J. Aust. Math. Soc.  75 (2003), 41-56
The direct decomposition of l-algebras into products of subdirectly irreducible factors

Sándor Radeleczki
  Institute of Mathematics
  University of Miskolc-Egyetemváros
  3515 Miskolc
  Hungary
  matradi@gold.uni-miskolc.hu


Abstract
Generalizing earlier results of Katrinák, El-Assar and the present author we prove new structure theorems for l-algebras. We obtain necessary and sufficient conditions for the decomposition of an arbitrary bounded lattice into a direct product of (finitely) subdirectly irreducible lattices.
Download the article in PDF format (size 140 Kb)

TeXAdel Scientific Publishing ©  Australian MS