J. Austral. Math. Soc.  72 (2002), 335-348
Strongly omnipresent operators: general conditions and applications to composition operators

L. Bernal-González
  Departamento de Análisis Matemático
  Facultad de Matemáticas, Apdo. 1160
  Avenida Reina Mercedes
  41080 Sevilla
  Spain
  lbernal@us.es
M. C. Calderón-Moreno
  Departamento de Análisis Matemático
  Facultad de Matemáticas, Apdo. 1160
  Avenida Reina Mercedes
  41080 Sevilla
  Spain
  mccm@us.es
and
K.-G. Grosse-Erdmann
  Fachbereich Mathematik
  Fernuniversitat Hagen
  58084 Hagen
  Germany
  kg.grosse-erdmann@fernuni-hagen.de


Abstract
This paper studies the concept of strongly omnipresent operators that was recently introduced by the first two authors. An operator T on the space H(G) of holomorphic functions on a complex domain G is called strongly omnipresent whenever the set of T-monsters is residual in H(G), and a T-monster is a function f such that Tf exhibits an extremely `wild' behaviour near the boundary. We obtain sufficient conditions under which an operator is strongly omnipresent, in particular, we show that every onto linear operator is strongly omnipresent. Using these criteria we completely characterize strongly omnipresent composition and multiplication operators.
Download the article in PDF format (size 118 Kb)

TeXAdel Scientific Publishing ©  Australian MS