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n ≥ 1,

µ(n) =

{
(−1)t if n = p1p2 · · · pt distinct,

0 if n has a square factor.

1,−1,−1, 0,−1, 1,−1, 1,−1, 0, 0, 1, . . . .

Is this a “random” sequence?

1

ζ(s)
=
∏
p

(1− p−s) =
∞∑
n=1

µ(n)

ns
,

so the zeros of ζ(s) are closely connected to∑
n≤N

µ(n).
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Prime Number Theorem

elementarily⇐⇒∑
n≤N

µ(n) =
∑
n≤N

µ(n) · 1 = o(N).

Riemann Hypothesis ⇐⇒ For ε > 0,∑
n≤N

µ(n) = Oε(N1/2+ε).

Usual randomness of µ(n), square-root cancellation.

(Old Heurestic) “Möbius Randomness Law” (EG, I–K)∑
n≤N

µ(n)ξ(n) = o(N)

for any “reasonable” independently defined bounded ξ(n).
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This is often used to guess the behaviour for sums on primes using

Λ(n) =

{
log p if n = pe ,

0 otherwise,

Λ(n) = −
∑
d |n

µ(d) log d .

What is “reasonable”?
Computational Complexity (?): ξ ∈ P if ξ(n) can be computed in
polylog(n) steps.
Perhaps ξ ∈ P =⇒ µ is orthogonal to ξ?

I don’t believe so since I believe factoring and µ itself is in P.
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Problem: Construct ξ ∈ P bounded such that

1

N

∑
n≤N

µ(n)ξ(n)→ α 6= 0.

Dynamical view of complexity of a sequence (Furstenberg
disjointness paper 1967)
Flow: F = (X ,T ), X a compact metric space, T : X → X
continuous. If x ∈ X and f ∈ C (X ), the sequence (“return times”)

ξ(n) = f (T nx)

is realized in F .
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Idea is to measure the complexity of ξ(n) by realizing ξ(n) in a
flow F of low complexity.

Every bounded sequence can be realized; say ξ(n) ∈ {0, 1},
Ω = {0, 1}N, T : Ω→ Ω,

T ((x1, x2, . . .)) = (x2, x3, . . .)

i.e. shift.
If ξ = (ξ(1), ξ(2), . . .) ∈ Ω and f (x) = x1, x = ξ realizes ξ(n).

In fact, ξ(n) is already realized in the potentially much simpler flow
Fξ = (Xξ,T ), Xξ = {T jξ}∞j=1 ⊂ Ω.
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The crudest measure of the complexity of a flow is its
Topological Entropy h(F ). This measures the exponential growth
rate of distinct orbits of length m, m→∞.

Definition

F is deterministic if h(F ) = 0. ξ(n) is deterministic if it can be
realized in a deterministic flow.

A Process: is a flow together with an invariant probability measure

Fν = (X ,T , ν),

ν(T−1A) = ν(A) for all (Borel) sets A ⊂ X .
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h(Fν) = Kolmogorov–Sinai entropy.
h(Fν) = 0, Fν is deterministic, and it means that with
ν-probability one, ξ(1) is determined from ξ(2), ξ(3), . . ..

Theorem

µ(n) is not deterministic.

A much stronger form of this should be that µ(n) cannot be
approximated by a deterministic sequence.
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Definition

µ(n) is disjoint (or orthogonal) from F if∑
n≤N

µ(n)ξ(n) = o(N)

for every ξ belonging to F .

Main Conjecture (Möbius Randomness Law)

µ is disjoint from any deterministic F . In particular, µ is
orthogonal to any deterministic sequence.

NB We don’t ask for rates in o(N).

Why believe this conjecture?
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There is an old conjecture.

Conjecture (Chowla: self correlations)

0 ≤ a1 < a2 < . . . < at ,∑
n≤N

µ(n + a1)µ(n + a2) · · ·µ(n + at) = o(N).

The trouble with this is no techniques are known to attack it and
nothing is known towards it.

Proposition

Chowla =⇒ Main Conjecture.

The proof is purely combinatorial and applies to any uncorrelated
sequence.
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The point is that progress on the main conjecture can be made,
and these hard-earned results have far-reaching applications.
The key tool is the bilinear method of Vinogradov — we explain it
in dynamical terms at the end.

Cases of Main Conjecture Known:

(i) F is a point ⇐⇒ Prime Number Theorem.

(ii) F finite ⇐⇒ Dirichlet’s theorem on primes in progressions.

(iii) F = (R/Z,Tα), Tα(x) = x + α, rotation of circle;
Vinogradov/Davenport 1937.
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(iv) Extends to any Kronecker flow [i.e. F = (G ,Tα), G compact
abelian, Tα(g) = α + g ] and also to any deterministic affine
automorphism of such (Liu–S.). (If T has positive entropy,
then Main Conjecture fails).

(v) F = (Γ \ N,Tα), where N is a nilpotent Lie group and Γ a
lattice in N, Tα(Γx) = Γxα, α ∈ N (Green–Tao 2009).

(vi) If (X ,T ) is the dynamical flow corresponding to the Morse
sequence (connected to the parity of the sums of the dyadic
digits of n); Mauduit and Rivat (2005).
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The last is closely connected to a proof that µ(n) is
orthogonal to any bounded depth polynomial size circuit
function — see Gil Kalai’s blog 2011.

In all of the above, the dynamics is very rigid. For example, it
is not weak mixing.

(vii) A source of much more complex dynamics but still
deterministic in the homogeneous setting is to replace the
abelian and nilpotent groups by G semisimple. So
F = (Γ \ G ,Tα) with α ad-unipotent (to ensure zero entropy)
and Γ a lattice in G .

In this case, F is mixing of all orders (Moses).
The orbit closures are algebraic, “Ratner Rigidity”.

Main Conjecture is true for X = Γ \ SL2(R), α =

[
1 1
0 1

]
, i.e.

horocycle flows; Bourgain–S. 2011.
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Dynamical System associated with µ
Simplest realization of µ:

{−1, 0, 1}N = X , T shift

ω = (µ(1), µ(2), . . .) ∈ X

XM = {T jω}∞j=1 ⊂ X

M = (XM ,TM) is the Möbius flow.

Look for factors and extensions:

η = (µ2(1), µ2(2), . . .) ∈ Y = {0, 1}N

YS = closure in Y of T jη

S := (YS ,TS) is the square-free flow.
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π : XM → YM

(x1, x2, . . .) 7→ (x2
1 , x

2
2 , . . .)

XM
TM−−−−→ XM

π

y yπ
YS

TS−−−−→ YS

S is a factor of M.
Using an elementary square-free sieve, one can study S!

Definition

A ⊂ N is admissible if the reduction A of A (mod p2) is not all of
the residue classes (mod p2) for every prime p.
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Theorem

(i) YS consists of all points y ∈ Y whose support is admissible.

(ii) The flow S is not deterministic; in fact,

h(S) =
6

π2
log 2.

(iii) S is proximal;

inf
n≥1

d(T nx ,T ny) = 0 for all x , y.

(iv) S has a nontrivial joining with the Kronecker flow
K = (G ,T ), G =

∏
p (Z/p2Z), Tx = x + (1, 1, . . .).

(v) S is not weak mixing.
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At the ergodic level, there is an important invariant measure for S .
On cylinder sets CA, A ⊂ N finite,

CA = {y ∈ Y : ya = 1 for a ∈ A}

ν(CA) =
∏
p

(
1− t(A, p2)

p2

)
where t(A, p2) is the number of reduced residue classes of A
(mod p2). ν extends to a T -invariant probability measure on Y
whose support is YS .

Theorem

Sν = (YS ,TS , ν) satisfies

(i) η is generic for ν; that is, the sequence T nη ∈ Y is
ν-equidistributed.

(ii) Sν is ergodic.

(iii) Sν is deterministic as a ν-process.

(iv) Sν has Kµ = (K ,T , dg) as a Kronecker factor.
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Since S is a factor of M, h(M) ≥ h(S) > 0 =⇒ µ(n) is not
deterministic!

Once can form a process Nν which is a completely positive
extension of S and which conjecturally describes M and hence
the precise randomness of µ(n). In this way, the Main
Conjecture can be seen as a consequence of a disjointness
statement in Furstenberg’s general theory.

We don’t know how to establish any more randomness in M
than the factor S provides.

The best we know are the cases of disjointness proved.
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Vinogradov (Vaughan) “Sieve” expresses
∑

n≤N µ(n)F (n) in terms
of Type I and Type II sums:
In dynamical terms:

I )
∑
n≤N

f (T nd1x).

Individual Birkhoff sums associated with (X ,T d1), i.e. sums of f
on arithmetic progressions.

II )
∑
n≤N

f (T d1nx)f (T d2nx) (Bilinear sums).

Individual Birkhoff sums associated with the joinings (X ,T d1) with
(X ,T d2).
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In Bourgain–S., we give a finite version of this process. Allows for
having no rates (only main terms) in the type II sums.

With this and X = (Γ \ SL2(R),Tα), α =

[
1 1
0 1

]
unipotent, one

can appeal to Ratner’s joining of horocycles theory (1983) to
compute and handle the type II sum.
=⇒ prove of the disjointness of µ(n) with such horocycle flows.

The method should apply to the general ad-unipotent system Γ \G
by appealing to Ratner’s general rigidity theorem.
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Some references:

J. Bourgain and P. Sarnak, “Disjointness of Möbius from
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