J. Aust. Math. Soc.  80 (2006), 397-418
Growth properties and sequences of zeros of analytic functions in spaces of Dirichlet type

Daniel Girela
  Depto. de Análisis Matemático
  Facultad de Ciencias
  Universidad de Málaga
  Campus de Teatinos
  29071 Málaga
  Spain
  girela@uma.es
and
José Ángel Peláez
  Depto. de Análisis Matemático
  Facultad de Ciencias
  Universidad de Málaga
  Campus de Teatinos
  29071 Málaga
  Spain
  pelaez@anamat.cie.uma.es


Abstract
For $0<p<\infty $, we let $\mathcal{D}_{p-1}^p$ denote the space of those functions $f$ that are analytic in the unit disc $\Delta =\{ z\in \mathbb C : | z| <1\}$ and satisfy $\int_\Delta (1-| z|)^{p-1}| f'(z)|^p\, dx\, dy <\infty $. The spaces $\mathcal{D}_{p-1}^p$ are closely related to Hardy spaces. We have, $\mathcal{D}_{p-1}^p\subset H^p$, if $0<p\le 2$, and $H^p\subset \mathcal{D}_{p-1}^p$, if $2\le p<\infty $. In this paper we obtain a number of results about the Taylor coefficients of $\mathcal{D}_{p-1}^p$-functions and sharp estimates on the growth of the integral means and the radial growth of these functions as well as information on their zero sets.
Download the article in PDF format (size 172 Kb)

Australian Mathematical Publishing Association Inc. ©  Australian MS