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Apollonius of Perga
lived from about 262 BC to about 190 BC
Apollonius was known as ‘The Great Geometer’. His famous book
Conics introduced the terms parabola, ellipse, and hyperbola.
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Scale the picture by a factor of 252 and let
a(c) = curvature of the circle c = 1/radius(c).

The curvatures are displayed. Note the outer one by convention
has a negative sign.
By a theorem of Apollonius, place unique circles in the lines.
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The Diophantine miracle is the curvatures are integers!
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Repeat ad infnitum to get an integral Apollonian packing:

There are infinitely many such P’s.

Basic questions (Diophantine)
Which integers appear as curvatures?
Are there infinitely many prime curvatures, twin primes i.e. pairs of
tangent circles with prime curvature?
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The integral structure — F. Soddy (1936)
Diophantine setup and questions — R. Graham–J.
Lagarias–C. Mellows–L. Wilks–C. Yan (2000)
Many of the problems are now solved
Recent advances in modular forms, ergodic theory, hyperbolic
geometry, and additive combinatorics.

Apollonius’ Theorem

Given three mutually tangent circles c1, c2, c3, there are exactly
two circles c and c ′ tangent to all three.

Inversion in a circle takes circles to circles and preserves tangencies
and angles.
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c1, c2, c3 given invert in ξ (ξ →∞) yields

Now the required unique circles c̃ ′ and c̃ are clear
−→ invert back.
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Descartes’ Theorem

Given four mutually tangent circles whose curvatures are
a1, a2, a3, a4 (with the sign convention), then

F (a1, a2, a3, a4) = 0,

where F is the quadratic form

F (a) = 2(a21 + a22 + a23 + a24)− (a1 + a2 + a3 + a4)2.

I don’t know of the proof “from the book”. (If time permits, proof
at end.)
Diophantine Property:
Given c1, c2, c3, c4 mutually tangent circles, a1, a2, a3, a4
curvatures. If c and c ′ are tangent to c1, c2, c3, then

F (a1, a2, a3, a4) = 0

F (a1, a2, a3, a
′
4) = 0

So a4 and a′4 are roots of the same quadratic equation =⇒
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a4 + a′4 = 2a1 + 2a2 + 2a3 (1)

a4, a
′
4 = a1 + a2 + a3 ± 2

√
∆

∆ = a1a2 + a1a3 + a2a3

(our example (a1, a2, a3) = (21, 24, 28), ∆ = 1764 = 422)
If c1, c2, c3, c4 have integral curvatures, then c ′4 also does from (1)!
In this way, every curvature built is integral.

Apollonian Group:
(1) above =⇒ that in forming a new curvature when inserting a
new circle

a′4 = −a4 + 2a1 + 2a2 + 2a3
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Set

S4 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 −1

 S3 =


1 0 2 0
0 1 2 0
0 0 −1 0
0 0 2 1



S2 =


1 2 0 0
0 −1 0 0
0 2 1 0
0 2 0 1

 S1 =


−1 0 0 0
2 1 0 0
2 0 1 0
2 0 0 1


a′ = aS4, a′ = (a1, a2, a3, a

′
4) ∈ Z4

Similarly with generating c1, c2, c4, . . ..

S2
j = I , Sj ∈ GL4(Z), j = 1, 2, 3, 4.

Definition

A is the subgroup of GL4(Z) generated by S1,S2, S3,S4; called the
Apollonian group.
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It is the symmetry group for any integral Apollonian packing.

If a ∈ Z4 is a fourtuple of curvatures of 4 mutually tangent circles
in P, then the orbit

Oa = aA ⊂ Z4

gives all such 4-tuples in P.

Any a as above satisfies

F (a) = 0 (i.e. we are on a cone)

Not surprisingly,
F (xSj) = F (x)

F as a real quadratic form has signature 3, 1 and Sj and hence A
are all orthogonal!
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OF the orthogonal group of F .
OF (Z) the orthogonal matrices whose entries are integers.

A ≤ OF (Z).

Key feature: (defines our problem)

(i) A is “thin”; it is of infinite index in OF (Z)

(ii) A is not too small — it is “Zariski dense” in OF .

The group OF (Z) is an arithmetic group. It appears in the modern
theory of integral quadratic equations.

Hilbert’s 11-th problem concerns solvability of such equations
— solved only recently (2000).
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To put Hilbert’s 11th problem in context: it is a generalization of
the following classical result:
Which numbers are sums of three squares?

n = x2 + y2 + z2, x , y , z ∈ Z.

“Local obstruction”: if

n = 4a(8b + 7)

then n is not a sum of three squares (consider arithmetic on
dividing by 8).

Gauss/Legendre (1800) (local to global principle): n is a sum
of three squares iff n 6= 4a(8b + 7).
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V = {x : F (x) = 0} cone in R4

V prim(Z) = points with integer coordinates and gcd(a1, a2, a3, a4) = 1.

Then

V prim(Z) = aOF (Z)

(i.e. one orbit for all points)
V prim(Z) has infinitely many orbits under A — each corresponding
to a different Apollonian packing.
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Such “thin groups” come up in many places in number theory.
While the powerful modern theory of automorphic forms says
nothing about them, there is a flourishing theory of thin groups. It
allows for the solution of many related problems.

Counting: x ≥ 1,

NP(x) := |{c ∈ P : a(c) ≤ x}|

Theorem (D. Boyd)

lim
x→∞

log NP(x)

log x
= δ = 1.305 . . .

“Hausdorff dimension of limit set of the Apollonian Gasket” —
elementary arguments
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Using tools from hyperbolic 3 manifolds — Laplacians

Theorem (A. Kontorovich–H. Oh 2009)

There is b = b(P) > 0 such that

NP(x) ∼ bxδ as x →∞.

b(Po) ≈ 0.0458 . . .

b(P) is determined in terms of the base eigenfunction of the
infinite volume “drum” A \OF (R).

Diophantine Analysis of P:
Which integers occur as curvatures?

There are congruence restrictions — that is, in arithmetic on
dividing by q, “modq”.
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For P0 for example,

every a(c) ≡ 0, 4, 12, 13, 16, 21 (mod 24)

Theorem (E. Fuchs 2010)

The above is the only congruence obstruction for P0.

One can examine the reduction

A −→ GL4(Z/qZ) for q ≥ 1 (finite group).

Fuchs determines the precise image.
[Here the “Zariski density” is used; Weisfeiller’s work.]
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# of integers ≤ x that are hit with multiplicity is ∼ x1.3....
So we might hope that a positive density (proportion) of integers
are curvatures.

Theorem (J. Bourgain, E. Fuchs 2010)

There is C > 0 such that the number of integers < x which are
curvatures is at least Cx.

Much more ambitious is the local to global principle: that except
for a finite number of integers, every integer satisfying the
congruence (mod 24) is a curvature.
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Primes:
Are there infinitely many prime a(c)’s in P0? Or twins such as 157
and 397 in the middle?

Theorem (S. ’07)

In any integral Apollonian packing, there are infinitely many c’s
with A(c) prime and, better still, infinitely many pairs c , c ′ with
a(c) and a(c ′) prime.

Is there a prime number theorem? Möbius heuristics suggest yes.
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ΨP(x) :=
∑
c∈P

a(c) prime
a(c)≤x

log a(c),
ΨP(x)

NP(x)
−→ L(2, χ4) = 0.9159 . . .??

Using the “affine sieve” for thin groups

Theorem (Kontorovich–Oh 2009)

x large,

πP(x) = |{c ∈ P : a(c) ≤ x ; a(c) prime}| ≤ CNP(x)

log x

Peter Sarnak Mahler Lectures 2011 Number Theory and the Circle Packings of Apollonius



Some references:

J. Bourgain and E. Fuchs, JAMS 24 (2011), 945–967.

D. Boyd, Math. Comp. 39 (1982), 249–254.

J. Cogdell, “On sums of three squares”, J. Théor. No.
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