J. Aust. Math. Soc.  74 (2003), 111-120
Two weighted inequalities for maximal functions related to Cesàro convergence

A. L. Bernardis
  IMAL
  Güemes 3450
  (3000) Santa Fe
  Argentina
  bernard@ceride.gov.ar
and
F. J. Martín-Reyes
  Departamento de Análisis Matemático
  Facultad de Ciencias
  Universidad de Málaga
  29071 Málaga
  Spain
  martin@anamat.cie.uma.es


Abstract
We characterize the pairs of weights $(u,v)$ for which the maximal operator
\[M_{\alpha}^-f(x)
= \sup_{R>0} R^{-1-\alpha} 
\int_{x-2R}^{x-R} |f(s)| (x-R - s)^{\alpha} \, ds,
\quad  -1<\alpha < 0,\]
is of weak and restricted weak type $(p,p)$ with respect to $u(x)\,dx$ and $v(x)\,dx$. As a consequence we obtain analogous results for
\[ M_{\alpha}f(x) = \sup_{R>0} R^{-1-\alpha}
\int_{R<|x-y|<2R} |f(y)| (|x-y|-R)^{\alpha} \, dy.\]
We apply the results to the study of the Cesàro-$\alpha$ convergence of singular integrals.
Download the article in PDF format (size 83 Kb)

TeXAdel Scientific Publishing ©  Australian MS