J. Aust. Math. Soc.  77 (2004), 371-385
An $L^p$ version of Hardy's theorem for the Dunkl transform

Léonard Gallardo
  Faculté des Sciences
  Département de Mathématiques
  Parc de Grandmont
  37200 Tours
  France
  gallardo@univ-tours.fr
and
Khalifa Trimèche
  Faculté des Sciences de Tunis
  Département de Mathématiques
  Campus Universitaire
  1060 Tunis
  Tunisie
  khlifa.trimeche@fst.rnu.tn


Abstract
In this paper, we give a generalization of Hardy's theorems for the Dunkl transform ${\mathcal{F}}_D$ on ${\mathbb{R}}^d$. More precisely for all $a>0$, $b>0$ and $p, q \in [1, + \infty]$, we determine the measurable functions $f$ on ${\mathbb{R}}^d$ such that $e^{a\|x\|^2}f \in L^p_k({\mathbb{R}}^d)$ and $e^{b\|y\|^2}{\mathcal{F}}_D(f) \in L^q_k({\mathbb{R}}^d)$, where $L^p_k({\mathbb{R}}^d)$ are the Lebesgue spaces associated with the Dunkl transform.
Download the article in PDF format (size 133 Kb)

TeXAdel Scientific Publishing ©  Australian MS