Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

The University of Melbourne

October 9, 2015

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

_indenmayer Grammars

Graphics

Stack Free

MAT1MAB Mathematical Applications in Biology (La Trobe University):

- No calculus assumed or taught.
- Organised around application focussed themes (Learning Modules).
- Uses spreadsheets to run simulations/models (this made the biologists happy).
- ► No lectures. Two 1 hour practice classes per week.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

MAT1MAB Mathematical Applications in Biology (La Trobe University):

- No calculus assumed or taught.
- Organised around application focussed themes (Learning Modules).
- Uses spreadsheets to run simulations/models (this made the biologists happy).
- ► No lectures. Two 1 hour practice classes per week.
- Objectives(?):
 - Give the flavour of some accessible models.
 - Teach spreadsheet skills.
 - Surreptitiously improve quantitative/algebraic skills.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

Six two week Learning Modules:

1. Growth and Scaling:

Size matters and matters of size.

2. Epidemics: Enough to make you sick!

3. Cellular Automata:

What do epidemics and bushfires have in common?

- 4. Population Models: When time runs smoothly.
- 5. Growth Creates Form: The shape of things organic.
- 6. Climate Models: Taking Earth's temperature.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

Six two week Learning Modules:

 Growth and Scaling: Size matters and matters of size. Real agenda: Revise basic functions.

- 2. Epidemics: Enough to make you sick!
- 3. Cellular Automata:

What do epidemics and bushfires have in common?

- 4. Population Models: When time runs smoothly.
- 5. Growth Creates Form: The shape of things organic.
- 6. Climate Models: Taking Earth's temperature.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- Six two week Learning Modules:
 - 1. Growth and Scaling: Size matters and matters of size.
 - 2. Epidemics: Enough to make you sick! Real agenda: Intro to difference equations

3. Cellular Automata:

What do epidemics and bushfires have in common?

- 4. Population Models: When time runs smoothly.
- 5. Growth Creates Form: The shape of things organic.
- 6. Climate Models: Taking Earth's temperature.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

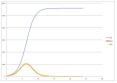
- Six two week Learning Modules:
 - 1. Growth and Scaling: Size matters and matters of size.
 - 2. Epidemics: Enough to make you sick!
 - 3. Cellular Automata:

What do epidemics and bushfires have in common? Real agenda: Cellular Automata!?

- 4. Population Models: When time runs smoothly.
- 5. Growth Creates Form: The shape of things organic.
- 6. Climate Models: Taking Earth's temperature.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks


MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- Six two week Learning Modules:
 - 1. Growth and Scaling: Size matters and matters of size.
 - 2. Epidemics: Enough to make you sick!
 - 3. Cellular Automata: What do epidemics and bushfires have in common?
 - 4. Population Models: When time runs smoothly. Real agenda: Differential equations (by stealth).

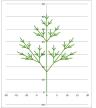
- 5. Growth Creates Form: The shape of things organic.
- 6. Climate Models: Taking Earth's temperature.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars


Graphics

Stack Free

- Six two week Learning Modules:
 - 1. Growth and Scaling: Size matters and matters of size.
 - 2. Epidemics: Enough to make you sick!
 - 3. Cellular Automata:

What do epidemics and bushfires have in common?

- 4. Population Models: When time runs smoothly.
- 5. Growth Creates Form: The shape of things organic. Real agenda: Motivate trig functions and algorithmic thinking (and have fun!)

6. Climate Models: Taking Earth's temperature.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

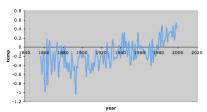
MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- Six two week Learning Modules:
 - 1. Growth and Scaling:


Size matters and matters of size.

- 2. Epidemics: Enough to make you sick!
- 3. Cellular Automata:

What do epidemics and bushfires have in common?

- 4. Population Models: When time runs smoothly.
- 5. Growth Creates Form: The shape of things organic.
- 6. Climate Models: Taking Earth's temperature.

Real agenda: Intro to stochastic processes.

Global mean temperature deviations

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- Lindenmayer Grammars can be used to model various geometric and biological phenomena.
- Motivating application of branching in annual plants is a nice example of a mathematical model in biology.
- A (context free) Lindenmayer Grammar specifies the branching rules for a plant.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

araphics

Stack Free

- Lindenmayer Grammars can be used to model various geometric and biological phenomena.
- Motivating application of branching in annual plants is a nice example of a mathematical model in biology.
- A (context free) Lindenmayer Grammar specifies the branching rules for a plant.
- A Lindenmayer Grammar (*L*-System) has an alphabet, a start string w₀ and some rewrite rules.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

araphics

Stack Free

- Lindenmayer Grammars can be used to model various geometric and biological phenomena.
- Motivating application of branching in annual plants is a nice example of a mathematical model in biology.
- A (context free) Lindenmayer Grammar specifies the branching rules for a plant.
- A Lindenmayer Grammar (*L*-System) has an alphabet, a start string w₀ and some rewrite rules.
- Derivations from this grammar generate an abstract instruction strings w₁, w₂, w₃,

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

araphics

Stack Free

- Lindenmayer Grammars can be used to model various geometric and biological phenomena.
- Motivating application of branching in annual plants is a nice example of a mathematical model in biology.
- A (context free) Lindenmayer Grammar specifies the branching rules for a plant.
- A Lindenmayer Grammar (*L*-System) has an alphabet, a start string w₀ and some rewrite rules.
- Derivations from this grammar generate an abstract instruction strings w₁, w₂, w₃,
- Each w_i describes the branching structure at a particular stage of growth.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

araphics

Stack Free

- ► Alphabet: *X*, *F*, [,], +, -.
- Start word: $w_0 = X$.
- Rules:

- ▶ No rules for [,],+,-, so leave them alone.
- ▶ No need for] \rightarrow] rules, etc.

Example Derivation

 $w_0 = X$

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

araphics

Stack Free

- ► Alphabet: *X*, *F*, [,], +, -.
- Start word: $w_0 = X$.
- Rules:

 $\begin{array}{ll} r_0: X \to F[+X][-X]FX & (\text{Replace all } X\text{'s by } F[+X][-X]FX) \\ r_1: F \to FF & (\text{Replace all } F\text{'s by } FF) \end{array}$

- ▶ No rules for [,],+,-, so leave them alone.
- ▶ No need for] \rightarrow] rules, etc.

Example Derivation

 $w_0 = X$ $w_1 = F[+X][-X]FX$ Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

araphics

Stack Free

- ► Alphabet: *X*, *F*, [,], +, -.
- Start word: $w_0 = X$.
- Rules:

- ▶ No rules for [,],+,-, so leave them alone.
- No need for] \rightarrow] rules, etc.

Example Derivation

 $w_0 = X$

 $w_1 = F[+X][-X]FX$

 $w_{2} = FF[+F[+X][-X]FX][-F[+X][-X]FX]FFF[+X][-X]FX$

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

araphics

Stack Free

- ► Alphabet: *X*, *F*, [,], +, -.
- Start word: $w_0 = X$.
- Rules:

- ▶ No rules for [,],+,-, so leave them alone.
- ▶ No need for] \rightarrow] rules, etc.

Example Derivation

 $w_0 = X$

 $w_1 = F[+X][-X]FX$

 $w_2 = FF[+F[+X][-X]FX][-F[+X][-X]FX]FFF[+X][-X]FX$

w₃ = Really Long String!

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

araphics

Stack Free

- ► Alphabet: *X*, *F*, [,], +, -.
- Start word: $w_0 = X$.
- Rules:

- ▶ No rules for [,],+,-, so leave them alone.
- ▶ No need for] \rightarrow] rules, etc.

Example Derivation

 $w_0 = X$

 $w_1 = F[+X][-X]FX$

 $w_2 = FF[+F[+X][-X]FX][-F[+X][-X]FX]FFF[+X][-X]FX$

- w₃ = Really Long String!
 - Prohibitive to compute realistic strings by hand.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

araphics

Stack Free

- The Turtle is a drawing robot that sequentially interprets instruction string symbols in various ways:
 - 1. Moving forward (not important for us).
 - 2. Drawing a line segment as it moves forward.
 - 3. Turning (left or right) through a fixed angle.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- The Turtle is a drawing robot that sequentially interprets instruction string symbols in various ways:
 - 1. Moving forward (not important for us).
 - 2. Drawing a line segment as it moves forward.
 - 3. Turning (left or right) through a fixed angle.
- And for branching structures:

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- The Turtle is a drawing robot that sequentially interprets instruction string symbols in various ways:
 - 1. Moving forward (not important for us).
 - 2. Drawing a line segment as it moves forward.
 - 3. Turning (left or right) through a fixed angle.
- And for branching structures:
 - 4. Remembering its current position.
 - 5. Returning to its most recently remembered position and then forgetting it.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- The Turtle is a drawing robot that sequentially interprets instruction string symbols in various ways:
 - 1. Moving forward (not important for us).
 - 2. Drawing a line segment as it moves forward.
 - 3. Turning (left or right) through a fixed angle.
- And for branching structures:
 - 4. Remembering its current position.
 - 5. Returning to its most recently remembered position and then forgetting it.
- Prohibitive to plot realistic examples by hand.
- Small examples done by hand in practice classes to give insight into the process.
- Spreadsheets enable students to plot satisfying diagrams of branching structures.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- The Turtle is a drawing robot that sequentially interprets instruction string symbols in various ways:
 - 1. Moving forward (not important for us).
 - 2. Drawing a line segment as it moves forward.
 - 3. Turning (left or right) through a fixed angle.
- And for branching structures:
 - 4. Remembering its current position (push).
 - 5. Returning to its most recently remembered position and then forgetting it (pop).
- Prohibitive to plot realistic examples by hand.
- Small examples done by hand in practice classes to give insight into the process.
- Spreadsheets enable students to plot satisfying diagrams of branching structures.
- Problem! Interpretations 4 and 5 require the use of a stack – difficult to implement in a spreadsheet.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

The Turtle's World View

- At each time t, the turtle is at some location (x, y) and is pointing in direction α°.
- It has a fixed turn angle δ° and a movement unit *d*.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

The Turtle's World View

- At each time t, the turtle is at some location (x, y) and is pointing in direction α°.
- It has a fixed turn angle δ° and a movement unit *d*.
- Instructions it understands:

Symbol	Interpretation	State Changes
F	move forward by d	$x_{new} = x + d\cos(\alpha^{\circ}),$
	drawing a line	$y_{\sf new} = y + d\sin(lpha^\circ)$
f	move forward by <i>d</i>	$X_{new} = X + d\cos(\alpha^{\circ}),$
	without drawing a line	$y_{\sf new} = y + d\sin(lpha^\circ)$
+	turn left by δ°	$\alpha_{new}^\circ = (\alpha + \delta)^\circ$
-	turn right by δ°	$\alpha_{\sf new}^\circ = (lpha - \delta)^\circ$
[save current state	None
]	return to state	Revert
	saved at <i>previous</i>	
Other	Ignore	None

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

/AT1MAB

Lindenmayer Grammars

Graphics

Stack Free

"Node rewrite" examples

Both n = 5.

 $\delta = 25^{\circ}$ $w_0 = X$ $r_0: X \to F[+X][-X]FX$ $r_1: F \to FF$

 $\delta = 20^{\circ}$ $w_{0} = X$ $r_{0} : X \rightarrow F[+X]F[-X] + X$ $r_{1} : F \rightarrow FF$ Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

$$\delta = 25^{\circ}$$

$$w_0 = X$$

$$r_0: X \to F[+X][-X]FX$$

$$r_1: F \to FF$$

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

$$\delta = 25^{\circ}$$

$$w_0 = X$$

$$r_0: X \to F[+X][-X]FX$$

$$r_1: F \to FF$$

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

$$n = 1$$
 $n = 2$

$$\delta = 25^{\circ}$$

$$w_0 = X$$

$$r_0: X \to F[+X][-X]FX$$

$$r_1: F \to FF$$

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

$$n=1$$
 $n=2$ $n=3$

$$\delta = 25^{\circ}$$

$$w_0 = X$$

$$r_0: X \to F[+X][-X]FX$$

$$r_1: F \to FF$$

$$n = 1$$
 $n = 2$ $n = 3$ $n = 4$

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

_indenmayer Grammars

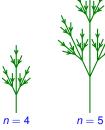
Graphics

Stack Free

$$\delta = 25^{\circ}$$

$$w_0 = X$$

$$r_0: X \to F[+X][-X]FX$$


$$r_1: F \to FF$$

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

Graphics

$$n = 1$$

n = 2

The Stack Bypassed

- We can sometimes avoid stacks using a modified Lindenmayer Grammar.
- The idea is to "retrace steps" back to the state where a [would have pushed the state.

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

/AT1MAB

Lindenmayer Grammars

Graphics

Stack Free

The Stack Bypassed

- We can sometimes avoid stacks using a modified Lindenmayer Grammar.
- The idea is to "retrace steps" back to the state where a [would have pushed the state.
- To do this we introduce a new turtle instruction R meaning draw (move?) in reverse:

Symbol	Interpretation	State Changes
R	move backward	$x_{\sf new} = x + d\cos((180 + \alpha)^\circ)$
	drawing a line	$y_{\sf new} = y + d\sin((180 + \alpha)^\circ)$

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

/AT1MAB

_indenmayer Grammars

Graphics

Stack Free

- ► Alphabet: *R*, *X*, *F*, [,], +, -.
- Start word: $w_0 = X$.
- Production Rules:

 $\begin{aligned} r_0: X \to F + X - -X + FXRR \\ r_1: F \to FF \\ r_2: R \to RR \\ (\text{No rules for } [,], +, -, \text{ so leave them alone.}) \end{aligned}$

Example Derivation: w₀ = X Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- ► Alphabet: *R*, *X*, *F*, [,], +, -.
- Start word: $w_0 = X$.
- Production Rules:

 $r_{0}: X \rightarrow F + X - -X + FXRR$ $r_{1}: F \rightarrow FF$ $r_{2}: R \rightarrow RR$ (No rules for [,], +, -, so leave them alone.)

Example Derivation: w₀ = X w₁ = F + X - -X + FXRR Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- ► Alphabet: *R*, *X*, *F*, [,], +, -.
- Start word: $w_0 = X$.
- Production Rules:

 $\begin{array}{l} r_{0}: X \rightarrow F + X - -X + FXRR \\ r_{1}: F \rightarrow FF \\ r_{2}: R \rightarrow RR \\ (\text{No rules for } [,], +, -, \text{ so leave them alone.}) \end{array}$

► Example Derivation: w₀ = X w₁ = F + X - -X + FXRR w₂ = FF + F + X - -X + FXRR - -F + X - -X + FX

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

- ► Alphabet: *R*, *X*, *F*, [,], +, -.
- Start word: $w_0 = X$.
- Production Rules:

 $r_{0}: X \rightarrow F + X - -X + FXRR$ $r_{1}: F \rightarrow FF$ $r_{2}: R \rightarrow RR$ (No rules for [,], +, -, so leave them alone.)

- Example Derivation:
 w₀ = X
 - $w_1 = F + X -X + FXRR$

 $w_2 = FF + F + X - -X + FXRR - -F + X - -X + FX$

w₃ = Ridiculously Long String!

It works!

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

Lindenmayer Grammars

Graphics

Stack Free

The Question ...

This modified grammar approach raises an interesting mathematical problem:

Question

Given an arbitrary Lindenmayer system, can we always find a modified grammar that generates the same diagrams?

If not, for what class of systems is this possible?

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

_indenmayer Grammars

Graphics

Stack Free

An "edge rewrite" system

Not clear that modified grammar can always be found for "edge rewrite" systems. EG:

$$\delta = 30^{\circ}$$

$$w_0 = F$$

$$r_0: F \to FF - [-F + F] + [+F - F]$$

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

_indenmayer Grammars

Graphics

Stack Free

References

- Aristid Lindenmayer, Mathematical models for cellular interaction in development., J. Theoret. Biology, 18 280-315, 1968.
- Przemyslaw Prusinkiewicz, The Algorithmic Beauty of Plants 1990, available online at: http://algorithmicbotany.org/

Spreadsheet drawings of plant branching from modified Lindenmayer grammars

John Banks

MAT1MAB

_indenmayer Grammars

Graphics

Stack Free