J. Aust. Math. Soc.
79 (2005), 131-140
|
Some questions about rotundity and renormings in Banach spaces
|
A. Aizpuru
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Cádiz
Polígono Río San Pedro
11.510 Puerto Real (Cádiz)
Spain
antonio.aizpuru@uca.es
|
|
|
F. J. Garcia-Pacheco
Departamento de Matemáticas
Facultad de Ciencias
Universidad de Cádiz
Polígono Río San Pedro
11.510 Puerto Real (Cádiz)
Spain
fjavier.garcia@uca.es
|
|
|
Abstract
|
In this paper, we show some results involving
classical geometric concepts. For example, we
characterize rotundity and Efimov-Stechkin
property by mean of faces of the unit ball. Also,
we prove that every almost locally uniformly
rotund Banach space is locally uniformly rotund
if its norm is Fréchet differentiable.
Finally, we also provide some theorems in which
we characterize the (strongly) exposed points of
the unit ball using renormings.
|
Download the article in PDF format (size 83 Kb)
|
|
Australian Mathematical Publishing Association Inc.
|
©
Australian MS
|
|