J. Aust. Math. Soc.
76 (2004), 291-302
|
Generalized Weyl's theorem and hyponormal operators
|
M. Berkani
Groupe d'Analyse et Théorie des Opérateurs (G.A.T.O.)
Université Mohammed I
Faculté des Sciences
Département de Mathématiques
Oujda
Morocco
berkani@sciences.univ-oujda.ac.ma
|
|
|
A. Arroud
Groupe d'Analyse et Théorie des Opérateurs (G.A.T.O.)
Université Mohammed I
Faculté des Sciences
Département de Mathématiques
Oujda
Morocco
arroud@sciences.univ-oujda.ac.ma
|
|
|
Abstract
|
Let be a bounded linear operator acting on a Hilbert
space . The
-Weyl spectrum of
is the set
of all
such that is not a
-Fredholm operator of index 0. Let
be the set of all isolated eigenvalues of
. The aim of this paper is to show that if
is a hyponormal operator, then
satisfies generalized Weyl's theorem
, and the
-Weyl spectrum
of
satisfies the spectral mapping theorem. We also
consider commuting finite rank perturbations of
operators satisfying generalized Weyl's theorem.
|
Download the article in PDF format (size 100 Kb)
|
|
|