J. Aust. Math. Soc.  80 (2006), 131-147
Ribbon concordance of surface-knots via quandle cocycle invariants

J. Scott Carter
  Department of Mathematics
  University of South Alabama
  Mobile AL 36688
  USA
  carter@mathstat.usouthal.edu
Masahico Saito
  Department of Mathematics
  University of South Florida
  Tampa FL 33620
  USA
  saito@math.usf.edu
and
Shin Satoh
  Department of Mathematics
  Chiba University
  Yayoi-cho 1-33
  Inage-ku, Chiba 263-8522
  Japan
  satoh@math.s.chiba-u.ac.jp


Abstract
We give necessary conditions of a surface-knot to be ribbon concordant to another, by introducing a new variant of the cocycle invariant of surface-knots in addition to using the invariant already known. We demonstrate that twist-spins of some torus knots are not ribbon concordant to their orientation reversed images.
Download the article in PDF format (size 238 Kb)

Australian Mathematical Publishing Association Inc. ©  Australian MS