P0;p, P1 = P1;p, P2 = P2;p, P∗

0 = P∗
0;p,

P∗
1 = P∗

1;p and P∗
2 = P∗

2;p respectively.

COROLLARY 2.8. (a) If P.p/ holds, then 0A, A0∗
B ⊂ P1;p, 0∗

B A, A0 ⊂ P2;p

and 0A = A0∗
B on Dp.0

∗
B/ ∩ Rp.5B/ and 0∗

B A = A0 on Dp.0/ ∩ Rp.5B/, where

A := (
5B|Rp.5B /

)−1
;

(b) If P∗.p/ holds, then 0∗ A∗, A∗0B∗ ⊂ P∗
1;p′ , 0B∗ A∗, A∗0∗ ⊂ P∗

2;p′ and 0∗ A∗ =
A∗0B∗ on Dp′.0B∗/ ∩ Rp′.5∗

B∗/ and 0B∗ A∗ = A∗0∗ on Dp′.0∗/ ∩ Rp′.5∗
B∗/, where

A∗ :=
(
5∗

B∗|Rp′ .5∗
B∗ /

)−1

.

DEFINITION 2.9. We say that WP, or the weak projectivity condition, holds if5|Rp .0/

and 5|Rp.0∗/ are injective for every p ∈ [qs; q ′
s] and .qs; 2/ ∈ �1.

DEFINITION 2.10. For an open� ⊂ C and Banach spaces X and Y , the designation
F.A; X; Y; �/ means that an operator A ∈ � .X; Y / possesses the bounded H̄∞.�/-
functional calculus on L p, that is, the homomorphism� described above satisfies

D.� / = H̄∞.�/ and � ∈ � .H̄∞.�/;� .X; Y //:

To take advantage of homogeneity arguments, we use the stretching operators
¦t : f �→ f .·=t/, t > 0. For an operator A with ¦t.R.A// = R.A/ for every t > 0,
by means of At , we denote the composition ¦−1

t A¦t .

DEFINITION 2.11. Given a condition Z, we say that H[Z], or the homogeneity
property with respect to Z, holds if the condition Z is satisfied uniformly in t > 0
by the operators 0t ; 0

∗
t ; B1t; B2t substituting the operators 0; 0∗;5B;5

∗
B∗; B1; B2

correspondingly, and

R.At/ = R.A/ for all t > 0 and A ∈ {0; 0∗;5B;5
∗
B∗; B1; B2}:
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DEFINITION 2.12. We say that LC, or the local closure condition, holds if:

L p-closure of L p ∩ R2.5/ .closure in L2/-contains Rp.5/

for any p ∈ [ps; 2/; .ps; 2/ ∈ �1.

DEFINITION 2.13. Let p ∈ [1;∞]. We say that K.p/, or the K -condition, holds if
the closure of Dp.0/ ∩ D2.0/ L p + L2 contains Rp.5B/ ∩ R2.5B/, and

P0;p|N2.5B / = P0;2|Np.5B /:

We also say that K∗.p/, or the adjoint K -condition, holds if the closure of Dp′.0∗/ ∩
R2.0

∗/ L p′ + L2 contains Rp′.5B/ ∩ R2.5B/, and

P0;p′ |N2.5
∗
B∗ / = P0;2|Np′ .5∗

B∗ /:

DEFINITION 2.14. An operator A possesses differential homogeneity of order s ∈ R
and we write A ∈ DH.s/ if ts¦−1

t A¦t ⊂ A for all t > 0.

For the sake of simplicity, we shall always assume that the operators 0 and 0∗

possess differential homogeneity of order 1.
We now introduce the following purely technical definition. Unfortunately, the

corresponding restrictions are sufficiently strong.

DEFINITION 2.15. For p ∈ [1;∞], we say that a subset X ⊂ L p is a Calderón–
Zygmund subset for L p, and we write X ∈ C Z.p/ if an arbitrary f ∈ X admits a
Calderón–Zygmund decomposition in terms of elements of X at every level ½ > 0,
that is, for some constants C1;C2;C3 > 0 and every f ∈ X and ½ > 0, there
is a representation f = f∞ + ∑

i∈N fi satisfying, for every i ∈ N, supp fi ⊂ Qi

and ‖ fi |L p.Qi/‖ ≤ ½C1|Qi |1=p, where {Qi}i∈N is a system of cubes with the finite
intersection property and

∑
i |Qi | ≤ C2‖ f |L p‖p=½, and ‖ f∞|L∞‖ ≤ C3½.

In addition to the classical example L p ∈ C Z.p/, there are some other simple
sufficient conditions.

REMARK 4. (a) If X is a subspace of L p with inherited norm, and the projection
M�Q : f �→ �Q f is bounded in X for any cube Q ⊂ Rn , then X ∈ C Z.p/ (see [2]).
(b) The assertion of (a) remains true if the pointwise multiplier M is bounded in X

for any  ∈ C∞
0 instead of  ∈ {�Q}Q⊂Rn . It can be proved as in (a).

(c) If X is complemented in L p under the conditions of (a), then the image M�Q X is
complemented in L p uniformly by Q ⊂ Rn. This observation provides an alternative
proof of Lemma 4.8 with the aid of Lemma 4.9 and Remark 2 (1).



[11] Extrapolation of functional calculus, embedding theorems and Littlewood–Paley inequalities 307

3. Main results

Here we present the main results of the article in an abstract, but not the most
general form. For the convenience of the reader a discussion of two further ways of
generalizations is postponed until the beginning of Section 7.

3.1. Functional calculus Here we state the results regarding the relationships
between the existence of the functional calculus and the other basic properties defined
in Section 2.

Some variations in part (3) of the conditions of the next two theorems are suggested
by Corollary 4.4(a)–(b).

The following theorem is a generalization of Theorem 3.1, Chapter IV from [2],
where the case of an injective 5B was considered.

THEOREM 3.1. For 0 ≤ ! < ¹ < ¼ < ³=2 and ∅ �= [q; q0] ⊂ .1; 2/, assume that,
along with F.5B; L2; L2; Sd

!/, L2;²M
t;w

= N2;²M
t;w
.5B/ ⊕ R2;²M

t;w
.5B/ holding uniformly

for t > 0 and w ∈ Rn, P0;q|N2;²M
t;w
.5B / = P0;2|Nq .5B /,

{R.ze±i¹·/}z∈Sd
0
⊂ D̄.5B; Sd

0 ; 2; 2;M; R2.5B// for any M > 0; and

Rr.5B/ ∈ C Z.r/ for some r ∈ [q0; 2/, one of the following groups of conditions and
the homogeneity property H[Z] with respect to every condition Z in this group are
satisfied:

(1) L2 = N2.5B/ ⊕ R2.5B/, Lq0 = Nq0.5B/ ⊕ Rq0.5B/, S.5B; q0; 2; X/, and
5B.X/ is Lq0-dense in Rq0.5B/;
(2) .qs; 2/ ∈ �1, q0 = max.q; qs/, G.q/, G.2/, C, K.q/, P.q/, P.2/, WP, D.2/,

LC;
(3) .qs; 2/ ∈ �1, q0 = max.q; qs/, BC.q/, BC.2/, D.q/, D.2/, K.q/, C, WP, LC,

Dq.5B/ = Lq, D2.5B/ = L2, and

Rp′.0∗/ ∩ Np′.0B∗/ = Np′.0∗/ ∩ Rp′.0B∗/ = R2.0∗/ ∩ N2.0B∗/

= N2.0
∗/ ∩ R2.0B∗/ = {0}:

Then one has F.5B; L p; L p; Sd
¼/ for all p ∈ .q0; 2/, that is

‖ f .5B/�‖p ≤ C‖ f |H̄∞.Sd
¼ ∪ {0}/‖ · ‖�‖p for all f ∈ H̄∞.Sd

¼ ∪ {0}/; � ∈ L p;

where C depends on p.

PROOF. Let us begin with the observation that due to the construction of the func-
tional calculus, it is sufficient to show its existence from L p∩Rp.5B/ into L p only, and
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that the main tool of the proof of Theorem 5.1, the Calderón–Zygmund decomposition
is accessible due to the inclusion Rr.5B/ ∈ C Z.r/.

Then, it is enough to deal only with f ∈ 4.Sd
¼/ thanks to the considerations

from the classical density lemmas, namely, Lemma D from [4] and Lemma 2 from
[14]. The Cauchy representations used in the proofs of these density lemmas and in
Theorems 4.6 and 4.14 (used in tandem as one rigorous assertion) can be deduced as
in these sources because, as noticed above, the bounded H∞.Sd

!/-functional calculus
implies the type !, and we can follow the reasoning from [4, 14] using the function
 .z/ = z=.1 + z2/ instead of the choice  .z/ := z=.1 + z/2 made there. (The range
of R. .A// = D.A/ is still dense in X .)

The assertion of the theorem will follow from Theorem 5.1 if we check the validity
of the conditions of that theorem for T = f .5B/, At = R.t z5B/ for some z ∈ C \ Sd

¼

and sufficiently large l. The last condition is ensured by the assumption F.2/. Then
either Theorems 4.6, 4.14(a) and Lemma 4.7(a) in the case of the group (1), or the
same results and Lemma 4.5(a) in the case of the second group, or Theorems 4.6
and 4.14(a), along with Lemmas 4.5(a), 4.7(a) and 4.3(a), and Corollary 4.4(a) in the
case of the group (3) imply, thanks to Remark 2(1) that

bknt
n
p − n

2 ‖ f .5B/1
l R.t z5B/�|L2.Qbk+1tŽ.w/ \ Qbk tŽ.w//‖ ≤ C‖ f |H∞‖bk.n−N /‖�‖p

for any t > 0, w ∈ Rn and � ∈ Rp.5B/ with supp� ⊂ Qt.w/, where one can choose
N > n. Whence, we see that condition .1/ of Theorem 5.1 is satisfied also. In the
same manner, the validity of condition .2/ is a consequence of the following estimates
provided by either Theorem 4.14(a) and Lemma 4.7(a) in the case of the group (1), or
the same results and Lemma 4.5(a) in the case of the second group, or Theorem 4.14(a),
along with Lemmas 4.5(a), 4.7(a) and 4.3(a),(c), and Corollary 4.4(a) in the case of
the group (3):

bkntn=p−n=2‖R.t z5B/|L2.Qbk+1tŽ.w/ \ Qbk tŽ.w//‖ ≤ C‖ f |H∞‖bk.n−N1/‖�‖p

tn=p−n=2‖R.t z5B/|L2.QtŽ.w//‖ ≤ C‖�‖p

for some N1 > n and any t > 0, w ∈ Rn and � ∈ Rp.5B/ with supp� ⊂ Qt.w/.

THEOREM 3.2. For 0 ≤ ! < ¹ < ¼ < ³=2 and ∅ �= [q0; q] ⊂ .2;∞/, assume that,
along with F.5B; L2; L2; Sd

!/ and {R.ze±i¹·/}z∈Sd
0

⊂ D̄.5B; Sd
0 ; 2; 2;M; R2.5B// for

any M > 0, one of the following groups of conditions and the homogeneity property
H[Z] with respect to every condition Z in this group are satisfied:

(1) Lq0 = Nq0.5B/ ⊕ Rq0.5B/, L2 = N2.5B/ ⊕ R2.5B/, S.5B; 2; q0; X/, and
5B.X/ is L2-dense in R2.5B/;
(2) .2; qs/ ∈ �1, q0 = min.qs; q/, G∗.q/, G∗.2/, D.2/, C, K∗.q/, P∗.q/, P∗.2/,

WP, LC;
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(3) .2; qs/ ∈ �1, q0 = min.qs; q/, BC∗.q/, BC∗.2/, D.q/, D.2/, C, K∗.q/, WP,
LC, Dq ′.5∗

B∗/ = Lq ′ , D2.5
∗
B∗/ = L2, and

Rp.0/ ∩ Np.0
∗
B/ = Np.0/ ∩ Rp.0

∗
B/ = R2.0/ ∩ N2.0

∗
B/ = N2.0/ ∩ R2.0

∗
B/ = {0}:

Then one has F.5B; L p; L p; Sd
¼/ for all p ∈ .2; q0/, that is

‖ f .5B/�‖p ≤ C‖ f |H̄∞.Sd
¼ ∪ {0}/‖ · ‖�‖p

for all f ∈ H̄∞.Sd
¼ ∪ {0}/, � ∈ L p, where C depends on p.

PROOF. Firstly let us repeat the observations made in the first two paragraphs of
the proof of Theorem 3.1.

The assertion of the theorem follows now from Theorem 5:2 if we check the
validity of the conditions .1/, .2/ and T ∈ � .L 2/ of that theorem for T = f .5B/,
At = R.t z5B/ for some z ∈ C \ Sd

¼ and sufficiently large l. The last condition is
ensured by the assumption F.2/. Then Theorem 4.6 implies, thanks to Remark 5,

t−n=2‖1l R.t z5B/ f .5B/�|L2.Qt.w//‖ ≤ C‖ f |H∞‖ · ‖�|L2;²M
t;w

‖(3.1)

≤ C‖ f |H∞‖M2�.w/;

for any t > 0, � ∈ R2.5B/ and a.e. w ∈ Rn , where one can choose M > n.
Having in mind that L2 = N2.5B/ ⊕ R2.5B/ in the case of an arbitrary group of
conditions (see Lemma 4.3(b),(d) and Corollary 4.4(b)), we can follow the definition
of the functional calculus to show (3.1) for � ∈ L2. Whence, we see that the
condition .1/ of Theorem 5.1 is satisfied too. In the same manner, the validity of the
condition (2) of that theorem is a consequence of the following estimates provided
by either Theorems 4.14(b), Lemma 4.7(b) in the case of the group (1), or the same
results and Lemma 4.5(b) in the case of the second group, or Theorem 4.14(b), along
with Lemmas 4.5(b), 4.7(b), 4.3(b) and 4.3(d) and Corollary 4.4(b) in the case of the
group (3):

t−n=p‖R.t z5B/�|L2.Qt.z//‖ ≤ C‖ f |H∞‖ · ‖�|L2;²M
t;w

‖ ≤ C‖ f |H∞‖M2�.w/

for some M > n and any t > 0, � ∈ L2, where we can take � ∈ L2 as it is done for
the case of .1/.

3.2. Generalized embedding theorems In this section, we study the boundedness
properties of powers of the operator 5B from Besov, or Lizorkin–Triebel spaces into
Lorentz, or Lebesgue spaces, correspondingly.

THEOREM 3.3. Under the conditions of either Theorem 3.1 or Theorem 3.2 for
some r ∈ .0; p], � ∈ .0;∞], þ ∈ .0; s] with .s − þ/=n = r−1 − p−1, assume
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0; 0∗ ∈ DH.1/ and either s ∈ .0; 1/ and Y s
r = ls

r;� , or s = 1 and Y s
r = w1

r . Then we
have

5
þ

B ∈ � (
Ẏ s

r ; L p

)
:

Using real interpolation, we obtain the following.

COROLLARY 3.4. Under the conditions of Theorem 3.3, one also has

5
þ

B ∈ � (
ḃs

r;� ; L p;�

)
:

PROOF. Let us choose an entire function � ∈ 4.Sd
¼/ with ¾.0/ = 0. For 5þ

B , let us
use the representation

zþ =
∫ ∞

0

zþ�.t z/
dt

t
:(3.2)

Without loss of generality, we can assume also that

¾.z/ : =
∫ ∞

1

.t z/þ�.t z/
dt

t
∈ H∞.S¼/:(3.3)

Then Theorem 3.1 shows that ¾.5B/ ∈ � .L p; L p/. Therefore, involving embedding
properties of Sobolev and Lizorkin–Triebel spaces into Lebesgue spaces, we see also
that ¾.5B/ ∈ � .Ẏ s

r ; L p/. The identity

.¾.5B− / f /.·=− / = ¾.−5B/ f .·=− /(3.4)

and the homogeneity of Ẏ s
r show the uniform boundedness∥∥−−þ¾.−5B/

∣∣� .Ẏ s
r ; L p/

∥∥ = ∥∥¾.5B/
∣∣� .Ẏ s

r ; L p/
∥∥ for every − > 0:(3.5)

Thus, a choice of � well decaying at 0 finishes the proof with the aid of the identity

5
þ

B =
∫ ∞

0

5
þ

B�.t5B/
dt

t
= lim

−→+0

∫ ∞

−

5
þ

B�.t5B/
dt

t
= lim

−→+0
−−þ¾.−5B/:

3.3. Quadratic estimates and theorems of the Littlewood-Paley type. The next
theorem is obtained in [14].

THEOREM 3.5. For p ∈ .1;∞/, assume that F.A; p; Sd
¼/ holds. Then, for every

� ∈ Q.Sd
¼/, one has

(a)
∥∥∥(∫∞

0 |�.t A/ f |2 dt=t
)1=2

∥∥∥
p
≤ C f .�/‖ f ‖p;

(b)
∥∥∫ ∞

0 �.t A∗/ f .t; ·/dt=t
∥∥

p′ ≤ Cb.�/

∥∥∥(∫∞
0 | f .t; ·/|2 dt=t

)1=2
∥∥∥

p′
;

if A∗ is the dual of A in the pair .L p′; L p/.
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The next theorem follows from Theorems 3.1 and 3.5.

THEOREM 3.6. Assume the hypotheses of Theorem 3.1. Then, for every � ∈ Q.Sd
¼/

and p ∈ .q0; 2/, one has

(a)
∥∥∥(∫∞

0 |�.t5B/ f |2 dt=t
)1=2

∥∥∥
p
≤ C f .�/‖ f ‖p;

(b)
∥∥∫ ∞

0 �.t5∗
B∗/ f .t; ·/dt=t

∥∥
p′ ≤ Cb.�/

∥∥∥(∫∞
0 | f .t; ·/|2 dt=t

)1=2
∥∥∥

p′
,

if D.p/ holds too.

The following theorem is a consequence of Theorems 3.2 and 3.5.

THEOREM 3.7. Assume the hypotheses of Theorem 3.2. Then, for every � ∈ Q.Sd
¼/

and p ∈ .2; q0/, one has

(a)
∥∥∥(∫∞

0 |�.t5B/ f |2 dt=t
)1=2

∥∥∥
p
≤ C f .�/‖ f ‖p;

(b)
∥∥∫ ∞

0 �.t5∗
B∗/ f .t; ·/dt=t

∥∥
p′ ≤ Cb.�/

∥∥∥(∫∞
0 | f .t; ·/|2 dt=t

)1=2
∥∥∥

p′
,

if D.p/ holds too.

Now we are in a position to prove a theorem of the Littlewood–Paley type in terms
of the functional calculus. The next theorem is the combination of Theorems 3.6
and 3.7.

THEOREM 3.8. Assume the hypotheses of both Theorem 3.1 and Theorem 3.2. Then,
for every � ∈ Q.Sd

¼/ and p ∈ .q0; q ′
0/, one has

(a)
∥∥∥(∫∞

0 |�.t5B/ f |2 dt=t
)1=2

∥∥∥
p
� ‖ f ‖p;

(b)

∥∥∥∥(∫ ∞
0

∣∣�.t5∗
B∗/ f

∣∣2 dt=t
)1=2

∥∥∥∥
p

� ‖ f ‖p.

4. Off-diagonal estimates

We begin this section with a high-order counterpart of the Hilbert identity. Then
we study the relations between Bounded Coercivity and the L p-space structure of the
model, and between the latter and Sobolev property. Eventually we derive the key
results on off-diagonal estimates.

4.1. Counterparts of the Hilbert identity

LEMMA 4.1.

1k R.z/ = zk∏k
l=1.l

−1 − z/
; k ∈ N:
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This simple identity suggests generalizations of the Hilbert identity for the differ-
ences of arbitrary high order in the form of Lemma 4.2.

LEMMA 4.2. For h; z0 ∈ C, m ∈ N, let X be a linear space, and A : X → X be a
linear operator with existing inverse operators {.A − .z0 + ih/I /−1}m

i=0, or
{R..z0 + ih/A/}m

i=0. Then, for

1m
h  .z0/ := 11

h1
m−1
h  .z0/; 11

h .z0/ :=  .z0 + h/−  .z0/;

one has, correspondingly

1m
h  .z0/ : = m!hm

m∏
i=0

.A − .z0 + ih/I /−1 for  .z/ := .A − z I /−1; or(a)

1m
h  .z0/ : = m!.h A/m

m∏
i=0

.I − .z0 + ih/A/−1 for  .z/ := R.z A/:(b)

PROOF. Let us prove part (a). The proof of (b) is essentially the same and, thus,
is omitted. Using induction on m, we see that, for m = 1, (a) is the Hilbert identity.
Assuming the validity of (a) for m = k − 1, one sees

1k
h .z0/ = .k − 1/!hk−1

(
k∏

i=1

.A − .z0 + ih/I /−1 −
k−1∏
i=0

.A − .z0 + ih/I /−1

)

= .k − 1/!hk−1
k∏

i=1

.A − .z0 + ih/I /−111
kh .z0/

= k!hk
k∏

i=0

.A − .z0 + ih/I /−1:

4.2. Perturbed projectors Recall that 0 and 0∗
B are assumed to be densely defined

in L p, and I holds.

LEMMA 4.3. For p ∈ [1;∞], one has:

(a) BC.p/ implies restricted G.p/;
(b) BC∗.p/ implies restricted G∗.p/;
(c) BC.p/ and D.p/ imply Np.0/⊕ Rp.0

∗
B/ and Rp.0/⊕ Np.0

∗
B/ are subspaces

in L p;
(d) BC∗.p/ and D.p/ imply Np′.0∗/⊕ Rp′.0B∗/ and Rp′.0∗/⊕ Np′.0B∗/ are sub-

spaces in L p′;
(e) BC.p/, I and D.p/ imply Rp.5B/ = Rp.0/ ⊕ Rp.0

∗
B/, Np.5B/ = Np.0/ ∩

Np.0
∗
B/ and 5B ∈ � .L p/;
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(f) BC∗.p/, I and D.p/ imply Rp′.5∗
B∗/ = Rp′.0∗/ ⊕ Rp′.0B∗/, Np.5

∗
B∗/ =

Np′.0∗/ ∩ Np′.0B∗/ and 5∗
B∗ ∈ � .L p′/.

(g) For a Banach space B and its subspaces M, M0, M1, N , N0, N1 satisfying
M = M0 ⊕ M1, N = N0 ⊕ N1 and M0 ⊃ N1, N0 ⊃ M1, one has M ∩ N =
.M0 ∩ N0/⊕ M1 ⊕ N1.

PROOF. Thanks to BC.p/ and the Hölder inequality, for any i and f ∈ Rp.Ai /,
there is g ∈ Rp′.Ai /, such that

C‖ f ‖2
p ≤ C |bi.g; f /| ≤ ‖g‖p′ · ‖Bi f ‖p ≤ ‖ f ‖p · ‖Bi f ‖p:(4.1)

Thus, {Bi}2
i=1 are invertible on {Rp.Ai /}2

i=1 respectively. This proves (a). Similarly
one obtains (b).

In the case of (c), thanks to BC.p/, for any f ∈ Dp.0
∗
B/, there is g ∈ Rp′.0∗/

satisfying

‖0∗g‖p′ ≤ C ‖0∗ B2 f ‖p and ‖0∗ B2 f ‖p ≤ C |b1.0
∗g; 0∗B2 f /| :(4.2)

Thus, with the aid of (4.2), D.p/ and the Hölder inequality, one has, for any h ∈ Np.0/,

‖0∗ B2 f ‖2
p ≤ C

∣∣∣∣
∫
0∗g.0∗

B f + h/

∣∣∣∣ ≤ C ‖0∗g‖p′ · ∥∥0∗
B f + h

∥∥
p
:(4.3)

Due to (a), it follows that∥∥0∗
B f
∥∥

p
≤
∥∥∥ B−1

1|Rp.0
∗
B /

∣∣∣� (
Rp.0

∗
B/; L p

)∥∥∥ · ‖0∗ B2 f ‖p ≤ C
∥∥0∗

B f + h
∥∥

p
;(4.4)

showing that Np.0/⊕ Rp.0
∗
B/ is a subspace in L p. In the case of the second assertion

of (c), we do not use (a).

C‖0 f ‖2
p ≤ |b2.0g; 0 f /| = |b2.0g; 0 f + h/|(4.5)

≤ ‖B2|� .L p/‖ · ‖0g‖p′ · ‖0 f + h‖p;

where h ∈ Np.0
∗
B/ and ‖0g‖p′ ≤ C‖0 f ‖p.

In the case of (d), we repeat the proof of the previous part with 0∗, 0, B∗
2 , B∗

1 , b∗
1, b∗

2

and p′ in place of 0, 0∗, B1, B2, b1, b2 and p, respectively.
Thanks to I and Remark 2, we have Rp.A/ ⊂ Np.A/ for any A ∈ {0; 0∗; 0∗

B; 0B∗ }.
This means that (e) and (f) follow from (c) and (d) correspondingly.

Under the hypothesis of (g), we have M1 ⊂ N , hence, M ∩ N = .M0 ∩ N /⊕ M1.
In the same way, the inclusion N1 ⊂ M0 is followed by M0 ∩ N = .M0 ∩ N0/⊕ N1

implying the assertion of (g).

COROLLARY 4.4. For p ∈ .1;∞/, assume that D.p/, I and one of the following
groups of conditions hold:
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(a) BC.p/ and either Rp′.0∗/ ∩ Np′.0B∗/ = Np′.0∗/ ∩ Rp′.0B∗/ = {0},
or Dp.5B/ = L p, Np′.5∗

B∗/ ∩ Rp′.5∗
B∗/ = {0};

(b) BC∗.p/ and either Rp.0/ ∩ Np.0
∗
B/ = Np.0/ ∩ Rp.0

∗
B/ = {0},

or Dp.5B/ = L p, Np′.5∗
B∗/ ∩ Rp′.5∗

B∗/ = {0};
(c) BC.p/ and BC∗.p/.

Then P.p/ and P∗.p/ hold.

PROOF. To prove (a), observe that D.p/, the closedness of 0 and 0∗
B and the

reflexivity of L p imply

Np.0/
⊥ = Rp′.0∗/; Np.0

∗
B/

⊥ = Rp′.0B∗/; Rp.0/
⊥ = Np′.0∗/

and Rp.0
∗
B/

⊥ = Np′.0B∗/;
(4.6)

followed by the relations(
Np .0/+ Rp

(
0∗

B

))⊥ = Np′ .0B∗/ ∩ Rp′ .0∗/;(
Np.0

∗
B/+ Rp.0/

)⊥ = Np′ .0∗/ ∩ Rp′ .0B∗/;

(4.7)

where + means the algebraic sum. Thus, concerning the case

Rp′.0∗/ ∩ Np′.0B∗/ = Np′.0∗/ ∩ Rp′.0B∗/ = {0}
we have

L p = Np.0/⊕ Rp.0
∗
B/ = Np.0

∗
B/⊕ Rp.0/;

Rp.0/ ⊂ Np.0/; Rp.0
∗
B/ ⊂ Np.0

∗
B/;

(4.8)

and, therefore, thanks to Lemma 4.3(g),

Np.0/ = (
Np.0/ ∩ Np.0

∗
B/
)⊕ Rp.0/;

Np.0
∗
B/ = (

Np.0
∗
B/ ∩ Np.0/

)⊕ Rp.0
∗
B/;

(4.9)

because Np.5B/ = Np.0/ ∩ Np.0
∗
B/ due to Lemma 4.3(e).

In the case Dp.5B/ = L p, Np′.5∗
B∗/ ∩ Rp′.5∗

B∗/ = {0}, we use Lemma 4.3(c)-(g)
to observe(

Np.0/⊕ Rp.0
∗
B/
)

∩
(

Rp.0/⊕ Np.0
∗
B/
)

(4.10)

= (
Np.0/ ∩ Np.0

∗
B/
)⊕

(
Rp.0

∗
B/⊕ Rp.0/

)
= Np.5B/⊕ Rp.5B/:

Now, as in (4.6) and (4.7), the closedness of5B following from Lemma 4.3(e) and
the reflexivity of L p imply(

Np.5B/⊕ Rp.5B/
)⊥ = Np′.5∗

B∗/ ∩ Rp′.5∗
B∗/ = {0};
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that is, P.p/. Duality considerations and (4.6) provide P∗.p/, if we follow the same
procedure as before involving Lemma 4.3(g).

The proof of (b) is conducted in the same way. Part (c) follows from (a) and (b)
with the aid of Lemma 4.3(c),(d).

4.3. Sobolev properties For the sake of simplicity, we shall sometimes use symbols
5−1

B and 5∗−1
B∗ instead of .5B|Rp.5B /

/−1 and
(
5∗

B∗|Rp′ .5∗
B∗ /

)−1
, respectively.

LEMMA 4.5. (a) For q ∈ .1; 2/, assume that the conditions .qs; 2/ ∈ �1, G.q/,
G.2/, C, P.q/, P.2/, WP, D.2/, LC and K.q/ hold. Then 5−1

B exists and extends to
a bounded operator from Rp.5B/ with L p-metric into L2 for all p ∈ [max.qs; q/; 2/.
(b) For q ∈ .2;∞/, assume conditions .2; qs/ ∈ �1, G∗.q/, G∗.2/, D.2/, C, P∗.q/,

P∗.2/, WP, LC and K∗.q/. Then 5−1
B exists and extends to a bounded operator from

R2.5B/ with L2-metric into L p for all p ∈ .2;min.qs; q/].

PROOF. In the case of part (a), let us designate q0 = max.qs; q/. Thanks to
Corollaries 4.11(a) and 4.10, it is sufficient to consider the case p = q0 only. If qs > q,
then we use Corollary 4.11(a) to obtain P.qs/. Otherwise, one has .q; 2/ ∈ �1. In both
cases, P.q0/ is followed by Rq0.5B/ = Rq0.0/⊕ Rq0.0

∗
B/ in algebraic and topological

senses. While G.q/, G.2/ and Corollary 4.11(b) imply Rq0.0
∗
B/ ⊂ B1 Rq0.0

∗/.
Therefore, we can prove the assertion of the part (a) of the lemma on each of the

subspaces Rq0.0/ and Rq0.0
∗
B/ separately. These considerations and the idempotence

condition (I) imply

5−1
B g = .5−1

B 0/5
−1g for all g ∈ Rq0.0/; and, for all g ∈ Rq0.0

∗
B/;(4.11)

h = 5−1
B B10

∗5−1 B−1
1 h = (

5−1
B 0

∗
B

) (
B−1

2 5−1 B−1
1

)
h;(4.12)

because of the identities 05−1g = g for all g ∈ Rq0.0/ and B105
−1 B−1

1 g = g
for all g ∈ B1 Rq0.0

∗/ and the injectivity of 5B on Rq0.5B/ following from P.q0/.
The duality condition D.2/ implies that 5 = 5∗ is self-adjoint in L2 and, thus, on
D2.5/ ∩ R2.5/, which is L2-dense in R2.5/. Hence, 5−1 exists on R2.5/ due to
the weak projectivity condition (WP) and is self-adjoint too. The inclusion of .q0; 2/
into the Sobolev relation�1, the coercivity property (C) and continuity considerations
show that .5−1/∗ = 5−1 extends to a bounded operator from R2.5/ with L2-metric
into Lq ′

0
and into L2. Therefore, for f ∈ R2.5/ ∩ Lq0 and g ∈ R2.5/, with the aid of

the Hölder inequality, one has∣∣∣∣
∫

ḡ5−1 f

∣∣∣∣ =
∣∣∣∣
∫
5−1g f

∣∣∣∣ ≤ C
∥∥5−1g

∣∣Lq ′
0

∥∥ ∥∥ f
∣∣Lq0

∥∥(4.13)

≤ C ‖g |L2 ‖ ∥∥ f
∣∣Lq0

∥∥ :
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Thus, having in mind that R2.5/ is a norming set for R2.5/, and continuity consid-
erations, we see with the aid of the local closure condition (LC) that 5−1 extends to
a bounded operator from Rq0.5/ with Lq0-metric into L2. Now Corollary 2:8, along
with P.2/, implies 5−1

B 0 ⊂ P2 ∈ � .L2/ and 5−1
B 0

∗
B ⊂ P1 ∈ � .L2/. The continuity

considerations finish the proof of (a).
In the case of the part (b), let us observe that 5B is injective on R2.5B/ due to

P.2/ and G.2/. Designating q0 := min.qs; q/, we see that the boundedness of 5−1
B

from R2.5B/ with L2-metric into Lq0 would imply (b). Thanks to Corollaries 4.11(a)
and 4.10, it is sufficient to consider the case p = q0 only. Let us also observe that
P∗.2/, P∗.q/ and K∗.q/ imply P∗.q0/ thanks to Corollary 4.11(a).

We start with the investigation of the boundedness properties of 5∗−1
B∗ . To accom-

plish this task, we utilize the considerations of the approach used in part (a), including
the boundedness of 5−1 from Rq ′

0
.5/ with Lq ′

0
-metric into L2 following from D.2/,

WP, LC and .2; q0/ ∈ �1: for all g ∈ 5∗
B∗.D/, one has

5∗−1
B∗ g = 5∗−1

B∗
(
0∗5−1

)
P∗

1;q ′
0
g +5∗−1

B∗
(
B∗

205
−1 B∗−1

2

)
P∗

2;q ′
0
g

= (
5∗−1

B∗ 0
∗)5−1 P∗

1;q ′
0
g + (

5∗−1
B∗ 0B∗

) (
B∗−1

1 5−1 B∗−1
2

)
P∗

2;q ′
0
g;

where the last identity is due to Corollary 4.11(c). Since we know from the proof of
(a) that 5−1 is bounded from Rq ′

0
.5/ with Lq ′

0
-metric into L2, as it was done in (a),

Corollary 2.8(b) provides the boundedness of 5∗−1
B∗ from Rq ′

0
.5∗

B∗/ with Lq ′
0
-metric

into L2 thanks to P∗.2/, P∗.q0/. Similarly we see also the boundedness of 5∗−1
B∗ from

R2.5
∗
B∗/ with L2-metric into L2. In both cases, 5∗−1

B∗ admits unique extension by
continuity. In addition, D.2/ shows that 5∗−1

B∗ = 5−1∗
B . With the aid of the real

interpolation, we observe that, due to Corollary 4.11(a), K∗.q/, P∗.2/ and K∗.q/
imply Rq ′

0
.5∗

B∗/ ∩ R2.5
∗
B∗/ ⊃ Rq ′

0
.5∗

B∗/, where the external closure is taken in Lq ′
0
.

Therefore, as it is done in (4.13) for g ∈ D := Rq ′
0
.5∗

B∗/ ∩ R2.5
∗
B∗/ and f ∈ R2.5/,

with the aid of the Hölder inequality, one has∣∣∣∣
∫

ḡ5−1
B f

∣∣∣∣ =
∣∣∣∣
∫
5∗−1

B∗ g f

∣∣∣∣ ≤ C
∥∥5∗−1

B∗ g
∣∣ L2

∥∥ · ‖ f |L2 ‖ ≤ C
∥∥g
∣∣Lq ′

0

∥∥ · ∥∥ f
∣∣Lq0

∥∥ :

4.4. Off-diagonal estimates The next theorem is a generalization of Theorem 4.2
from Chapter IV of [2].

THEOREM 4.6. Assume ¼ ∈ .0; ³=2/, ¹ ∈ .0; ¼/, �¼ = C \ Sd
¼, k ∈ N, p; q ∈

[1;∞], 0 ≤ M < N and that X ⊂ L p is a linear subspace and X1 ⊂ X ⊂ X̄1.
In addition, let f ∈ 4.Sd

¼/, ‖ f |H∞.S¼/‖ ≤ 1, and, for all x ∈ X1, the Cauchy
representation hold in Lq:

f .A/1k R.z A/x =
∮
� d
¹

f .� /1k R.z� /R.�−1 A/x
d�

�
:(4.14)
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Then one has:

(a) { f .·/1k R.z·/}z∈�¼ ∈ D̄.A; �¼; p; q; X/ for all k > n=q − n=p > 0, if
{R.ze±i¹·/}z∈S̄0

∈ D̄.A; S0; p; q; X/;
(b) { f .·/1k R.z·/}z∈�¼ ∈ D̄.A; S¹1 ; p; q;M; X/

for M=N < .k + n=p − n=q/=.k + N /, if {R.ze±i¹·/}z∈S̄0
∈ D̄.A; S0; p; q; N ; X/

and n=p − n=q ∈ .−k; N /.

REMARK 5. (a) Theorem 4.6 is also true with 1k R.z·/ f .·/ taken instead of
f .·/1k R.z·/.
(b) While the rigorous proof of the main theorems uses only the considerations from

its proof combined with the proof of Theorem 4.14 in one assertion, we believe that
Theorem 4.6 is of independent interest.

PROOF. Thanks to the Minkowski inequality, uniformly by z andw ∈ Rn, we have,
for any � ∈ X1,

∥∥ f .A/1k R.z A/�
∥∥

q
(4.15)

≤
∫

� d
¹ ;|z� |≤1

∣∣1k R.z� /
∣∣ · ∥∥R.�−1 A/�

∥∥
q

|d� |
|� |

+
∫

� d
¹ ;|z� |>1

∣∣1k R.z� /
∣∣ · ∥∥R.�−1 A/�

∥∥
q

|d� |
|� | =: I a

1 + I a
2 ;

‖ f .A/1k R.z A/�|Lq.Q |z|.w//‖(4.16)

≤
∫
� d
¹

|1k R.z� /| · ‖R.�−1 A/�|Lq.Q |z|.w//‖ |d� |
|� | = I .�/:

Now Lemma 4.1 and definitions permit us to finish the proof of part (a):

I a
1

‖�‖p
≤ C.A; k/k!.sin |¼− ¹|/−k|z|k

∫ |z|−1

0

rk+n=p−n=q−1dr = C|z|n=q−n=p;

I a
2

‖�‖p
≤ C.A; k/

∫ ∞

|z|−1

rn=p−n=q−1dr = C|z|n=q−n=p:

To proceed with (b), let us take some b > 0 and denote �0;t .w/ := Qt.w/ and
�i;t .w/ := Qbi t.w/ \ Qbi−1 t.w/ for i ∈ N, t > 0 and w ∈ Rn. Assume also that
− = |z� |−1, Þ := n=p − n=q and " = N .k + Þ/=.k + N / − M > 0. As above, we
use the consequence of Lemma 4.1

|1k R.z� /| ≤ C.A; k/min.1; −−k/;(4.17)
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the embedding l1 ⊂ lp and a Hölder inequality to derive the key relations

|z|n=p−n=q I .�/

(4.18)

≤ C
∫ ∞

0

min.1; −−k/‖�|L p;²N
|z|−;w .R

n/‖

≤ C
∫ ∞

0

min.1; −−k/

( ∞∑
i=0

min.1; .−b−i/pN/‖�|L p.�i;|z|.w//‖p

)1=p

−−Þ−1d−

≤ C
∞∑

i=0

‖�|L p.�i;|z|.w//‖
∫ ∞

0

min.1; −−k/min.1; .−b−i/N /−−Þ−1d−

= C
∞∑

i=0

b−i.M+"/‖�|L p.�i;|z|.w//‖ ≤ C

( ∞∑
i=0

b−ip′"

)1=p′

‖�|L p;²M
|z|;w .R

n/‖:

Combining the formulae (4.16) and (4.18), we finish the proof of the theorem.

LEMMA 4.7. (a) For 0 ≤ ! < ¹ < ³=2 and q ∈ .1; 2/, assume the conditions
.q; 2/ ∈ �1, S.5B; q; 2; X/, and that5B.X/ is Lq-dense in Rq.5B/. Let, in addition,
the set {R.±e±i¹5B/} be in� .L2/. Assume also homogeneity property H with respect
to all these conditions. Then we have {R.ze±i¹·/}z∈S0 ∈ D̄.5B; S0; q; 2; Rq.5B//.
(b) For 0 ≤ ! < ¹ < ³=2 and q ∈ .2;∞/, assume the conditions .2; q/ ∈ �1,

S.5B; 2; q; X/, and that5B.X/ is L2-dense in R2.5B/. Let also the set {R.±e±i¹5B/}
be in � .L2/. Assume, in addition, the homogeneity property H with respect to all
these conditions. Then we have {R.ze±i¹·/}z∈S0 ∈ D̄.5B; S0; 2; q; R2.5B//.

PROOF. Thanks to the homogeneity condition H, it is sufficient to show the bound-
edness of operators R.z A/ for |z| = 1 only. Due to the Sobolev conditions, 5B is
injective on X in both (a) and (b).

In the case of the part (a), let us utilise the identity

.I − z5B/
−1 g = .I − z5B/

−1 5B

(
5−1

B g
) = z−1 .R .z5B/− I /

(
5−1

B g
)

for all g ∈ 5B.X/, the Sobolev condition and the inclusions R.±e±i¹5B/ ∈ � .L2/

to finish the proof of (a) in the view of the continuity considerations

Rq.5B/ ⊃ 5B.X/
5−1

B−→ L2
z−1.I−R.z5B//−→ L2:

In the case of part (b), we start with the observation that, thanks to continuity
considerations, S.5B; 2; q; R2.5B// holds. The identity

.I − z5B/
−1 g = (

5B |R2.5B /

)−1
5B .I − z5B/

−1 g

= (
z5B |R2.5B /

)−1 (
.I − z5B/

−1 − I
)

g for all g ∈ R2.5B/;
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which is true thanks to the relation: 5B.I − z5B/
−1g ∈ R2.5B/ for all z ∈ R2.5B/.

The boundedness of5B
−1 from R2.5B/with L2-metric into Lq implies (b) in a similar

way:
R2.5B/

z−1.I−R.z5B//−→ R2.5B/
5−1

B−→ Lq

The next two Lemmas and two Corollaries follow from interpolation theory. In
particular, Lemma 4.8 is a consequence of Lemma 4.9 and is a generalization of results
from [5, 15].

LEMMA 4.8. Assume p0; p1; q0; q1; � ∈ [1;∞/, p0 ≤ q0, p1 ≤ q1, � ∈ .0; 1/,

p−1
� = .1 − �/p−1

0 + � p1
−1; q−1

� = .1 − �/q−1
0 + �q1

−1;

{R.ze±i¹·/}z∈Sd
0
∈ D̄.A; Sd

0 ; p0; q0; X0/ ∩ D̄.A; Sd
0 ; p1; q1; N ; X1/;

and that X0; X1 are complemented subspaces of L p0 , L p1;²
N
t;w

respectively, such that
the corresponding projectors P0; P1 satisfy the condition P0|L p0 ∩L

p1 ;²
N
t;w

= P1|L p0 ∩L
p1 ;²

N
t;w

uniformly for t > 0 and w ∈ Rn. Then we have

{
R
(
ze±i¹ ·)}

z∈Sd
0

∈ D̄
(

A; S0; p� ; q� ; �N ; [X0; X1]�;p�
)
:

PROOF. Utilising .L p0 ; L p1;²
N
t;w
/�;p� = L p� ;²N�

t;w
and .Lq0; Lq1/�;p� = Lq� ;p� ⊂ Lq� ,

we apply Lemma 4.9 to the compatible pairs .L p0; L p1;²
N
t;w
/ and .X0; X1/ in order to

interpolate the family {R.ze±i¹·/}z∈Sd
0
.

LEMMA 4.9. ([11, 26]) For p ∈ [1;∞], � ∈ .0; 1/, let .A0; A1/ be a compatible
couple of Banach spaces, and B be a complemented subspace of A0 + A2, whose
projector P ∈ � .A0/ ∩� .A1/. Then .A0 ∩ B; A1 ∩ B/ is also compatible and

.A0 ∩ B; A1 ∩ B/�;p = .A0; A1/�;p ∩ B:

COROLLARY 4.10. For q ∈ .q0; q1/ ⊂ [1;∞], one has

(a) Lq = Nq.A/⊕ Rq.A/, if Lq0 = Nq0.A/⊕ Rq0.A/, Lq1 = Nq1.A/⊕ Rq1.A/,
and P0;p|N2.A/ = P0;2|Np.A/;
(b) P.q/, P.2/ and K.q/ imply

Rp.5B/ = .Rq.5B/; R2.5B//�;p; Rp.0
∗
B/ = .Rq.0

∗
B/; R2.0

∗
B//�;p

and Rp.0/ = .Rq.0/; R2.0//�;p

for 1=p = .1 − �/=q + �=2;
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(c) P∗.q/, P∗.2/ and K∗.q/ imply

Rp′.5∗
B∗/ = .Rq ′.5∗

B∗/; R2.5
∗
B∗//�;p′; Rp′.0B∗/ = .Rq ′.0B∗/; R2.0B∗//�;p′

and Rp′.0∗/ = .Rq ′.0∗/; R2.0∗//�;p′

for 1=p = .1 − �/=q + �=2.

PROOF. Part (a) is an immediate consequence of Lemma 4.9, while in the rest of
the lemma, we use the part of Corollary 2.8 involving 5−1

B 0, 5∗−1
B∗ 0∗ and continuity

considerations before the application of Lemma 4.9.

COROLLARY 4.11. Assuming r ∈ .p; q/, one has:

(a) q = 2, P.p/, P.q/ and K.p/ imply P.r/, and p = 2, P∗.p/, P∗.q/ and K∗.q/
imply P∗.r/;
(b) q = 2, G.p/, G.q/ and K.p/ imply Bi ∈ � .Lr/, i = 1; 2 and there exist

bounded .B1|Rr .0∗//
−1, .B2|Rr .0/

/−1;
(c) p = 2, G∗.p/, G∗.q/ and K∗.q/ imply Bi ∈ � .Lr/, i = 1; 2 and there exist

bounded .B∗
1 |Rr ′ .0∗//

−1, .B∗
2 |Rr ′ .0//

−1.

The next theorem was proved in [10] with slightly different notation.

THEOREM 4.12. (a) Assuming G.2/, and that 5B is local and of type ! in L2 for
some 0 ≤ ! < ¹ < ³=2, one has {R.ze±i¹5B/}z∈Sd

0
⊂ � .L2/ and {R.ze±i¹·/}z∈Sd

0
∈

D̄.5B; S0; 2; 2; N / for any N > 0.
(b) Assuming G.2/, and that5∗

B∗ is local and of type ! in L2 for some 0 ≤ ! < ¹ <

³=2, one has {R.ze±i¹5∗
B∗/}z∈Sd

0
⊂ � .L2/ and {R.ze±i¹·/}z∈S0 ∈ D̄.5∗

B∗; Sd
0 ; 2; 2; N /

for any N > 0.

REMARK 6. It was proved in [10] that if B1 is !1-accretive on R2.0
∗/ and B2 is

!2-accretive on R2.0/ for some !1; !2 ∈ [0; ³=2/, then 5B and 5∗
B∗ are of type

! = .!1 + !2/=2.

The next lemma is an immediate consequence of definitions.

LEMMA 4.13. For p; q ∈ [1;∞], an operator A and a subspace Y ⊂ L p, assume
that L p = Np.A/ ⊕ Y , and Y possesses the localization property. Then, for every
subset { fz} ∈ H̄ 0

∞.S
d
¼ ∪ {0}/, we have

{ fz} ∈ D̄.A; p; q; N ; Y / if and only if { fz} ∈ D̄.A; p; q; N /:
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THEOREM 4.14. (a) Assume q ∈ .1; 2/, Lq = Nq.5B/⊕ Rq.5B/ and, uniformly
by t > 0 and w ∈ Rn, L2;²M

t;w
= N2;²M

t;w
.5B/⊕ R2;²M

t;w
.5B/, P0;q|N2;²M

t;w
.5B / = P0;2|Nq .5B /,

{R.ze±i¹·/}z∈Sd
0

⊂ D̄.5B; Sd
0 ; 2; 2;M; R2.5B// for any M > 0, and S.5B; q; 2; X/,

where 5B.X/ is Lq-dense in Rq.5B/. Let, in addition, the set {R.±e±i¹5B/} be
in � .L2/ for some 0 ≤ ! < ¹ < ³=2. Assume also the homogeneity property H
with respect to all these conditions. Then, for any p ∈ .q; 2/ and N > 0, one has
{R.ze±i¹·/}z∈Sd

0
∈ D̄.5B; Sd

0 ; p; 2; Rp.5B// ∩ D̄.5B; Sd
0 ; p; 2; N ; Rp.5B//.

(b) Assume q ∈ .2;∞/, {R.ze±i¹·/}z∈Sd
0

⊂ D̄.5B; Sd
0 ; 2; 2;M; R2.5B// for any

M > 0, and S.5B; 2; q; X/, where 5B.X/ is L2-dense in R2.5B/. Let, in addition,
the set {R.±e±i¹5B/} be in � .L2/ for some 0 ≤ ! < ¹ < ³=2. Assume also
the homogeneity property H with respect to all these conditions. Then one has
{R.ze±i¹·/}z∈Sd

0
∈ D̄.5B; Sd

0 ; 2; p; R2.5B// ∩ D̄.5B; Sd
0 ; 2; p; N ; R2.5B// for any

p ∈ .2; q/ and N > 0.

PROOF. Because the proof of part (b) requires us to apply Lemma 4.9, we con-
sider the proof of (a) only. Inclusion {R.ze±i¹·/}z∈Sd

0
∈ D̄.5B; S0; p; 2; Rp.5B//

follows immediately from Lemma 4.7(a) and Lemma 4.9 applied to .Lq; L2;²M
t;w
/ and

.Rq.5B/; R2;²M
t;w
.5B//. The same lemma, and the inclusion{

R.ze±i¹·/}
z∈Sd

0
⊂ D̄

(
5B; Sd

0 ; 2; 2;M; R2.5B/
)

for any M > 0

provide {R.ze±i¹·/}z∈Sd
0
∈ D̄.5B; Sd

0 ; p; 2; N ; R2.5B// thanks to Lemma 4.8.

5. Extrapolation of operators

The next theorem extends celebrated results from [12].

THEOREM 5.1. For l ∈ N, b > 1, Ž > 0 and p ∈ .1; 2/, let operators T and
{At}t≥0, A0 = I satisfy T ∈ � .L2/ and, for every t > 0, w ∈ Rn and � ∈ L p with
supp � ⊂ Qt.w/ and ‖�‖p ≤ 1,∥∥ {Þk.t; w/}k∈N0

∣∣ l1

∥∥ ≤ C1 < ∞; where

Þk.t; w/ := tn=p−n=2bkn
∥∥T1l At�

∣∣L2 .Qbk+1tŽ.w/ \ Qbk tŽ.w//
∥∥ ; and

(5.1)

tn=p−n=2
(‖ At�| L2 .QtŽ.w//‖ + ∥∥ {þk.t; w/}k∈N0

∣∣ l1

∥∥) ≤ C2 < ∞; where

þk.t; w/ := bkn ‖At�|L2 .Qbk+1tŽ.w/ \ Qbk tŽ.w//‖ :
(5.2)

Then for all u ∈ .p; 2/ one has

max
( ∥∥T

∣∣� .L p; L p;∞/
∥∥ ; ‖T |� .Lu; Lu/‖

) ≤ C.C1 + .1 + C2 ‖T |� .L2/‖//:
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PROOF. Without loss of generality, one can assume that Ž > 2n1=2l. Thus, we see
that Theorem 5.1 becomes a particular case of Theorem III:6:3 of [2] (see also [3]),
by taking A = B = C, �0 = �1 = �2 = v1 = w1 = 2, v0 = w0 = p0 = p1 = p,
t1 = t2 = 1, ½0 = ½1 = ¹0 = ¹1 = n, D0 = ∅ and G.r; w/ := I − 1l Ar for any
Qr.w/ ⊂ Rn in the conditions of the latter theorem.

The next theorem is obtained in [5, 6].

THEOREM 5.2. For l ∈ N, b > 1, Ž > 0, p ∈ .2;∞/, let operators T and {At}t≥0,
A0 = I satisfy T ∈ � .L2/, and, for every t > 0, � ∈ L2 and  ∈ R2.T /,

t−n=2
∥∥1l At T�

∣∣L2.Qt.·//
∥∥ ≤ C1M2� and(5.3)

t−n=p
∥∥At 

∣∣L p.Qt.·//
∥∥ ≤ C2M2 :(5.4)

Then one has ‖T |� .Lu; Lu/‖ ≤ C.C1 + .1 + C2‖T |� .L2/‖// for all u ∈ .2; p/.

6. Further generalizations

In this section, in addition to Remark 2(a), we discuss two ways to generalize the
results of Sections 3 and 4, which will be partially employed in Part II of the article,
devoted to applications.

First, let us observe that, similarly to [14], one can substitute Lebesgue spaces
L p, p ∈ .1;∞/ with their closed subspaces Yp. However, in our case, we should
require them to form an interpolation scale and support the duality pairing Y ∗

p = Yp′ .
Thanks to Lemma 4.9, it is sufficient to assume the existence of a bounded projector
P on Lqs + Lq ′

s
such that P.L p/ = Yp and .P|L p/

∗ = P|L p′ . It is especially useful in
situations where some properties are not satisfied on the whole Lebesgue space L p,
but hold on Yp . The simplest examples appear if one can choose Yp = Rp.0/, or
Yp = Rp.0

∗
B/ and so on. In these cases, we do not need, for instance, the Projection

property.
The second line of the generalization shows a way to avoid problems related

to the Calderón–Zygmund property achieved through the sufficient condition from
Remark 4(a). Namely, if Rp.5B/ does not possess it, then we may find a bigger
subspace (subset) L p ⊃ Z p ⊃ Rp.5B/ satisfying this sufficient condition and a
bounded operator B : Yp → Rp.5B/ satisfying B|Rp.5B /

= I|Rp.5B /
. Indeed, in this

case, it is sufficient to prove the boundedness of f .A/B on Z p and consider the
restriction f .A/B|Rp.5B /

. A particular example of such a B is a projector on Rp.5B/.
Such a generalization requires only one additional step: one needs to prove the off-
diagonal-by-space estimates for the operator B.
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7. Approach based on semigroups

In this section, we provide an example revealing a disadvantage of the approach
based on the off-diagonal estimates for semigroups.

7.1. An example In this subsection, we shall study off-diagonal properties of
an example of an operator 0 suggested by McIntosh to the author as the simplest
one-dimensional case:

0 :
(

f1

f2

)
�→

(
0 D
0 0

)(
f1

f2

)
=
(

f ′
2

0

)
; 0∗ =

(
0 0

−D 0

)
=
(

0 0
− f ′ 0

)
;(7.1)

where f .x/ = . f1.x/; f2.x// is a function of one-dimensional variable x ∈ R.
Let us assume that f .x/ is the restriction f .x/ = g.x +0i/ of an analytic function g

satisfying the Riemann formulae

g.x + iy/ = sign y

³ i

∫ ∞

−∞

f .t/dt

t − x − iy
for all x ∈ R; y ∈ R \ {0}:(7.2)

Representing 5 in the form

5 = D ⊗ J; where J =
(

0 1
−1 0

)
(7.3)

is a matrix imaginary unit of the 2 × 2 matrix representation of the complex numbers,
we have, for all h ∈ C,

eh5 = I cos.h5/+ J sin.h5/ = I
eih D + e−ih D

2
+ J

eih D − e−ih D

2i
:(7.4)

By assuming the convergence radius of the Taylor expansion of g.z/ at every z with
Imz = 0 is greater than |h|, one has ehDg.z/ = Thg.z/ = g.z + h/, that is, ehD is a
shift operator. Therefore, we see that

eh5 = Tih + T−ih

2
I + Tih − T−ih

2i
J; or(7.5)

eh5 f .x/ = I
eih Dg.x/+ e−ih Dg.x/

2
+ J

eih D g.x/− e−ih Dg.x/

2i
(7.6)

= I
g.x + ih/+ g.x − ih/

2
+ J

g.x + ih/− g.x − ih/

2i
:

The identity J 2 = −I and (7.5) show the presence of the semigroup property

eh15eh25 = e.h1+h2/5:
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Let us mention that, for h �= 0, formulae (7.2) and (7.6) imply

ey5 f .x/ = .I f ∗ �h.x/− J f ∗  h/

where �h = 1

h
�

( ·
h

)
;  h = 1

h
 

( ·
h

)
;

(7.7)

and �.x/ := .1 + x2/−1=³ ,  .x/ := x�.x/. Since � ∈ L1.R/ and the convolution
with  is a Calderón–Zygmund operator, the semigroup ez5 = eRez5eiImz5 is well-
defined on L p.R/ for all p ∈ .1;∞/ and ‖ez5|� .L p/‖ ≤ C.p/ for any p ∈ .1;∞/.
The semigroup property of ez5 is closely related to the identities

�h+w = �h ∗ �w −  h ∗  w;  h+w = �h ∗  w +  h ∗ �w; h; w ∈ C \ {0}(7.8)

reflecting, in turn,

%h+w = %h ∗ %w for %.x/ := �.x/− i .x/ = 1

³
.1 + i x/−1:

At the same time, we have that, for z = −iy, y ∈ R,

e−iy5 f .x/ = I
f .x + y/+ f .x − y/

2
+ J

f .x + y/− f .x − y/

2i
:(7.9)

Thus, one cannot achieve off-diagonal estimates for this semigroup with an arbitrary N ,
unless z is purely imaginary. In general, only N = 1 implied by the convolution with 
can be gained.
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