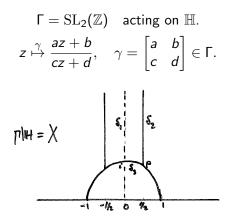
Zeros and Nodal Lines of Modular Forms

Peter Sarnak Mahler Lectures 2011 Zeros of Modular Forms Classical modular forms



(i) f(z) holomorphic in z.
(ii) f(γz) = (cz + d)^kf(z), weight k even, k ≥ 4. Finite dimensional space.

A winding number argument or Riemann–Roch gives that $f \neq 0$ has essentially k/12 zeros; $\nu_p(f)$ order of vanishing

$$u_{\infty}(f) + \frac{\nu_i(f)}{2} + \frac{\nu_{\rho}(f)}{3} + \sum_{\rho \in X} \nu_{\rho}(f) = \frac{k}{12}$$

There are no real restrictions on the location of the zeros.

Arithmetically, we look at Hecke eigenforms:

- Hecke operators T_n act on the space of forms of weight k.
- T_n is defined via arithmetic correspondences $\langle 1, z \rangle = \Lambda_z$ lattice in \mathbb{C} corresponding to $z, z \mapsto \tau$, where Λ_τ is index n in Λ_z .
- T_n 's commute and can be diagonalized.

•
$$T_n T_m = \sum_{d \mid (n,m)} T_{\frac{nm}{d^2}}.$$

f a Hecke eigenform. Where are its zeros?

Simplest such forms are Eisenstein series;

$$E_k(z)=\sum_{(c,d)=1}(cz+d)^{-k},\qquad k\geq 4.$$

Theorem (Rankin–Swinnerton-Dyer) All the zeros of E_k are on δ_3 .

The rest of the forms are cusp forms, $f(i\infty) = 0$, or

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{\frac{k-1}{2}} e(nz), \qquad e(z) = e^{2\pi i z}.$$

Key facts about $\lambda_f(n)$:

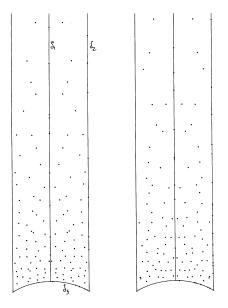
- (i) $\lambda_f(n)$ obey the same multiplicative laws as T_n .
- (ii) $|\lambda_f(n)| \ll \sum_{d|n} 1$ (Ramanujan Conjecture now Deligne Theorem).
- (iii) "Sato–Tate" law [Barnet-Lamb, Geraghty, Harris, Taylor (2010)]; for f fixed as $p \to \infty$, $\lambda_f(p)$ follows a statistical law.

Theorem (QUE Conjecture, now Holowinsky–Soundararajan Theorem (2010))

 $c_f > 0$ normalizing constant, $\mu_f = c_f |f(z)|^2 y^k \frac{dx \, dy}{y^2}$ a probability measure on X, then $\mu_f \to \frac{3}{\pi} \frac{dx \, dy}{y^2}$ as $k \to \infty$.

QUE \implies zeros of f are equidistributed in \mathcal{F} as $k \to \infty$; $\mathcal{Z}(f)$ the zero set,

$$rac{|\mathcal{Z}(f)\cap \Omega|}{|\mathcal{Z}(f)|} o rac{\operatorname{Area}(\Omega)}{\operatorname{Area}(X)} \ \ \, ext{as} \ k o \infty.$$



Zeros for y < 4.5 of two cuspforms of weight 2000 as computed by F. Stromberg. All the zeros found for y > 10 were real.

Let $\delta = \delta_1 \cup \delta_2 \cup \delta_3$.

Symmetry: $\lambda_f(n)$ is real (T_n 's are self-adjoint; in fact, $\lambda_f(n)$ lie in a totally real number field).

 \implies f is real on δ_1 and δ_2 "and δ_3 ".

 $\implies \mathcal{Z}(f)$ is symmetric about reflections in each of $\delta_1, \delta_2, \delta_3$. We call the zeros of f in δ real zeros.

How many real zeros should we expect?

 Treating λ_f(n) as random for n ≤ k (this is generally believed for n less than square-root of the conductor = k here) a probabilistic computation yields <u>expect</u> N_{real}(f) ~ c₁√k log k. (agree with numerics).

Theorem (A. Ghosh–S. 2011)

$$N_{\mathrm{real}}(f) \gg k^{rac{1}{4}-rac{1}{80}}$$

[In recent work, K. Matomaki has removed the 1/80.]

The proof actually produces this number of zeros on $\delta_1 \cup \delta_2$ but does not tell on which. It is much harder to produce zeros on each separately.

Theorem (Ghosh–S.)

 $|\mathcal{Z}(f) \cap \delta_j| \gg \log k$ for each of j = 1 and 2.

Window of opportunity: $f(z) = \sum_{k=1}^{\infty} \lambda_f(n) n^{\frac{k-1}{2}} e^{-2\pi n y} e(nx)$ as $k \to \infty$, steepest descent with $\xi^k e^{-\xi}$, max at $\xi = k$, very localized. Leads to:

Lemma

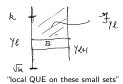
There is $\delta > 0$ such that for $1 \le \ell \le \sqrt{k}$ and $y_{\ell} = \frac{k-1}{4\pi\ell}$,

$$f(x + iy_{\ell}) = I(y_{\ell}) \left[\lambda_f(\ell) e(\ell x) + O(k^{-\delta}) \right]$$

 $I(y_{\ell}) \in (0,\infty).$

 \implies if $\lambda_f(\ell)$ is not too small, the phase of f on $0 \le x \le 1$, $y = y_\ell$ is ℓ ,

 $\implies |\mathcal{Z}(f) \cap \mathcal{F}_{y_{\ell}}| = \ell.$



 \implies if $\lambda_f(\ell)$ and $\lambda_f(\ell+1)$ are both not small, then there is <u>one</u> zero of f in B and symmetry \implies the zero must be on one of δ_1 or δ_2 .

Suggests (and is probably true) that for $y \ge \sqrt{k}$ all of the zeros of f are real!

So the problem becomes one of finding ℓ, ℓ' opposite parity and close to each other with $\lambda_f(\ell)$ and $\lambda_f(\ell')$ not small.

• Use Hecke relations and sieving arguments to find many primes or squares of primes in short intervals ...

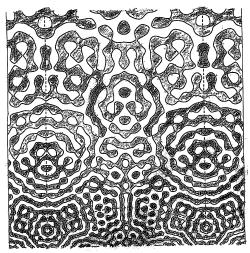
Producing zeros on δ_1 is more difficult. Need to find $\ell < k^{1/2-\delta}$ with $\lambda_f(\ell) \leq -1/10$ say. Luckily techniques from sharp subconvexity for L(s, f) [Peng 2003, Jutila Motohashi] and optimizations in smooth number arguments with differential delay euations [Kaisa Matmaki 2011] allow us to squeak in by the tiniest of margins.

Joint work with A. Ghosh and A. Reznikov <u>Zeros of Maass Forms</u> $\phi(z)$ a Maass form, $\phi : \mathbb{H} \to \mathbb{C}$ (real-valued) (i) $\Delta \phi + \lambda \phi = 0$, $\lambda = \frac{1}{4} + t^2$. (ii) $\phi(\gamma z) = \phi(z)$, $\gamma \in \Gamma$. Assume

- ϕ is cuspidal.
- ϕ is Hecke eigenform; $T_n \phi = \lambda_{\phi}(n)\phi$.

Zeros of ϕ are curves in X, 'nodal lines' denoted $\nu(\phi)$. The connected components of $X \setminus \nu(\phi)$ are the nodal domains. Their number is the number of zeros.

Below a picture of the zero set $\phi = 0$ of such a "Maass form" for $SL_2(\mathbb{Z})$, $\lambda = \frac{1}{4} + t^2$, t = 125.34... (Hejhal–Rackner). Is the zero set behaving randomly? How many components does it have?



58 nodal domains in A

A remarkable (if true!) conjecture of Bogomolny and Schmit (physicists) (2002) asserts that for such eigenstates of quantizations of classically chaotic systems,

$$N(\phi)=\# ext{ of nodal domains} \sim rac{3\sqrt{3}-5}{\pi}n ext{ as } n
ightarrow \infty.$$

Here ϕ is the *n*-th eigenfunction. The constant (universal) comes from an exactly solvable critical bond percolation model!

In our example, $N_{\phi}(A) = 58$.

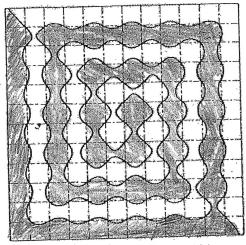
$$\frac{N_{\phi}(A) \cdot 4\pi}{\operatorname{Area}(A) \cdot R^2} = 0.0678 \dots$$

The prediction is $\frac{3\sqrt{3}-5}{\pi} = 0.0624...$

What do we know about such nodal domains in general?

- (i) Courant nodal domain theorem: $N(\phi) \leq n$ if $\lambda = \lambda_n$.
- (ii) Toth–Zelditch (2008) If $X = \Omega \subset \mathbb{R}^2$ (compact) domain with real analytic boundary, and ϕ satisfies a Neumann eigenfunction, then $\#\{\nu(\phi) \cap \partial\Omega\} \ll t, t^2 = \lambda$.
- (iii) Donnelly–Fefferman (real analytic manifold): $t \ll \text{length}(\nu(\phi)) \ll t.$

The trouble is giving a lower bound for $N(\phi)$. In general it need not grow!



Nodal domain of an eigenfunction on the square, $N(\phi) = 2$. From Courant–Hilbert; Vol I. Thesis A. Stern, Gottingen, 1925.

Symmetry for *X*:

The isometry $z \mapsto -\overline{z}$ of \mathbb{H} induces an isometry $\sigma : X \to X$.

$$\delta = \operatorname{Fix}(\sigma) = \{z : \sigma(z) = z\} = \delta_1 \cup \delta_2 \cup \delta_3.$$

 ϕ is either even or odd with respect to $\sigma.$ We stick to the even ones.

- If Ω is a nodal domain for ϕ , then so is $\sigma(\Omega)$. \implies either $\sigma(\Omega) = \Omega$, we call Ω <u>inert</u> (or real), or $\sigma(\Omega) \cap \Omega = \emptyset$, we call Ω split.
- Ω is inert iff Ω meets δ nontrivially.

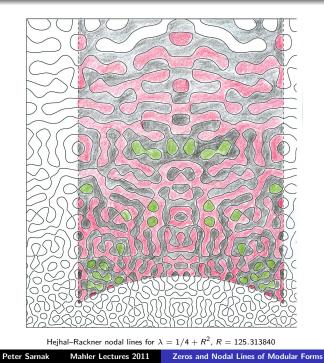
$$N_i(\phi) = \#$$
 inert nodal domains
 $N_s(\phi) = \#$ split nodal domains (which is even)
 $N(\phi) = N_i(\phi) + N_s(\phi).$

Topological Proposition

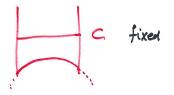
Let n_{ϕ} be the number of sign changes of ϕ going around δ and let m_{ϕ} be the number of zeros of ϕ as one traverses δ . Then

$$\frac{n_{\phi}}{2}+1\leq N_i\phi\leq m_{\phi}.$$

We are led to study the number of intersections of ν_{ϕ} with a given curve (namely δ).



Restriction and intersection with closed horocycles C:



Theorem

(i) Sharp L²-restriction, $\|\phi\|_2 = 1$, $\lambda = \frac{1}{4} + t^2$. For $\varepsilon > 0$, $t^{-\varepsilon} \ll_{\varepsilon} \|\phi\|_{C} \|_{2}^{2} \ll_{\varepsilon} t^{\varepsilon}$. (ii) $t^{1/12} \ll |\nu(\phi) \cap C| \ll t$.

The lower bound (ii) should probably also be t. The upper bound ("Bezout") (ii) can be proven without arithmetic assumption (J. Jung).

For δ , we need to assume a quantitative QUE (which follows from subconvexity for certain *L*-functions).

Theorem

Let $\beta \subset \delta$ be a compact segment. Assume subconvexity for automorphic L-functions. Then

 $1 \ll \|\phi\|_{\beta}\|_2^2 \ll t^{\varepsilon} \qquad \longleftarrow (unconditional).$

Theorem

Let $\beta \subset \delta$ be a compact segment and assume the Lindelöf Hypothesis (which is a consequence of the Riemann Hypothesis) for automorphic L-functions. Then

 $t^{1/12} \ll |\nu(\phi) \cap \beta| \ll t \qquad \longleftarrow$ (unconditional).

Corollary

Assume Lindelöf. Then

$$t^{1/12} \ll \mathsf{N}_i^{(\beta)}(\phi) \ll t.$$

Here $N_i^{(\beta)}(\phi)$ is the number of inert nodal domains that meet β . Again, the upper bound is unconditional.

- In particular, the number of nodal domains goes to infinity with *t*!
- We don't know how to produce split domains, which presumably are most of them.
- For y ≫ t, we have a quite complete understanding of the nodal domains. All are inert.

The proofs use the full force of analytic tools and results from automorphic forms — L-functions, Ramanujan bounds,

Also critical are asymptotics of classical Bessel functions, transition ranges, Airy function.

The basic method to produce sign changes of ϕ on C or on β is to show that

$$\int_eta \phi$$
 and $\int_eta |\phi|$

are unequal. This is achieved using the restriction (L^2) lower bounds and L^{∞} upper bounds for ϕ (Iwaniec–S. 1995).

Some references:

- E. Bogomolny and C. Schmit, Phys. Rev. Letter **80** (2002) 114102.
- A. Ghosh and P. Sarnak, "Real zeros of holomorphic Hecke cusp forms", arXiv 2011.
- D. Hejhal and B. Rackner, Exp. Math. 1 (1992), 275–305.
- R. Holowinsky and K. Soundararajan, Ann. Math. 172 (2010), 1517–1528.
- J. Jung, "Zeros of eigenfunctions on hyperbolic surfaces lying on a curve", arXiv, August 2011.
- K. Matomaki, "On signs of Fourier coefficients of cusp forms", to appear in Proc. Camb. Phil. Soc.
- F. K. C. Rankin and H. P. F. Swinnerton-Dyer, BLMS (1970), 169–170.
- P. Sarnak, BAMS **48** (2011), 211–228.

J. Toth and S. Zelditch, J. D. G. **81** (2009), 649–686.