J. Aust. Math. Soc.  75 (2003), 413-422
On $\psi$-direct sums of Banach spaces and convexity

Mikio Kato
  Department of Mathematics
  Kyushu Institute of Technology
  Kitakyushu 804-8550
  Japan
  katom@tobata.isc.kyutech.ac.jp
Kichi-Suke Saito
  Department of Mathematics
  Faculty of Science
  Niigata University
  Niigata 950-2181
  Japan
  saito@math.sc.niigata-u.ac.jp
and
Takayuki Tamura
  Graduate School of Social Sciences and Humanities
  Chiba University
  Chiba 263-8522
  Japan
  tamura@le.chiba-u.ac.jp


Abstract
Let $X_1, X_2,\dots, X_N$ be Banach spaces and $\psi$ a continuous convex function with some appropriate conditions on a certain convex set in $\mathbb{R}^{N-1}$. Let $(X_1\oplus X_2\oplus \cdots \oplus X_N)_{\psi}$ be the direct sum of $X_1,X_2,\dots,X_N$ equipped with the norm associated with $\psi$. We characterize the strict, uniform, and locally uniform convexity of $(X_1\oplus X_2\oplus \cdots \oplus X_N)_{\psi}$ by means of the convex function $\psi$. As an application these convexities are characterized for the $\ell_{p,q}$-sum $(X_1\oplus X_2\oplus \cdots \oplus X_N)_{p,q}$ ($1<q\leq p\leq \infty$, $q<\infty$), which includes the well-known facts for the $\ell_p$-sum $(X_1\oplus X_2\oplus \cdots \oplus X_N)_p$ in the case $p=q$.
Download the article in PDF format (size 91 Kb)

TeXAdel Scientific Publishing ©  Australian MS