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Example

(4,3,1,1) is a partition of 9. The Young diagram of it is
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Let f* denote the number of SYT of shape \.
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Theorem (Frame-Robinson-Thrall)
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Thus

f(4311) — 9! — 216
7.4.3.1.521.2.1
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Theorem (Frobenius identity)
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Stanley's 2L"/2) conjecture

Define the sign sign(T) of a SYT by
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Define the sign sign(T) of a SYT by
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r(T) = 134725968
Sign( T) — (_1)#{(372)7(412)7(772)7(775)7(716)7(976)7(978)} =1

Theorem (L.)

Z sign(T) = 2L"/2)
=

where the sum is over all SYT T with n boxes.



T r(T) | sign(T)
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An open problem

di=#{weS, | w'=1}
-

sign(T) = 217/2
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Problem: What happens if you replace sign(T) by other functions
of r(T) (or T)?

For example, the irreducible characters of S,,.
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Let A, u, v be partitions. The Littlewood-Richardson number cﬁ‘y
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Horn's Theorem

Theorem (Horn, Klyachko, Knutson-Tao)

A p x p Hermitian matrix C can be expressed as C = A+ B where
A, B are Hermitian matrices with eigenvalues

a=(a1>a > -->ap) and f= (1> > Bp) if and only if
the eigenvalues v = (y1 > 72 > -+ > ~yp) of C satisfy

P P p
Z%ZZ@H-Z@'
i=1 i=1 i=1

Z’Vk < Zai-l-Zﬂj

keK icl jeJd

for every triple (I, J, K) “corresponding” to c,;\l, #0.



Inequalities for Littlewood-Richardson numbers
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p=H v=

l
pUv = pﬁV:EP

Theorem (L.-Postnikov-Pylyavskyy)

A A
C;u/ S C;LUI/,;LOI/
for each \.
This proved a conjecture of Okounkov (cﬁ‘,j < c(’\“+y)/2’(#+y)/2)

concerning log-concavity of characters, and a conjecture of
Fomin-Fulton-Li-Poon, arising from the study of singular values of
(submatrices of) Hermitian matrices.
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Random Young tableau

What is the shape of a typical SYT?

Put the measure M(\) = (f ) on shapes of size n. So, one has

4

M) = og ME) = o MED) = 25 MET) = o M) = o

The (Frobenius identity) says that this is a probability measure.

Let E(n) be the expected length of the first row of a shape with n
boxes. So
9 4 9

1 1
E(4)=—+2.— — +3.—+4.— =2416..
*) 24+ 24+ 24+ 24+ 24

Theorem (Logan-Shepp, Vershik-Kerov)

lim E(n)

n—oo \/n =2



Random tableaux and random matrices

Theorem (Baik-Deift-Johansson, 1998)

The random variables
“length of first row of random partition” and
“largest eigenvalue of a random n x n Hermitian matrix”

converge (suitably normalized) to the same distribution as n — oc.



Random tableaux and random matrices

Theorem (Baik-Deift-Johansson, 1998)

The random variables
“length of first row of random partition” and
“largest eigenvalue of a random n x n Hermitian matrix”

converge (suitably normalized) to the same distribution as n — co.

Theorem (Okounkov, Borodin-Okounkov-Olshanski, Johansson)

Same holds for
Jjoint distribution of the first k rows of a random partition, and
largest k eigenvalues of a random n X n Hermitian matrix

as n — oQ.



