J. Aust. Math. Soc.  81 (2006), 351-361
Normal characterization by zero correlations

Eugene Seneta
  School of Mathematics and Statistics
  University of Sydney
  NSW 2006
  Australia
  eseneta@maths.usyd.edu.au
and
Gabor J. Szekely
  Department of Mathematics and Statistics
  Bowling Green State University
  Bowling Green
  OH 43403
  USA
  gabors@bgnet.bgsu.edu


Abstract
Suppose $X_i$, $i = 1,\dots,n$ are independent and identically distributed with $E{|X_1|}^r < \infty$, $r = 1,2,\ldots$. If $\operatorname{Cov} \big({({\bar X} - \mu)}^r, S^2\big) = 0$ for $r = 1, 2, \dots$, where $\mu = E X_1$, $S^2 = \sum_{i=1}^n {(X_i - {\bar X})^2}/{(n-1)}$, and ${\bar X} = \sum_{i=1}^n {X_i}/{n}$, then we show that $X_1 \sim {\mathcal{N}} (\mu, \sigma^{2})$, where $\sigma^2 = \operatorname{Var} (X_1)$. This covariance zero condition characterizes the normal distribution. It is a moment analogue, by an elementary approach, of the classical characterization of the normal distribution by independence of $\bar X$ and $S^2$ using semi-invariants. More generally, if Cov$\operatorname{Cov} ({({\bar X} - \mu)}^r, S^2) = 0$ for $r = 1,\dots,k$, then $E((X_1 - \mu)/\sigma)^{r+2} = EZ^{r+2}$ for $r = 1,\dots,k$, where $Z \sim {\mathcal{N}} (0, 1)$. Conversely $\operatorname{Corr} ({({\bar X}-\mu)}^r,S^2)$ may be arbitrarily close to unity in absolute value, but for unimodal $X_1$, $\operatorname{Corr}^2 ({\bar X}, S^2)<15/16$, and this bound is the best possible.
Download the article in PDF format (size 77 Kb)

Australian Mathematical Publishing Association Inc. ©  Australian MS