Graph algebras: functional analysis with pictures ECR workshop, 55th meeting of the AustMS

Aidan Sims

University of Wollongong

September 25, 2011

About me

- My Dad's a mathematician, so there was never much hope for me...
- Undergraduate and PhD at the University of Newcastle summer scholarships sucked me in.
- 6 months of my PhD at U. Iowa working with Paul Muhly.
- ▶ PhD on C*-algebras of higher-rank graphs with lain Raeburn.
- Very interesting examples arising from my thesis really kicked things off — collaboration with Pask, Raeburn and Rørdam.
- APD 2005–2007. Moved to Wollongong in 2007.
- Collaborations have been the key for me: 28 articles, 23 distinct co-authors. Used this to learn new areas and broaden: *K*-theory, noncommutative geometry, classification theory, groupoids, algebraic topology, coaction theory, product systems and representation theory, Dixmier-Douady theory...

C^* -algebras

- ► A C*-algebra is an algebra of operators on Hilbert space.
- They arise in models for quantum statistical mechanics.
- The study of C*-algebras has become a major focus since the mid 20th century.

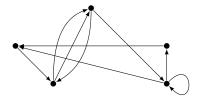
- Connes, Conway, Jones and recently Tao have all been interested at one time or another.
- ► No systematic decomposition theorems as for groups.
- So tractable examples are key to the subject.

• A *directed graph* is, for us, a quadruple $E = (E^0, E^1, r, s)$ where

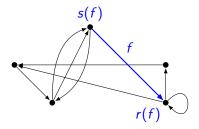
- E^0 and E^1 are countable sets, and
- r and s are functions from E^1 to E^0 .

- A *directed graph* is, for us, a quadruple $E = (E^0, E^1, r, s)$ where
 - E^0 and E^1 are countable sets, and
 - r and s are functions from E^1 to E^0 .
- We think of E⁰ as a collection of points, which we call vertices.

- A *directed graph* is, for us, a quadruple $E = (E^0, E^1, r, s)$ where
 - E^0 and E^1 are countable sets, and
 - r and s are functions from E^1 to E^0 .
- We think of E⁰ as a collection of points, which we call vertices.
- ▶ We think of of E¹ as a collection of arrows, called *edges* connecting the vertices.



- A *directed graph* is, for us, a quadruple $E = (E^0, E^1, r, s)$ where
 - E^0 and E^1 are countable sets, and
 - r and s are functions from E^1 to E^0 .
- We think of E⁰ as a collection of points, which we call vertices.
- ▶ We think of of E¹ as a collection of arrows, called *edges* connecting the vertices.
- The maps *r* and *s* indicate the directions of the arrows.



Graph C*-agebras

- ► Graph *C**-algebras "linearise" the dynamics of graphs.
- Represent on Hilbert space.
- Vertices \leftrightarrow mutually orthogonal subspaces \mathcal{H}_{v}
- Edges \leftrightarrow isometric linear maps $S_e : \mathcal{H}_{s(e)} \to \mathcal{H}_{r(e)}$.
- Require that each $\mathcal{H}_v = \bigoplus_{r(e)=v} S_e \mathcal{H}_{s(e)}$.
- So we have represented the dynamics of the graph as linear operators on Hilbert space.
- The norm-closed *-algebra generated by these operators is the graph C*-algebra.

More on graph C^* -algebras

- ▶ Key theorems say that, under hypotheses, any two representations of a graph generate the same C*-algebra.
- We can compute
 - ► The K-theory of C^{*}(E);
 - The real and stable rank of C*(E);
 - The primitive ideal space of C*(E);
 - The trace simplex of C*(E);
 - approximate finite-dimensionality or pure infinite-ness.

- This tells us what examples can arise...
- …and which ones can't.

Higher-rank graphs

- ► A higher-rank graph, or a *k*-graph, is like a *k*-dimensional version of a graph.
- So paths have a "shape" in \mathbb{N}^k instead of a length in \mathbb{N} .

$$g'$$
 f' f' f' f' f' f'

- Introduced by Kumjian and Pask in 2000 (just as I was starting my PhD).
- Can associate C*-algebras to higher-rank graphs, but the theory is more complicated.

Higher-rank graph C*-algebras

- Early on I worked on fundamental structure theory ideal structure, uniqueness theorems.
- Examples arising from my thesis work showed that higher-rank graph C*-algebras comprise a much larger class than graph C*-algebras.
- Developing constructions and examples led to spin-offs in product systems, groupoids and Fell bundles and other areas.
- Question remains: exactly how broad is the class, and how can we use the results?
- Examples included "irrational rotation" algebras, but construction complicated and required classification theorems.

 Also, constructions somewhat ad hoc: no systematic approach.

Topological realisation

- Recent work involving Kaliszewski, Kumjian, Quigg, Pask, Whittaker takes a new approach.
- Suggested by earlier work of Pask-Quigg-Raeburn, and by connections to groupoids and topology.
- Idea: if paths in a higher-rank graph are "shaped" like rectangles, we should be able to "paste" honest rectangles into them to obtain a CW complex.
- This space has a fundamental group, a well-established covering theory, and notions of homology and cohomology.
- We are developing combinatorial notions of all of these, and proving that they agree.

► Investigating links to invariants of C*-algebras.

Cohomology and twisted C*-algebras

- ▶ In cohomology, a \mathbb{T} -valued 2-cocycle is a map $c : \{(\mu, \nu) : \mu\nu \text{ is a path}\} \rightarrow \mathbb{T}$ satisfying $c(\lambda, \mu)c(\lambda\mu, \nu) = c(\lambda, \mu\nu)c(\mu, \nu).$
- The relations for the higher-rank graph C*-algebra include s_μs_ν = s_{μν} when μ, ν are composable.
- The cocycle identity is precisely what we need to get an associative multiplication from s_μs_ν = c(μ, ν)s_{μν}.
- The C^* -algebra only depends on the cohomology class of c.
- As elementary examples we obtain all irrational rotation algebras, all noncommutative tori, and a number of other examples that previously looked "sporadic."
- New systematic approach to these examples plus huge classes of related examples.
- Very exciting because there is so much to do.