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Partitions and Young diagrams

A partition λ of n is a sequence

λ = (λ1 ≥ λ2 ≥ · · · ≥ 0)

of nonnegative integers, such that λ1 + λ2 + · · · = n.

Example

(4, 3, 1, 1) is a partition of 9. The Young diagram of it is
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Young tableaux

A standard Young tableau (SYT) is a filling of a Young diagram
with the numbers 1, 2, . . . , n so that entries are increasing along
rows and columns.

Example

1 3 4 7
2 5 9
6
8

Let f λ denote the number of SYT of shape λ.
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Hook-length formula

Is there a nice formula for f λ?

The hook-length hλ(b) of a box b in a Young diagram λ is the
number of boxes directly to its left, or directly below it, including b
itself.

7 4 3 1
5 2 1
2
1

Theorem (Frame-Robinson-Thrall)

f λ =
n!∏

b hλ(b)

Thus

f (4311) =
9!

7.4.3.1.5.2.1.2.1
= 216
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More identities

Theorem (Frobenius identity)

∑
λ

(f λ)2 = n!

as λ varies over partitions of n.

Theorem ∑
λ

f λ = #{w ∈ Sn | w2 = 1}

as λ varies over partitions of n.
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n = 4

1 2 3 4

1 2 3
4

1 2 4
3

1 3 4
2

1 2
3 4

1 3
2 4
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3
4
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2
4

1 4
2
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1
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3
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12+32+22+32+12 = 24



Stanley’s 2bn/2c conjecture

Define the sign sign(T ) of a SYT by

T =

1 3 4 7
2 5 9
6
8

r(T ) = 134725968

sign(T ) = (−1)#{(3,2),(4,2),(7,2),(7,5),(7,6),(9,6),(9,8)} = −1

Theorem (L.)

∑
T

sign(T ) = 2bn/2c

where the sum is over all SYT T with n boxes.
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n = 4

T r(T ) sign(T )

1 2 3 4 1234 1

1 2 3
4 1234 1

1 2 4
3 1243 -1

1 3 4
2 1342 1

1 2
3 4 1234 1

1 3
2 4 1324 -1

1 2
3
4

1234 1

1 3
2
4

1324 -1

1 4
2
3

1423 1

1
2
3
4

1234 1



An open problem

∑
T

1 = #{w ∈ Sn | w2 = 1}

∑
T

sign(T ) = 2bn/2c

Problem: What happens if you replace sign(T ) by other functions
of r(T ) (or T )?

For example, the irreducible characters of Sn.
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Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5
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2 3
1 5

4 6



Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5

1 6

2 3
1 5

4 6



Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5

1 6

2 3
1 5

4 6



Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5

1 6

1 2 3
5

4 6



Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5

1 6

1 2 3
5

4 6



Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5

1 6

1 2 3
4 5

6



Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5

1 6

1 2 3
4 5
6



Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5

1 6

1 2 3
4 5
6



Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5

1 6

1 2 3
4 5
6



Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5

1 6

1 2 3
4 5
6



Littlewood-Richardson numbers

Let λ, µ, ν be partitions. The Littlewood-Richardson number cλµν is
the number of SYT of shape λ/ν such that when you slide boxes

in you get

1 2 3 4
5 6 7
8
9

of shape µ.

λ = (4, 3, 2), µ = (3, 2, 1), ν = (2, 1)
Then cλµν counts the following two tableau

2 3
1 5

4 6

2 3
4 5

1 6

1 2 3
4 5
6



Horn’s Theorem

Theorem (Horn, Klyachko, Knutson-Tao)

A p × p Hermitian matrix C can be expressed as C = A + B where
A,B are Hermitian matrices with eigenvalues
α = (α1 ≥ α2 ≥ · · · ≥ αp) and β = (β1 ≥ · · · ≥ βp) if and only if
the eigenvalues γ = (γ1 ≥ γ2 ≥ · · · ≥ γp) of C satisfy

1
p∑

i=1

γi =

p∑
i=1

αi +

p∑
i=1

βi

2 ∑
k∈K

γk ≤
∑
i∈I

αi +
∑
j∈J

βj

for every triple (I , J,K ) “corresponding” to cλµν 6= 0.



Inequalities for Littlewood-Richardson numbers

µ = ν =

µ ∪ ν = µ ∩ ν =

Theorem (L.-Postnikov-Pylyavskyy)

cλµν ≤ cλµ∪ν,µ∩ν

for each λ.

This proved a conjecture of Okounkov (cλµν ≤ cλ(µ+ν)/2,(µ+ν)/2)
concerning log-concavity of characters, and a conjecture of
Fomin-Fulton-Li-Poon, arising from the study of singular values of
(submatrices of) Hermitian matrices.
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Random Young tableau

What is the shape of a typical SYT?

Put the measure M(λ) = (f λ)2

n! on shapes of size n. So, one has

M( ) =
1

24
M( ) =

9

24
M( ) =

4

24
M( ) =

9

24
M( ) =

1

24

The (Frobenius identity) says that this is a probability measure.

Let E (n) be the expected length of the first row of a shape with n
boxes. So

E (4) =
1

24
+ 2.

9

24
+ 2.

4

24
+ 3.

9

24
+ 4.

1

24
= 2.416...

Theorem (Logan-Shepp, Vershik-Kerov)

lim
n→∞

E (n)√
n

= 2
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Random tableaux and random matrices

Theorem (Baik-Deift-Johansson, 1998)

The random variables

1 “length of first row of random partition” and

2 “largest eigenvalue of a random n × n Hermitian matrix”

converge (suitably normalized) to the same distribution as n→∞.

Theorem (Okounkov, Borodin-Okounkov-Olshanski, Johansson)

Same holds for

1 joint distribution of the first k rows of a random partition, and

2 largest k eigenvalues of a random n × n Hermitian matrix

as n→∞.
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