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Zeros of Modular Forms
Classical modular forms

Γ = SL2(Z) acting on H.

z
γ7→ az + b

cz + d
, γ =

[
a b
c d

]
∈ Γ.

(i) f (z) holomorphic in z .

(ii) f (γz) = (cz + d)k f (z), weight k even, k ≥ 4. Finite
dimensional space.
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A winding number argument or Riemann–Roch gives that f 6≡ 0
has essentially k/12 zeros; νp(f ) order of vanishing

ν∞(f ) +
νi (f )

2
+
νρ(f )

3
+
∑
p∈X

νp(f ) =
k

12
.

There are no real restrictions on the location of the zeros.

Arithmetically, we look at Hecke eigenforms:

Hecke operators Tn act on the space of forms of weight k.

Tn is defined via arithmetic correspondences 〈1, z〉 = Λz

lattice in C corresponding to z , z 7→ τ , where Λτ is index n in
Λz .

Tn’s commute and can be diagonalized.

TnTm =
∑

d |(n,m)

T nm
d2

.
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f a Hecke eigenform. Where are its zeros?

Simplest such forms are Eisenstein series;

Ek(z) =
∑

(c,d)=1

(cz + d)−k , k ≥ 4.

Theorem (Rankin–Swinnerton-Dyer)

All the zeros of Ek are on δ3.

The rest of the forms are cusp forms, f (i∞) = 0, or

f (z) =
∞∑
n=1

λf (n)n
k−1
2 e(nz), e(z) = e2πiz .
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Key facts about λf (n):

(i) λf (n) obey the same multiplicative laws as Tn.

(ii) |λf (n)| �
∑

d |n 1 (Ramanujan Conjecture — now Deligne
Theorem).

(iii) “Sato–Tate” law [Barnet-Lamb, Geraghty, Harris, Taylor
(2010)]; for f fixed as p →∞, λf (p) follows a statistical law.

Theorem (QUE Conjecture, now Holowinsky–Soundararajan
Theorem (2010))

cf > 0 normalizing constant, µf = cf |f (z)|2yk dx dy
y2 a probability

measure on X , then µf → 3
π
dx dy
y2 as k →∞.

QUE =⇒ zeros of f are equidistributed in F as k →∞;
Z(f ) the zero set,

|Z(f ) ∩ Ω|
|Z(f )|

→ Area(Ω)

Area(X )
as k →∞.
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Let δ = δ1 ∪ δ2 ∪ δ3.

Symmetry: λf (n) is real (Tn’s are self-adjoint; in fact, λf (n) lie in
a totally real number field).
=⇒ f is real on δ1 and δ2 “and δ3”.
=⇒ Z(f ) is symmetric about reflections in each of δ1, δ2, δ3.
We call the zeros of f in δ real zeros.

How many real zeros should we expect?

Treating λf (n) as random for n ≤ k (this is generally believed
for n less than square-root of the conductor = k here) a
probabilistic computation yields
expect Nreal(f ) ∼ c1

√
k log k .

(agree with numerics).
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Theorem (A. Ghosh–S. 2011)

Nreal(f )� k
1
4
− 1

80

[In recent work, K. Matomaki has removed the 1/80.]

The proof actually produces this number of zeros on δ1 ∪ δ2 but
does not tell on which. It is much harder to produce zeros on each
separately.

Theorem (Ghosh–S.)

|Z(f ) ∩ δj | � log k for each of j = 1 and 2.

Window of opportunity: f (z) =
∞∑
k=1

λf (n)n
k−1
2 e−2πnye(nx)

as k →∞, steepest descent with ξke−ξ, max at ξ = k, very
localized. Leads to:
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Lemma

There is δ > 0 such that for 1 ≤ ` ≤
√
k and y` = k−1

4π` ,

f (x + iy`) = I (y`)
[
λf (`)e(`x) + O(k−δ)

]
,

I (y`) ∈ (0,∞).

=⇒ if λf (`) is not too small, the phase of f on 0 ≤ x ≤ 1, y = y`
is `,

=⇒ |Z(f ) ∩ Fy` | = `.

“local QUE on these small sets”

=⇒ if λf (`) and λf (`+ 1) are both not small, then there is one
zero of f in B and symmetry =⇒ the zero must be on one of δ1 or
δ2.
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Suggests (and is probably true) that for y ≥
√
k all of the zeros of

f are real!

So the problem becomes one of finding `, `′ opposite parity and
close to each other with λf (`) and λf (`′) not small.

Use Hecke relations and sieving arguments to find many
primes or squares of primes in short intervals . . .

Producing zeros on δ1 is more difficult. Need to find ` < k1/2−δ

with λf (`) ≤ −1/10 say. Luckily techniques from sharp
subconvexity for L(s, f ) [Peng 2003, Jutila Motohashi] and
optimizations in smooth number arguments with differential delay
euations [Kaisa Matmaki 2011] allow us to squeak in by the tiniest
of margins.
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Joint work with A. Ghosh and A. Reznikov
Zeros of Maass Forms
φ(z) a Maass form, φ : H→ C (real-valued)

(i) ∆φ+ λφ = 0, λ = 1
4 + t2.

(ii) φ(γz) = φ(z), γ ∈ Γ.

Assume

φ is cuspidal.

φ is Hecke eigenform; Tnφ = λφ(n)φ.

Zeros of φ are curves in X , ’nodal lines’ denoted ν(φ). The
connected components of X \ ν(φ) are the nodal domains. Their
number is the number of zeros.

Peter Sarnak Mahler Lectures 2011 Zeros and Nodal Lines of Modular Forms



Below a picture of the zero set φ = 0 of such a “Maass form” for
SL2(Z), λ = 1

4 + t2, t = 125.34 . . . (Hejhal–Rackner).
Is the zero set behaving randomly? How many components does it
have?

58 nodal domains in A
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A remarkable (if true!) conjecture of Bogomolny and Schmit
(physicists) (2002) asserts that for such eigenstates of
quantizations of classically chaotic systems,

N(φ) = # of nodal domains ∼ 3
√

3− 5

π
n as n→∞.

Here φ is the n-th eigenfunction. The constant (universal) comes
from an exactly solvable critical bond percolation model!

In our example, Nφ(A) = 58.

Nφ(A) · 4π
Area(A) · R2

= 0.0678 . . . .

The prediction is 3
√
3−5
π = 0.0624 . . ..
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What do we know about such nodal domains in general?

(i) Courant nodal domain theorem: N(φ) ≤ n if λ = λn.

(ii) Toth–Zelditch (2008) If X = Ω ⊂ R2 (compact) domain with
real analytic boundary, and φ satisfies a Neumann
eigenfunction, then #{ν(φ) ∩ ∂Ω} � t, t2 = λ.

(iii) Donnelly–Fefferman (real analytic manifold):
t � length(ν(φ))� t.
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The trouble is giving a lower bound for N(φ). In general it need
not grow!

Nodal domain of an eigenfunction on the square, N(φ) = 2.
From Courant–Hilbert; Vol I. Thesis A. Stern, Gottingen, 1925.
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Symmetry for X :
The isometry z 7→ −z of H induces an isometry σ : X → X .

δ = Fix(σ) = {z : σ(z) = z} = δ1 ∪ δ2 ∪ δ3.

φ is either even or odd with respect to σ. We stick to the even
ones.

If Ω is a nodal domain for φ, then so is σ(Ω).
=⇒ either σ(Ω) = Ω, we call Ω inert (or real), or
σ(Ω) ∩ Ω = ∅, we call Ω split.

Ω is inert iff Ω meets δ nontrivially.
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Ni (φ) = # inert nodal domains

Ns(φ) = # split nodal domains (which is even)

N(φ) = Ni (φ) + Ns(φ).

Topological Proposition

Let nφ be the number of sign changes of φ going around δ and let
mφ be the number of zeros of φ as one traverses δ. Then

nφ
2

+ 1 ≤ Niφ ≤ mφ.

We are led to study the number of intersections of νφ with a given
curve (namely δ).
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Hejhal–Rackner nodal lines for λ = 1/4 + R2, R = 125.313840
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Restriction and intersection with closed horocycles C :

Theorem

(i) Sharp L2-restriction, ‖φ‖2 = 1, λ = 1
4 + t2. For ε > 0,

t−ε �ε ‖ φ|C ‖
2
2 �ε t

ε.

(ii) t1/12 � |ν(φ) ∩ C | � t.

The lower bound (ii) should probably also be t. The upper bound
(“Bezout”) (ii) can be proven without arithmetic assumption (J.
Jung).
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For δ, we need to assume a quantitative QUE (which follows from
subconvexity for certain L-functions).

Theorem

Let β ⊂ δ be a compact segment. Assume subconvexity for
automorphic L-functions. Then

1� ‖ φ|β ‖
2
2 � tε ←− (unconditional).

Theorem

Let β ⊂ δ be a compact segment and assume the Lindelöf
Hypothesis (which is a consequence of the Riemann Hypothesis)
for automorphic L-functions. Then

t1/12 � |ν(φ) ∩ β| � t ←− (unconditional).
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Corollary

Assume Lindelöf. Then

t1/12 � N
(β)
i (φ)� t.

Here N
(β)
i (φ) is the number of inert nodal domains that meet β.

Again, the upper bound is unconditional.

In particular, the number of nodal domains goes to infinity
with t!

We don’t know how to produce split domains, which
presumably are most of them.

For y � t, we have a quite complete understanding of the
nodal domains. All are inert.
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The proofs use the full force of analytic tools and results from
automorphic forms — L-functions, Ramanujan bounds, . . . .

Also critical are asymptotics of classical Bessel functions, transition
ranges, Airy function.

The basic method to produce sign changes of φ on C or on β is to
show that ∫

β
φ and

∫
β
|φ|

are unequal. This is achieved using the restriction (L2) lower
bounds and L∞ upper bounds for φ (Iwaniec–S. 1995).
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