J. Aust. Math. Soc.  79 (2005), 131-140
Some questions about rotundity and renormings in Banach spaces

A. Aizpuru
  Departamento de Matemáticas
  Facultad de Ciencias
  Universidad de Cádiz
  Polígono Río San Pedro
  11.510 Puerto Real (Cádiz)
  Spain
  antonio.aizpuru@uca.es
and
F. J. Garcia-Pacheco
  Departamento de Matemáticas
  Facultad de Ciencias
  Universidad de Cádiz
  Polígono Río San Pedro
  11.510 Puerto Real (Cádiz)
  Spain
  fjavier.garcia@uca.es


Abstract
In this paper, we show some results involving classical geometric concepts. For example, we characterize rotundity and Efimov-Stechkin property by mean of faces of the unit ball. Also, we prove that every almost locally uniformly rotund Banach space is locally uniformly rotund if its norm is Fréchet differentiable. Finally, we also provide some theorems in which we characterize the (strongly) exposed points of the unit ball using renormings.
Download the article in PDF format (size 83 Kb)

Australian Mathematical Publishing Association Inc. ©  Australian MS