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Dichotomy: Either there is a rigid structure (e.g. a simple closed
formula) in a given problem, or the answer is difficult to determine
and in that case it is random according to some probabilistic law.

The probabilistic law can be quite unexpected and telling.

Establishing the law can be very difficult and is often the
central issue.
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The randomness principle has implications in both directions.
⇒ Understanding and proving the law allows for a complete
understanding of a phenomenon.
⇐ The fact that a very explicit arithmetical problem behaves
randomly is of great practical value.

Examples:

To produce pseudo-random numbers,

Construction of optimally efficient error correcting codes and
communication networks,

Efficient derandomization of probablistic algorithms
“expanders”.

Peter Sarnak Mahler Lectures 2011 Randomness in Number Theory



Illustrate the Dichotomy with Examples

(0) Is π = 3.14159265358979323 . . . a normal number?
π is far from rational;

Mahler (1953):

∣∣∣∣π − p

q

∣∣∣∣ > q−42.

(1) In diophantine equations:
A bold conjecture: Bombieri–Lang takes the dichotomy much
further. If V is a system of polynomial equations with rational
number coefficients (“a smooth projective variety defined over
Q”), then all but finitely many rational solutions arise from ways
that we know how to make them (parametric, special subvarieties,
group laws . . . )
“The ignorance conjecture”
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(2) A classical diophantine equation
Sums of three squares: for n > 0, solve

x2 + y2 + z2 = n; x , y , z ∈ Z.

If P = (x , y , z), d2(P, 0) = n.

E(n) := set of solutions.
e.g. for n = 5, the P’s are

(±2,±1, 0), (±1,±2, 0), (±2, 0,±1),

(±1, 0,±2), (0,±2,±1), (0,±1,±2)

N(n) := #E(n), the number of solutions, so N(5) = 24.
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N(n) is not a random function of n but it is difficult to understand.

Gauss/Legendre (1800): N(n) > 0 iff n 6= 4a(8b + 7).
(This is a beautiful example of a local to global principle.)

N(n) ≈
√
n (if not zero).

Project these points onto the unit sphere

P = (x , y , z) 7→ 1√
n

(x , y , z) ∈ S2.

We have no obvious formula for locating the P’s and hence
according to the dichotomy they should behave randomly. It is
found that they behave like N randomly placed points on S2.
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One can prove some of these random features.

It is only in dimension 3 that the Ê(n)’s are random. For
dimensions 4 and higher, the distances between points in Ê(n)
have ’explicit’ high multiplicities. For 2 dimensions there
aren’t enough points on a circle — not random.

(3) Examples from Arithmetic:
P a (large) prime number. Do arithmetic in the integers keeping
only the remainders when divided by p. This makes
{0, 1, . . . , p − 1} := Fp into a finite field.
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Now consider x = 1, 2, 3, . . . , p − 1 advancing linearly.
How do x := x−1 (mod p) arrange themselves?
Except for the first few, there is no obvious rule, so perhaps
randomly?

Experiments show that this is so. For example, statistically, one
finds that x 7→ x behaves like a random involution of
{1, 2, . . . , p − 1}.

One of the many measures of the randomness is the sum

S(1, p) =

p−1∑
x=1

e2πi(x+x)/p.

If random, this sum of p − 1 complex numbers of modulus 1
should cancel to about size

√
p.
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Fact: |S(1, p)| ≤ 2
√
p. (A. Weil 1948)

Follows from the “Riemann hypothesis for curves over finite fields”.
The fact that arithmetic operations such as x 7→ x (mod p) are
random are at the source of many pseudo-random constructions:
e.g.
Ramanujan Graphs:
These are explicit and optimally highly connected sparse graphs
(optimal expanders).

Largest known planar cubic Ramanujan graphs
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Arithmetic construction:
q ≡ 1 (mod 20) prime

1 ≤ i ≤ q − 1 ; i2 ≡ −1 (mod q)

1 ≤ β ≤ q − 1 ; β2 ≡ 5 (mod q)

S the six 2× 2 matrices with entries in Fq and of determinant 1.

S =

{
1

β

[
1± 2i 0

0 1∓ 2i

]
,

1

β

[
1 ±2
∓2 1

]
,

1

β

[
1 ±2i
±2i 1

]}
Let Vq be the graph whose vertices are the matrices A ∈ SL2(Fq),
|Vq| ∼ q3, and edges run between g and sg with s ∈ S and
g ∈ Vq.
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Vq is optimally highly connected, 6 regular graph on |SL2(Fq)|
vertices, optimal expander. Here arithmetic mimics or even betters
random.

(4) The Möbius Function

n ≥ 1, n = pe11 pe22 · · · p
ek
k

µ(n) =

{
0 if ej ≥ 2 for some j ,

(−1)k otherwise.

n 1 2 3 4 5 6 7 8 9 10

µ(n) 1 −1 −1 0 −1 1 −1 0 0 1
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Is µ(n) random? What laws does it follow.
There is some structure, e.g. from the squares

µ(4k) = 0 etc.

One can capture the precise structure/randomness of µ(n) via
dynamical systems, entropy, . . . .
Very simplest question thinking of a random walk on Z moving to
the right by 1 if µ(n) = 1, to the left if µ(n) = −1, and sticking if
µ(n) = 0. After N steps?
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1

N

∑
n≤N

µ(n), N ≤ 100 000

Is ∣∣∣∣∣∣
∑
n≤N

µ(n)

∣∣∣∣∣∣�ε N
1/2+ε, ε > 0?

This equivalent to the Riemann hypothesis! So in this case
establishing randomness is one of the central unsolved problems in
mathematics.

One can show that for any A fixed and N large,∣∣∣∣∣∣
∑
n≤N

µ(n)

∣∣∣∣∣∣ ≤ N

(logN)A
.
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(5) The Riemann Zeta Function

ζ(s) =
∞∑
n=1

n−s , s > 1

it is a complex analytic function of s (all s).

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
.

Riemann Hypothesis: All the nontrivial zeros ρ of ζ(s) have real
part 1/2. Write ρ = 1/2 + iγ for the zeros.

γ1 = 14.21 . . . (Riemann)

and the first 1010 zeros are known to satisfy RH.
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0 < γ1 ≤ γ2 ≤ γ3 . . .
Are the γj ’s random?
Scale first so as to form meaningful local statistics

γ̂j :=
γj log γj

2π

γ̂j , j = 1, 2, . . . don’t behave like random numbers but rather like
eigenvalues of a random (large) hermitian matrix! GUE

Nearest neighbor spacings among 70 million zeroes beyond the 1020-th zero of zeta, versus µ1(GUE)
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(6) Modular Forms
Modular (or automorphic) forms are a goldmine and are at the
center of modern number theory. I would like to see an article
“The Unreasonable Effectiveness of Modular Forms”
Who so? I think it is because they violate our basic principle.

They have many rigid and many random features.

They cannot be written down explicitly (in general)

But one can calculate things associated with them to the
bitter end, sometimes enough to mine precious information.
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Below is the nodal set {φ = 0} of a highly excited modular form
for SL2(Z).

∆φ+ λφ = 0, λ =
1

4
+ R2.

φ(z) is SL2(Z) periodic. Is the zero behaving randomly? How
many components does it have?

Hejhal and Rackner: On the Topography of Maass Waveforms for PSL(2, Z) 287

R = 47:926558 R = 125:313840

R = 125:347558 R = 125:523988
FIGURE 8. More nodal lines of even waveforms. The illustrated region is [�1; 1]� [:75; 2:75] for R = 47:926558and [�:75; :75]� [:75; 2:25] for the remaining graphs.� Although ridges are clearly visible as soon asR is moderately high (Figures 2, 3, 5 and 9),they do not seem to lie along closed geodesics.(We recall, incidentally, that PSL(2;Z)nH hasno periodic orbits passing through i1.)� Texturally, Figures 5, 9 and 10 are very similar,even though Figure 10 is random.� In Figures 2, 5 and 9, there are roughly circularscars surrounding the elliptic �xpoint at e�i=3.

By contrast, Figure 3 does not show this phe-nomenon.� As shown in [Hejhal 1992b, p. 93], the function	 will typically have a positive local maximumor a negative local minimum at e�i=3. A look atthe numerics shows that in general this is nota global maximum or minimum (see Figure 3).The point z = i is also a critical point, but itstype appears to be variable.

Hejhal–Rackner nodal lines for λ = 1/4 + R2, R = 125.313840
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Hejhal–Rackner nodal lines for λ = 1/4 + R2, R = 125.313840
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The physicists Bogomolny and Schmit (2002) suggest that for
random waves

N(φn) = # of components ∼ cn

c =
3
√

3− 5

π
, comes from an exactly solvable critical percolation

model!

The modular forms apparently obey this rule. Some of this
but much less can be proven.

These nodal lines behave like random curves of degree
√
n.

(7) Randomness and Algebra?
How many ovals does a random real plane projective curve of
degree t have?
Harnack: # of ovals ≤ (t−1)(t−2)

2 + 1
Answer: the random curve is about 4% Harnack,
# of ovals ∼ c ′t2, c ′ = 0.0182 . . . (Nazarov–Sodin, Nastasescu).
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